A Note on b-chromatic Number of the Transformation Graph G^{++-}and Corona Product of Graphs

D. Vijayalakshmi, K. Thilagavathi
Assistant Professor \& Head, Department of Maths CA, Kongunadu Arts and Science College, Coimbatore - 641029.
E-mail: vijikasc@gmail.com
Associate Professor, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641029.
E-mail: ktmaths @yahoo.com

Abstract

In this paper, we find the b-chromatic number of Transformation graph G^{++-}for Cycle, Path and Star graph. Also we determine the b-chromatic number of Corona product of Path graph with Cycle and Path graph with Completegraph along with its structural properties.

Keywords: b-chromatic number, b-colouring, chromatic number, Corona product, Transformation graph.

1 Introduction

All graphs in this paper are finite, undirected graphs, loopless graph without multiple edges. A k-colouring of a graph $G[1]$ is a labeling $f: V(G) \rightarrow T$, where $|T|=k$ and it is proper if adjacent vertices have different labels. A graph is k colourable if it has a proper colouring. The chromatic number $\chi(G)$ is the least number k such that G is k-colourable. The b-chromatic number $\varphi(G)$ [2] of a graph G is the largest integer k such that G admits a proper k-colouring in which every colour class has a representative adjacent to at least one vertex in each of the other colour classes. Such a colouring is called a b-colouring. The concept of b-chromatic number was introduced in 1999 by Irwing and Manlove[3].

For a graph G, let $V(G)$ and $E(G)$ [7]denote the point set, line set of graph G respectively. The Transformation graph $G^{++}[4,8]$ of G is the graph with point set $V(G) \cup E(G)$ in which the points X and Y are joined by a line if one of the following conditions hold.

- $\quad x, y \in \mathrm{~V}(\mathrm{G})$ and x, y are adjacent in G.
- $x, y \in E(G)$ and x, yare adjacent in G.
- one of x and y is in $V(G)$ and the other is in $E(G)$ and they are not incident in G.

Corona product [9] or simply corona of graph G_{l} and G_{2} is a graph which is the disjoint union of one copy of G_{l} and $\left|v_{l}\right|$ copies of $G_{2}\left(\left|v_{l}\right|\right.$ is number of vertices of G_{l}) in which each vertex copy of G_{l} is connected to all vertices of separate copy of G_{2}.

2 b-Chromatic Number of \mathbf{G}^{++-}of Path Graph

Theorem 2.1: The b-Chromatic number of G^{++-}of Path graph P_{n} has n colours.

Proof

Consider a Path graph of length $n-1$ with vertex set $V=\left\{v_{1}, v_{2}, v_{3} . v_{n}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, e_{3 . .} e_{n-1}\right\}$. In Path graph $P_{n,}$, each vertex v_{i} is adjacent with the vertices v_{i-1} and v_{i+1} for $i=2,3, \ldots . n-1$, the vertex v_{1} is adjacent with v_{2} and v_{n} is adjacent with v_{n-l} and the lines e_{1} and e_{n} are non-adjacent with $n-3$ lines and remaining e_{i} for $i=2,3, \ldots n-1$ are non-adjacent with $n-4$ lines.
By the definition of Transformation graph G^{++-}, the vertex set of $G^{++-}\left(P_{n}\right)$ corresponds to both vertex set and edge set of Path graph. The vertex set of $G^{++-}\left(P_{n}\right)$ is defined as follows:

$$
\text { i.e. }\left[G^{++-}\left(P_{n}\right)\right]=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n-1\right\}
$$

Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3 . .} c_{n}\right\}$. Assign the colour c_{i} to v_{i} for $i=1,2,3 . . n$ and assign the colour c_{n+i} to e_{i} for $i=1,2,3 . . n-1$. Due to the above mentioned nonadjacency condition the above colouring does not produce a b-chromatic colouring. Thus, to make the above colouring as b-chromatic one, assign the colour c_{i} to v_{i} for $l \leq i \leq n$ and assign the colour c_{1} to e_{1} and c_{i+1} to e_{i} for $i=2,3 . . n-1$. Now the vertices v_{i} for $i=1,2,3$ and the vertices e_{i} for $3 \leq i \leq n-1$ realizes its own colour, which produces a b-chromatic colouring.
Thus the given colouring is b-chromatic. And by the very construction, it is the maximal colour class.
Hence the proof.

Example

Fig. 1: $\mathrm{G}^{++}\left(\mathrm{P}_{5}\right)$

2.1 Structural Properties of $\boldsymbol{G}^{++(}\left(\boldsymbol{P}_{\boldsymbol{n}}\right)$

The number of vertices in $G^{++-}\left(P_{n}\right)$ i.e. $p\left[G^{++-}\left(P_{n}\right)\right]=2 n-1$, number of edges in the $G^{++}\left(P_{n}\right)$ i.e. $q\left[G^{++}\left(P_{n}\right)\right]=n^{2}-n-1$. The Maximum and Minimum degree of $G^{++-}\left(P_{n}\right)$ is denoted as $\Delta=n$ and $\delta=n-l$ respectively.

3 b-Chromatic Number of \mathbf{G}^{++-}of Cycle

Theorem 3.1: The b-Chromatic number of G^{++-}of the Cycle C_{n} is n.

Proof

Consider a Cycle of length n, whose vertices are denoted as $v_{1}, v_{2}, v_{3} \ldots . v_{n}$ and edges are denoted as $e_{1}, e_{2}, e_{3} \ldots . e_{n}$. We see that every point in Cycle C_{n} is non-adjacent with n - 2 lines. Now consider $G^{++-}\left(C_{n}\right)$, here there is no non-incident lines. By the definition of Transformation graph G^{++-}, the vertex set of $G^{++-}\left(C_{n}\right)$ corresponds to both vertex set and edge set of Cycle.
i.e. $V\left[G^{++}\left(C_{n}\right)\right]=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n\right\}$

By observation, $G^{++}\left(C_{n}\right)$ forms an-regular graph. Therefore the b-chromatic number of $G^{++-}\left(C_{n}\right) \geq n$. Now we prove for $\varphi\left[G^{++-}\left(C_{n}\right)\right] \leq n$, for this consider a proper colouring of $G^{++-}\left(C_{n}\right)$ as follows.
Consider the colour class $\mathrm{C}=\left\{c_{1}, c_{2}, c_{3} . . c_{n}\right\}$. Assign the colour c_{i} for $i=1,2,3 . . n$ to the inner cycle of C_{n}. Next if we assign the colour c_{n+1} to any vertices in outer cycle, it does not realize the colour c_{n+1}, So we should assign only the existing colours to the vertices in outer cycle. Hence by the colouring procedure, we cannot assign more than n colours to $G^{++}\left(C_{n}\right)$ i.e. $\varphi\left[\mathrm{G}^{++-}\left(\mathrm{C}_{\mathrm{n}}\right)\right] \leq n$. Therefore $\varphi\left[G^{++-}\left(C_{n}\right)\right]=n$. Thus by the colouring procedure the above said colouring is maximal and b-chromatic.
Hence the Proof.

Example

Fig. 2: C_{5}

Fig. 3: $\varphi\left[\mathrm{G}^{++-}\left(\mathrm{C}_{5}\right)\right]=5$

3.1 Structural Properties of $\boldsymbol{G}^{++(}\left(\boldsymbol{C}_{\boldsymbol{n}}\right)$

The numberof vertices in $G^{++-}\left(C_{n}\right)$ i.e. $p\left[G^{++-}\left(C_{n}\right)\right]=2 n$, number of edges in the $\mathrm{G}^{++-}\left(C_{n}\right)$ i.e. $q\left[G^{++-}\left(C_{n}\right)\right]=n^{2}$. The Maximum and Minimum degree of $G^{++-}\left(C_{n}\right)$ are denoted as $\Delta=n$ and $\delta=n$ respectively. Thus $G^{++}\left(C_{n}\right)$ is an n-regular graph.

4 b-Chromatic Number of \mathbf{G}^{++-}of Star Graph

Theorem 4.1: If G is $K_{l, n}$, then clearly $\varphi\left[G^{++-}\left(K_{l, n}\right)\right]=n+1$

Proof

Consider the graph $K_{l, n}$ with pendant vertices $v_{1}, v_{2}, v_{3} . v_{n}$ and v where v is the root vertex with degree n. i.e. $V\left(K_{l, n}\right)=\{v\} \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{l, n}\right)=\left\{e_{i}: 1 \leq\right.$ $i \leq n\}$ between the vertices $v v_{i}$ for $i=1,2,3 . . n$. Here in $K_{l, n}$ we see there is no incident lines.

Consider $G^{++-}\left(K_{l, n}\right)$. By the definition of the Transformation graph G^{++-}, the vertex set is defined as $V\left[G^{++-}\left(K_{l, n}\right)\right]=\{v\} \cup\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n\right\}$. Here the vertices $\left\{e_{i}: 1 \leq i \leq n\right\}$ forms a clique of order $n\left(\operatorname{say} K_{n}\right)$ in $G^{++-}\left(K_{l, n}\right)$. Therefore we say that the b-chromatic number of $G^{++-}\left(K_{l, n}\right) \geq n$. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3} \ldots c_{n+1}\right\}$. Assign a proper colouring to the vertices as follows.

Case 1

First assign the proper colouring to the vertex e_{i}. Assign the colour c_{i} to the vertex e_{i} for $i=1,2,3 . . n$, and assign the colour c_{n+1} to v_{i} for $i=1,2,3 . . n$ and assign any colour to root vertex other than the colour c_{n+1}. Now the vertices e_{i} realizes its own colour. Thus, by the colouring procedure the above said colouring produces a maximal and b-chromatic colouring.

Example

Fig 4: $\varphi\left[\mathrm{G}^{++-}\left(\mathrm{K}_{1,3}\right)\right]=4$

Case 2

Next assign proper colouring to the vertex v and $v i$ for $i=1,2,3 . n$.
Assign the colour c_{1} to the root vertex v and c_{i+1} to v_{i} for $i=1,2,3 . . n$ and assign the same set of colour to e_{i} which is already assigned for v_{i} because v_{i} is not adjacent with e_{i} for $i=1,2,3 . . n$, which produces a b-chromatic colouring. Thus by colouring procedure the above said colouring is maximal and b -chromatic. Hence the proof.

Example

Fig. 5: $\varphi\left[\mathrm{G}^{++-}\left(\mathrm{K}_{1,3}\right)\right]=4$

4.1 Structural Properties of $\boldsymbol{G}^{++-}\left(\boldsymbol{K}_{1, n}\right)$

The Number of vertices in $G^{++-}\left(K_{l, n}\right)$ i.e. $p\left[G^{++-}\left(K_{l, n}\right)\right]=2 n+1$, number of edges in the $G^{++-}\left(K_{l, n}\right)$ i.e. $q\left[G^{++-}\left(K_{l, n}\right)\right]=\left[\frac{n(3 n-1)}{2}\right]$. The Maximum and Minimum degree of $G^{++-}\left(K_{l, n}\right)$ is denoted as $\Delta=n+1$ and $\delta=n-1$ respectively. The number of vertices having maximum and minimum degree in $G^{++-}\left(K_{l, n}\right)$ is denoted by $n\left(p_{\Delta}\right)=n$ and $n\left(p_{\delta}\right)=n+1$.

Theorem 4.2: For any Star graph $K_{l, n}$, the number of edges in $G^{++-}\left(K_{l, n}\right)$ is
$\left[\frac{n(3 n-1)}{2}\right]$.

Proof

$q\left[G^{++-}\left(K_{l, n}\right)\right]=$ Number of edges in $K_{l, n}+$ Number of edges in $K_{n}+$ Number of edges in crown graph S_{n}

$$
\begin{aligned}
& =\binom{n}{1}+\binom{n}{2}+n(n-1) \\
& =n+\left[\frac{n(n-1)}{2}\right]+n(n-1) \\
& =n+n(n-1)\left[\frac{2+1}{2}\right] \\
& =\frac{2 n+3 n^{2}-3 n}{2} \\
& =\frac{3 n^{2}-n}{2}
\end{aligned}
$$

$$
=\left[\frac{n(3 n-1)}{2}\right]
$$

Therefore $q\left[G^{++-}\left(K_{l, n}\right)\right]=\left[\frac{n(3 n-1)}{2}\right]$

5 b-Chromatic Number of Corona Product of Path Graph with Cycle

Theorem 5.1: For any integer $n>3, \varphi\left(P_{n} o C_{n}\right)=n$

Proof:

Let $G_{l}=P_{n}$ be a Path graph of length $n-l$ with vertices $v_{l}, v_{2}, v_{3} \ldots . v_{n}$ and edges $e_{1}, e_{2}, e_{3} \ldots . e_{n-l}$. Consider $G_{2}=C_{n}$ be a Cycle of length n whose vertices are denoted as $v_{1}, v_{2}, v_{3} \ldots v_{n}$ and edges are denoted by $e_{1}, e_{2}, e_{3} \ldots . e_{n}$.

Consider the Corona product of G_{I} and G_{2} i.e. $G=P_{n} \mathrm{OC}_{\mathrm{n}}$ is obtained by taking unique copy of P_{n} with n vertices and n copies of C_{n} and joining the $i^{\text {th }}$ vertex of P_{n} to every vertex in $i^{\text {th }}$ copy of C_{n}.

$$
\text { i.e. } V(G)=V\left(P_{n}\right) \cup V\left(C^{1} n\right) \cup V\left(C^{2} n\right) \cup V\left(C^{3} n\right) \cup \ldots \ldots . . V\left(C^{n} n\right)
$$

where $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3} \ldots . v_{n}\right\}$ and $V\left(C_{n}^{i}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$
Now assign a proper colouring to these vertices as follows. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3} \ldots . c_{n}\right\}$. First assign the colour c_{i} to vertex v_{i} for $i=1,2,3 \ldots n$ and assign the colour to u_{i}^{j} as c_{i+j} when $i+j \leq n$ and c_{i+j-n} when $i+j>n$ for $1 \leq i \leq n$, $1 \leq j \leq n-1$. Now the only vertex remaining to be coloured is u_{i}^{j} for $j=n$. Suppose if we assign any new colour to u_{i}^{j} for $i=1,2,3 . n, j=n$ it will not produce a b-chromatic colouring, because $u_{i}^{j}(i=1,2,3 . . n, j=n)$ is adjacent only with u_{i}^{l} and u_{i}^{n-1}. So we assign the colour to u_{i}^{j} other than the colour which we assign for $u_{i}{ }^{l}$ and u_{i}^{n-1}. Now the vertices $\left\{v_{i}: 1 \leq i \leq n\right\}$ realize its own colours, which produces a b-chromatic colouring. Thus by the colouring procedure the above said colouring is maximal and b-chromatic. Hence the proof

Example

Fig. 6: $\varphi\left(\mathrm{P}_{4} \mathrm{OC}_{4}\right)=4$

5.1 Structural Properties of $\left(\boldsymbol{P}_{\boldsymbol{n}} \boldsymbol{o} \boldsymbol{C}_{\boldsymbol{n}}\right)$

The Number of vertices in $P_{n} o C_{n}(n>3)$ i.e. $p\left(P_{n} o C_{n}\right)=n(n+1)$, n umber of edges in the $P_{n} o C_{n}$ i.e. $q\left(P_{n} o C_{n}\right)=2 n^{2}+n-1$. The Maximum and Minimum degree of $P_{n} o C_{n}$ is denoted as $\Delta=n+2$ and $\delta=n-1$ respectively. The number of vertices having maximum and minimum degree in $P_{n} o C_{n}$ is denoted by $n\left(p_{\Delta}\right)=n-2$ and $n\left(p_{\delta}\right)=n^{2}$.

Corollary 5.1: For any integer $n<4, \varphi\left(P_{n} o C_{n}\right)=n+1$
Theorem 5.2: $q\left(P_{n} O c_{n}\right)=2 n^{2}+n-1$

Proof

$q\left(P_{n} o C_{n}\right)=$ Number of edges in largest subgraph + Number of edges not in any of the largest subgraph

$$
\begin{aligned}
& =n \times(2 n)+n-1 \\
& =2 n^{2}+n-1
\end{aligned}
$$

6 b-Chromatic Number of Corona Product of Path with Complete Graph

Theorem 6.1: Let P_{n} and K_{2} be the Path graph and Complete graphs with n vertices respectively.Then
$\varphi\left(P_{n} o K_{2}\right)=\left\{\begin{array}{l}n+1 \text { for } n=2 \\ n \text { for } n=3 \text { and } 4 \\ n-1 \text { for } n=5 \\ 5 \text { for every } n>6\end{array}\right.$

6.1 Structural Properties of $P_{n} \mathrm{O} K_{2}$

The Number of vertices in $P_{n} \mathrm{o} K_{2}$ i.e. $p\left(P_{n} \mathrm{o} K_{2}\right)=3 n$, number of edges in the $P_{n} \mathrm{o} K_{2}$ i.e. $q\left(P_{n} \mathrm{o} K_{2}\right)=3 n+(n-1)$. The Maximum and Minimum degree of $P_{n} \mathrm{o} K_{2}(n>3)$ is denoted as $\Delta=4$ and $\delta=3$ respectively. The number of vertices having maximum and minimum degree in $P_{n} \mathrm{o} K_{2}$ is denoted by $n\left(p_{\Delta}\right)=n-2$ and $n\left(p_{\delta}\right)=2$.

Theorem 6.2: For any integer $n, \varphi\left(P_{n} o K_{n}\right)=n+1$

Proof

Let $G_{l}=P_{n}$ be a Path graph of length $n-1$ with n vertices and $G_{2}=K_{n}$ be a Complete graph of n vertices.
Consider the Corona product of G_{l} and G_{2} i.e. $G=P_{n} 0 K_{n}$ is obtained by taking unique copy of P_{n} with n vertices and n copies of K_{n} and joining the $i^{\text {th }}$ vertex of P_{n} to every vertex in $i^{\text {th }}$ copy of K_{n}.

$$
\text { i.e. } V(G)=V\left(P_{n}\right) \cup V\left(K_{n}^{1}\right) \cup V\left(K_{n}^{2}\right) \cup V\left(K_{n}^{3}\right) \cup \ldots \ldots . . V\left(K_{n}^{n}\right) \text {. }
$$

where $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3} \ldots . v_{n}\right\}$ and $V\left(K_{n}^{i}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$. By observation, we see that there are n copies of disjoint subgraph which induces a clique of order $n+1\left(\right.$ say $\left.K_{n+1}\right)$. Therefore we can assign more than or equal to $n+l$ colours to every corona product of path graph with complete graph. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3}, c_{4} \ldots c_{n}, c_{n+1}\right\}$. Now assign a proper colouring to these vertices as follows. Suppose if we assign more than $n+l$ colours, it contradicts the
definition of b-chromatic colouring. Due to this condition, we cannot assign more than $n+1$ colours. Hence we have $\varphi\left(P_{n} o K_{n}\right) \leq n+1$. Therefore $\varphi\left(P_{n} o K_{n}\right)=n+1$.
Thus by the colouring Procedure the above said colouring is maximal and b-chromatic colouring.

Example

Figure 8: $\varphi\left(\mathrm{P}_{4} \mathrm{oK}_{4}\right)=5$

6.2 Structural Properties of $\left(P_{n} o K_{n}\right)$

The Number of vertices in $P_{n} o K_{n}$ i.e. $p\left(P_{n} o K_{n}\right)=n(n+1)$, number of edges in the $P_{n} o K_{n}$ i.e. $q\left(P_{n} o K_{n}\right)=\left[\frac{n^{3}+n^{2}+2 n-2}{2}\right]$. The Maximum and Minimum degree of $P_{n} o K_{n}$ is denoted as $\Delta=n+2$ and $\delta=n$ respectively. The number of vertices having maximum and minimum degree in $P_{n} O C_{n}$ is denoted by $n\left(p_{\Delta}\right)=n-2$ and $n\left(p_{\delta}\right)=n^{2}$.

Theorem 6.3: For any path P_{n} and complete graph graph K_{n} the number of edges in corona product of P_{n} with K_{n} is

$$
q\left(P_{n} O K_{n}\right)=\left[\frac{n^{3}+n^{2}+2 n-2}{2}\right]
$$

Proof

$q\left(P_{n} O K_{n}\right)=$ Number of edges in all $K_{n+1}+$ Number of edges not in any of the K_{n+1}

$$
=n \times q\left(K_{n+1}\right)+\text { Number of edges not in anyof the } K_{n+1}
$$

$$
=n \times\binom{ n+}{2}+n-1
$$

$$
=n\left[\frac{n(n+1)}{2}\right]+n-1
$$

$$
=n\left[\frac{n^{2}+n}{2}\right]+n-1
$$

$$
=\left[\frac{n^{3}+n^{2}}{2}\right]+n-1
$$

$$
=\left[\frac{n^{3}+n^{2}+2 n-2}{2}\right]
$$

Therefore $q\left(P_{n} o K_{n}\right)=\left[\frac{n^{3}+n^{2}+2 n-2}{2}\right]$

7 b-Chromatic Number of Corona Product $K_{\boldsymbol{n}}$ with Fan Graph

Theorem 7.1:

$\varphi\left(F_{1, n} o K_{2}\right)=\left\{\begin{array}{l}n+1 \text { for every } 2 \leq n \leq 4 \\ 5 \text { for every } n>5\end{array}\right.$

Theorem 7.2: $\varphi\left(F_{1, n} O K_{n}\right)=n+1$ for every $n>2$.

Proof

The Proof of the theorem is similar to theorem (6.1).

8 b-Chromatic Number of Corona Product $K_{1, n}$ with K_{2}

Theorem 8.1: If $K_{1, n}$ and K_{2} are Star graph and Complete graphs respectively, then
$\varphi\left(K_{l, n} o K_{2}\right)=\left\{\begin{array}{l}n+1 \text { for every } n \leq 3 \\ 4 \text { for every } n \geq 4\end{array}\right.$

Theorem 8.2: $\varphi\left(K_{l, n} O K_{n}\right)=n+1$ for every $n>2$
Proof
The Proof of the theorem is similar to theorem (6.1).

9 Conclusion

In this paper, we discussed about b-chromatic number of Transformation graph G^{++-}of Cycle, Path and Star graph and the Corona product of Path graph with Cycle and Complete graph.

Acknowledgements

The authors are very much thankful for the reviewers for giving valuable suggestions and co-operation.

References

[1] H.AbdollahzadehAhangar, L.Pushphalatha,On the chromatic number of some Harary graphs, InternationalMathematical Forum,4,2009, No.31,15111514.
[2] Sandi Klavzar,Marko Jakovac,The b-chromatic number of Cubic graphs, 2009, Ljubljana.
[3] R.W.Irwing,D.F.Manlove, The b-chromatic number of a graph. Discrete Applied Mathematics,91:127-141,1999.
[4] B.Basavanagoud,KeerthiMirajkarandshripurnamalghan,Traversability and Planarity of the Transformation graph Gxyzwhen xyz = ++-, Proceedings of international conference on graph theory and Applications,Amritha school, 153-165(2009).
[5] B.Wu,J.Meng,Basic properties of total transformation graphs,J.math study 34(2)(2001) 109-116.
[6] F.Harary, Graph theory,Addison -wesley,Reading mass(1969).
[7] BaoyindurengWua, LiZhangb , Zhao Zhanga,The transformation graph Gxyzwhenxyz=-++,Discrete Mathematics 296 (2005) 263-270.
[8] S.B.Chandrakala, K.Manjula and B.Sooryanarayana, The transformation graph Gxyz when xyz $=++-$ International J. of Math. Sci. \&Engg.Appls.(IJMSEA) Vol. 3 No. I (2009), pp. 249-259.
[9] D.Vijayalaksmi, Dr.K.Thilagavathi,b-colouring in the context of some graph operations"International Journal of Mathematical Archieve Volume 3(4), (2012), pp 1439-1442.

