A Note on b-chromatic Number of the Transformation Graph G^{++} and Corona Product of Graphs

D. Vijayalakshmi, K. Thilagavathi

Assistant Professor & Head, Department of Maths CA, Kongunadu Arts and Science College, Coimbatore – 641 029.
E-mail: vijikasc@gmail.com

Associate Professor, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore – 641 029.
E-mail: ktmaths@yahoo.com

Abstract

In this paper, we find the b-chromatic number of Transformation graph G^{++} for Cycle, Path and Star graph. Also we determine the b-chromatic number of Corona product of Path graph with Cycle and Path graph with Complete graph along with its structural properties.

Keywords: b-chromatic number, b-colouring, chromatic number, Corona product, Transformation graph.

1 Introduction

All graphs in this paper are finite, undirected graphs, loopless graph without multiple edges. A k-colouring of a graph $G[I]$ is a labeling $f:V(G)\rightarrow T$, where $|T| = k$ and it is proper if adjacent vertices have different labels. A graph is k colourable if it has a proper colouring. The chromatic number $\chi(G)$ is the least number k such that G is k-colourable. The b-chromatic number $\phi(G)$ [2] of a graph G is the largest integer k such that G admits a proper k-colouring in which every colour class has a representative adjacent to at least one vertex in each of the other colour classes. Such a colouring is called a b-colouring. The concept of b-chromatic number was introduced in 1999 by Irwing and Manlove[3].
For a graph G, let $V(G)$ and $E(G)$ [7] denote the point set, line set of graph G respectively. The Transformation graph G^{++}[4,8] of G is the graph with point set $V(G) \cup E(G)$ in which the points X and Y are joined by a line if one of the following conditions holds:

- $x,y \in V(G)$ and x,y are adjacent in G.
- $x,y \in E(G)$ and x,y are adjacent in G.
- one of x and y is in $V(G)$ and the other is in $E(G)$ and they are not incident in G.

Corona product [9] or simply corona of graph G_1 and G_2 is a graph which is the disjoint union of one copy of G_1 and $|v_1|$ copies of G_2 ($|v_1|$ is number of vertices of G_1) in which each vertex copy of G_1 is connected to all vertices of separate copy of G_2.

2 b-Chromatic Number of G^{++} of Path Graph

Theorem 2.1: The b-Chromatic number of G^{++} of Path graph P_n has n colours.

Proof

Consider a Path graph of length $n-1$ with vertex set $V=\{v_1,v_2,v_3..v_n\}$ and edge set $E=\{e_1,e_2,e_3..e_{n-1}\}$. In Path graph P_n, each vertex v_i is adjacent with the vertices v_{i-1} and v_{i+1} for $i=2,3,...n-1$, the vertex v_1 is adjacent with v_2 and v_n is adjacent with v_{n-1} and the lines e_i and e_n are non-adjacent with $n-3$ lines and remaining e_i for $i=2,3,...n-1$ are non-adjacent with $n-4$ lines.

By the definition of Transformation graph G^{++}, the vertex set of $G^{++}(P_n)$ corresponds to both vertex set and edge set of Path graph. The vertex set of $G^{++}(P_n)$ is defined as follows:

i.e.$\{G^{++}(P_n)\}=\{v_i; 1 \leq i \leq n\} \cup \{e_i; 1 \leq i \leq n-1\}$

Consider the colour class $C=\{c_1,c_2,c_3..c_n\}$. Assign the colour c_i to v_i for $i=1,2,3..n$ and assign the colour c_{n+i} to e_i for $i=1,2,3..n-1$. Due to the above mentioned non-adjacency condition the above colouring does not produce a b-chromatic colouring. Thus, to make the above colouring as b-chromatic one, assign the colour c_i to v_i for $1 \leq i \leq n$ and assign the colour c_l to e_l and c_{l+1} to e_l for $i=2,3..n-1$.

Now the vertices v_i for $i=1,2,3$ and the vertices e_i for $3 \leq i \leq n-1$ realizes its own colour, which produces a b-chromatic colouring.

Thus the given colouring is b-chromatic. And by the very construction, it is the maximal colour class.

Hence the proof.
2.1 Structural Properties of $G^{++}(P_n)$

The number of vertices in $G^{++}(P_n)$ i.e. $p[G^{++}(P_n)]= 2n-1$, number of edges in the $G^{++}(P_n)$ i.e. $q[G^{++}(P_n)] = n^2-n-1$. The Maximum and Minimum degree of $G^{++}(P_n)$ is denoted as $\Delta = n$ and $\delta = n-1$ respectively.

3 b-Chromatic Number of G^{++} of Cycle

Theorem 3.1: The b-Chromatic number of G^{++} of the Cycle C_n is n.

Proof

Consider a Cycle of length n, whose vertices are denoted as $v_1, v_2, v_3, \ldots, v_n$ and edges are denoted as $e_1, e_2, e_3, \ldots, e_n$. We see that every point in Cycle C_n is non-adjacent with $n-2$ lines. Now consider $G^{++}(C_n)$, here there is no non-incident lines. By the definition of Transformation graph G^{++}, the vertex set of $G^{++}(C_n)$ corresponds to both vertex set and edge set of Cycle.

i.e. $V[G^{++}(C_n)] = \{v_i; 1 \leq i \leq n\} \cup \{e_i; 1 \leq i \leq n\}$
By observation, $G^{++}(C_n)$ forms an n-regular graph. Therefore the b-chromatic number of $G^{++}(C_n) \geq n$. Now we prove for $\varphi[G^{++}(C_n)] \leq n$, for this consider a proper colouring of $G^{++}(C_n)$ as follows.

Consider the colour class $C = \{c_1, c_2, c_3, \ldots, c_n\}$. Assign the colour c_i for $i=1,2,3,\ldots,n$ to the inner cycle of C_n. Next if we assign the colour c_{n+1} to any vertices in outer cycle, it does not realize the colour c_{n+1}. So we should assign only the existing colours to the vertices in outer cycle. Hence by the colouring procedure, we cannot assign more than n colours to $G^{++}(C_n)$ i.e. $\varphi[G^{++}(C_n)] \leq n$. Therefore $\varphi[G^{++}(C_n)] = n$. Thus by the colouring procedure the above said colouring is maximal and b-chromatic.

Hence the Proof.

Example

![Fig. 2: C₅](image1)

![Fig. 3: φ[G^{++}(C₅)] = 5](image2)

3.1 Structural Properties of $G^{++}(C_n)$

The number of vertices in $G^{++}(C_n)$ i.e. $p[G^{++}(C_n)] = 2n$, number of edges in the $G^{++}(C_n)$ i.e. $q[G^{++}(C_n)] = n^2$. The Maximum and Minimum degree of $G^{++}(C_n)$ are denoted as $\Delta = n$ and $\delta = n$ respectively. Thus $G^{++}(C_n)$ is an n-regular graph.

4 b-Chromatic Number of G^{++} of Star Graph

Theorem 4.1: If G is $K_{1,n}$, then clearly $\varphi[G^{++}(K_{1,n})] = n+1$

Proof

Consider the graph $K_{1,n}$ with pendant vertices $v_1, v_2, v_3, \ldots, v_n$ and v where v is the root vertex with degree n. i.e. $V(K_{1,n}) = \{v\} \cup \{v_i : 1 \leq i \leq n\}$ and $E(K_{1,n}) = \{e_i : 1 \leq i \leq n\}$ between the vertices vv_i for $i=1,2,3,\ldots,n$. Here in $K_{1,n}$ we see there is no incident lines.
Consider $G^{++}(K_{1,n})$. By the definition of the Transformation graph G^{++}, the vertex set is defined as $V[G^{++}(K_{1,n})] = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\}$. Here the vertices $\{e_i : 1 \leq i \leq n\}$ forms a clique of order n (say K_n) in $G^{++}(K_{1,n})$. Therefore we say that the b-chromatic number of $G^{++}(K_{1,n}) \geq n$. Consider the colour class $C = \{c_1, c_2, c_3, \ldots, c_{n+1}\}$. Assign a proper colouring to the vertices as follows.

Case 1
First assign the proper colouring to the vertex e_i. Assign the colour c_i to the vertex e_i for $i=1,2,3,\ldots,n$, and assign the colour c_{n+1} to v_i for $i=1,2,3,\ldots,n$ and assign any colour to root vertex other than the colour c_{n+1}. Now the vertices e_i realizes its own colour. Thus, by the colouring procedure the above said colouring produces a maximal and b-chromatic colouring.

Example

![Fig 4: $\varphi[G^{++}(K_{1,3})]=4$](image)

Case 2
Next assign proper colouring to the vertex v and v_i for $i=1,2,3,\ldots,n$. Assign the colour c_1 to the root vertex v and c_{i+1} to v_i for $i=1,2,3,\ldots,n$ and assign the same set of colour to e_i, which is already assigned for v, because v_i is not adjacent with e_i for $i=1,2,3,\ldots,n$, which produces a b-chromatic colouring. Thus by colouring procedure the above said colouring is maximal and b-chromatic. Hence the proof.

Example

![Fig 5: $\varphi[G^{++}(K_{1,3})]=4$](image)
4.1 Structural Properties of $G^{++}(K_{1,n})$

The number of vertices in $G^{++}(K_{1,n})$ i.e. $p[G^{++}(K_{1,n})]= 2n+1$, number of edges in the $G^{++}(K_{1,n})$ i.e. $q[G^{++}(K_{1,n})] = \left\lceil \frac{n(3n-1)}{2} \right\rceil$. The Maximum and Minimum degree of $G^{++}(K_{1,n})$ is denoted as $\Delta = n+1$ and $\delta = n-1$ respectively. The number of vertices having maximum and minimum degree in $G^{++}(K_{1,n})$ is denoted by $n(p_{\Delta})=n$ and $n(p_{\delta})=n+1$.

Theorem 4.2: For any Star graph $K_{1,n}$ the number of edges in $G^{++}(K_{1,n})$ is

$$q[G^{++}(K_{1,n})] = \left\lceil \frac{n(3n-1)}{2} \right\rceil$$

Proof:

\[
q[G^{++}(K_{1,n})] = \text{Number of edges in } K_{1,n} + \text{Number of edges in } K_n + \text{Number of edges in crown graph } S_n \\
= \binom{n}{1} + \binom{n}{2} + n(n-1) \\
= n + \frac{n(n-1)}{2} + n(n-1) \\
= n + n(n-1) \left(1 + \frac{2+1}{2}\right) \\
= \frac{2n + 3n^2 - 3n}{2} \\
= \frac{3n^2 - n}{2} \\
= \left\lceil \frac{n(3n-1)}{2} \right\rceil
\]

Therefore $q[G^{++}(K_{1,n})] = \left\lceil \frac{n(3n-1)}{2} \right\rceil$

5 b-Chromatic Number of Corona Product of Path Graph with Cycle

Theorem 5.1: For any integer $n>3$, $\varphi (P_n \circ C_n) = n$

Proof:

Let $G_1 = P_n$ be a Path graph of length $n-1$ with vertices $v_1, v_2, v_3, \ldots, v_n$ and edges $e_1, e_2, e_3, \ldots, e_{n-1}$. Consider $G_2 = C_n$ be a Cycle of length n whose vertices are denoted as $v_1, v_2, v_3, \ldots, v_n$ and edges are denoted by $e_1, e_2, e_3, \ldots, e_n$.
Consider the Corona product of G_1 and G_2 i.e. $G = P_n \circ C_n$ is obtained by taking unique copy of P_n with n vertices and n copies of C_n and joining the i^{th} vertex of P_n to every vertex in i^{th} copy of C_n.

i.e. $V(G) = V(P_n) \cup V(C_1^n) \cup V(C_2^n) \cup V(C_3^n) \cup \ldots \ldots V(C^n_n)$

where $V(P_n) = \{v_1, v_2, v_3, \ldots, v_n\}$ and $V(C_i^n) = \{u_{i,j}^l : 1 \leq i \leq n, 1 \leq j \leq n\}$

Now assign a proper colouring to these vertices as follows. Consider the colour class $C = \{c_1, c_2, c_3, \ldots, c_n\}$. First assign the colour c_i to vertex v_i for $i=1,2,3,\ldots,n$ and assign the colour to $u_{i,j}^l$ as c_{i+j} when $i+j \leq n$ and c_{i+j-n} when $i+j > n$ for $1 \leq i \leq n$, $l \leq j \leq n-1$. Now the only vertex remaining to be coloured is $u_{i,j}^l$ for $j=n$. Suppose if we assign any new colour to $u_{i,j}^l$ for $i=1,2,3,\ldots,n$, $j=n$ it will not produce a b-chromatic colouring, because $u_{i,j}^l$ (i.e. $i=1,2,3,\ldots,n$, $j=n$) is adjacent only with $u_{i,j}^l$ and $u_{i,j}^{l-1}$. So we assign the colour to $u_{i,j}^l$ other than the colour which we assign for $u_{i,j}^l$ and $u_{i,j}^{l-1}$. Now the vertices $\{v_i : 1 \leq i \leq n\}$ realize its own colours, which produces a b-chromatic colouring. Thus by the colouring procedure the above said colouring is maximal and b-chromatic. Hence the proof.

Example

![Fig. 6: $\phi(P_n \circ C_4) = 4$](image)

5.1 Structural Properties of $(P_n \circ C_n)$

The Number of vertices in $P_n \circ C_n (n \geq 3)$ i.e. $p(P_n \circ C_n) = n(n+1)$, number of edges in the $P_n \circ C_n$ i.e. $q(P_n \circ C_n) = 2n^2 + n - 1$. The Maximum and Minimum degree of $P_n \circ C_n$ is denoted as $\Delta = n+2$ and $\delta = n-1$ respectively. The number of vertices having maximum and minimum degree in $P_n \circ C_n$ is denoted by $n(p_\Delta) = n-2$ and $n(p_\delta) = n^2$.

Corollary 5.1: For any integer $n < 4$, $\phi (P_n \circ C_n) = n+1$

Theorem 5.2: $q(P_n \circ C_n) = 2n^2 + n - 1$
Proof

\[q(P_n \circ C_n) = \text{Number of edges in largest subgraph} + \text{Number of edges not in any of the largest subgraph} \]
\[= n \times (2n) + n - 1 \]
\[= 2n^2 + n - 1 \]

6 b-Chromatic Number of Corona Product of Path with Complete Graph

Theorem 6.1: Let \(P_n \) and \(K_2 \) be the Path graph and Complete graphs with \(n \) vertices respectively. Then

\[\varphi (P_n \circ K_2) = \begin{cases}
 n + 1 & \text{for } n = 2 \\
 n & \text{for } n = 3 \text{ and } 4 \\
 n - 1 & \text{for } n = 5 \\
 5 & \text{for every } n > 6
\end{cases} \]

6.1 Structural Properties of \(P_n \circ K_2 \)

The number of vertices in \(P_n \circ K_2 \) i.e. \(p(P_n \circ K_2) = 3n, \) number of edges in the \(P_n \circ K_2 \) i.e. \(q(P_n \circ K_2) = 3n + (n - 1). \) The Maximum and Minimum degree of \(P_n \circ K_2(n > 3) \) is denoted as \(\Delta = 4 \) and \(\delta = 3 \) respectively. The number of vertices having maximum and minimum degree in \(P_n \circ K_2 \) is denoted by \(n(\Delta) = n - 2 \) and \(n(\delta) = 2. \)

Theorem 6.2: For any integer \(n, \varphi(P_n \circ K_n) = n + 1 \)

Proof

Let \(G_1 = P_n \) be a Path graph of length \(n - 1 \) with \(n \) vertices and \(G_2 = K_n \) be a Complete graph of \(n \) vertices.

Consider the Corona product of \(G_1 \) and \(G_2 \) i.e. \(G = P_n \circ K_n \) is obtained by taking unique copy of \(P_n \) with \(n \) vertices and \(n \) copies of \(K_n \) and joining the \(i^{th} \) vertex of \(P_n \) to every vertex in the \(i^{th} \) copy of \(K_n. \)

i.e. \(V(G) = V(P_n) \cup V(K_n^1) \cup V(K_n^2) \cup V(K_n^3) \cup \ldots \cup V(K_n^n). \)

where \(V(P_n) = \{ v_1, v_2, v_3, \ldots, v_n \} \) and \(V(K_n^i) = \{ u_{j}^{i} : 1 \leq i \leq n, 1 \leq j \leq n \}. \)

By observation, we see that there are \(n \) copies of disjoint subgraph which induces a clique of order \(n + 1 \) (say \(K_{n+1} \)). Therefore we can assign more than or equal to \(n + 1 \) colours to every corona product of path graph with complete graph. Consider the colour class \(C = \{ c_1, c_2, c_3, c_4, \ldots, c_n, c_{n+1} \}. \) Now assign a proper colouring to these vertices as follows. Suppose if we assign more than \(n + 1 \) colours, it contradicts the
definition of b-chromatic colouring. Due to this condition, we cannot assign more than $n+1$ colours. Hence we have $\phi(P_n o K_n) \leq n+1$. Therefore $\phi(P_n o K_n) = n+1$.

Thus by the colouring Procedure the above said colouring is maximal and b-chromatic colouring.

Example

![Figure 8: $\phi(P_4 o K_4) = 5$](image)

6.2 Structural Properties of $(P_n \circ K_n)$

The number of vertices in $P_n o K_n$ i.e. $p(P_n o K_n) = n(n+1)$, number of edges in the $P_n o K_n$ i.e. $q(P_n o K_n) = \frac{n^3+n^2+2n-2}{2}$. The Maximum and Minimum degree of $P_n o K_n$ is denoted as $\Delta = n+2$ and $\delta = n$ respectively. The number of vertices having maximum and minimum degree in $P_n o C_n$ is denoted by $n(p_{\Delta})=n-2$ and $n(p_{\delta})=n^2$.

Theorem 6.3: For any path P_n and complete graph graph K_n the number of edges in corona product of P_n with K_n is

$$q(P_n o K_n) = \left\lfloor \frac{n^3+n^2+2n-2}{2} \right\rfloor$$

Proof

\[
q(P_n o K_n) = \text{Number of edges in all } K_{n+1} + \text{Number of edges not in any of the } K_{n+1} = n \times q(K_{n+1}) + \text{Number of edges not in any of the } K_{n+1} = n \times \binom{n+1}{2} + n-1 = n \left(\frac{n(n+1)}{2} \right) + n-1 = n \left(\frac{n^2+n}{2} \right) + n-1 = \left(\frac{n^3+n^2}{2} \right) + n-1 = \left(\frac{n^3+n^2+2n-2}{2} \right)
\]

Therefore $q(P_n o K_n) = \left\lfloor \frac{n^3+n^2+2n-2}{2} \right\rfloor$
7 b-Chromatic Number of Corona Product K_n with Fan Graph

Theorem 7.1:

$$\varphi(F_{1,n}oK_2)=\begin{cases}
 n+1 & \text{for every } 2 \leq n \leq 4 \\
 5 & \text{for every } n > 5
\end{cases}$$

Theorem 7.2: $\varphi(F_{1,n}oK_n)=n+1$ for every $n>2$.

Proof
The Proof of the theorem is similar to theorem (6.1).

8 b-Chromatic Number of Corona Product $K_{I,n}$ with K_2

Theorem 8.1: If $K_{I,n}$ and K_2 are Star graph and Complete graphs respectively, then

$$\varphi(K_{I,n}oK_2)=\begin{cases}
 n+1 & \text{for every } n \leq 3 \\
 4 & \text{for every } n \geq 4
\end{cases}$$

Theorem 8.2: $\varphi(K_{I,n}oK_n)=n+1$ for every $n>2$

Proof
The Proof of the theorem is similar to theorem (6.1).

9 Conclusion

In this paper, we discussed about b-chromatic number of Transformation graph G^{++} of Cycle, Path and Star graph and the Corona product of Path graph with Cycle and Complete graph.

Acknowledgements

The authors are very much thankful for the reviewers for giving valuable suggestions and co-operation.
References

