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Abstract 

In this paper, we find the b-chromatic number of Transformation 
graph G

++-
 for Cycle, Path and Star graph. Also we determine the       

b-chromatic number of Corona product of Path graph with Cycle and 
Path graph with Completegraph along with its structural properties. 
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1 Introduction 

All graphs in this paper are finite, undirected graphs, loopless graph without 

multiple edges. A k-colouring of a graph G[1] is a labeling f:V(G)→T, where      

|T| = k and it is proper if adjacent vertices have different labels. A graph is k 

colourable if it has a proper colouring. The chromatic number χ(G) is the least 

number k such that G is k-colourable. The b-chromatic number φ(G) [2] of a graph 

G is the largest integer k such that G admits a proper k-colouring in which every 

colour class has a representative adjacent to at least one vertex in each of the other 

colour classes. Such a colouring is called a b-colouring. The concept of                

b-chromatic number was introduced in 1999 by Irwing and Manlove[ 3]. 
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For a graph G, let V(G) and E(G) [7]denote the point set, line set  of graph G 

respectively. The Transformation graph G
++-

[4,8]of G is the graph with point set 

V(G) E(G) in which the points X andY are joined by a line if one of the following 

conditions hold. 

 x,yϵ V(G)andx,yare adjacent in G. 

 x,yϵ E(G) and x,yare adjacent in G. 

 one of x and y is in V(G) and the other is in E(G) and they are not incident 

in G. 

Corona product [9] or simply corona of graph G1 and G2 is a graph which is the 

disjoint union of one copy of G1 and |v1| copies of G2 (|v1| is number of vertices of 

G1) in which each vertex copy of G1 is connected to all vertices of separate copy 

of G2  . 

 

2 b-Chromatic Number of G
++- 

of Path Graph 

Theorem 2.1: The b-Chromatic number of G
++-

 of Path graph Pn has n colours. 

Proof 

Consider a Path graph of length n-1 with vertex set V={v1,v2,v3..vn} and edge set 

E={e1,e2,e3..en-1}. In Path graph  Pn, each vertex vi is adjacent with the vertices     

vi-1  and vi+1 for i=2,3,….n-1, the vertex v1 is adjacent with v2 and vn is adjacent 

with vn-1 and the  lines e1 and en are non-adjacent with n-3 lines and remaining ei 

for  i=2,3,…n-1 are non-adjacent with n-4 lines.  

 By the definition of Transformation graph G
++-

, the vertex set of G
++-

(Pn) 

corresponds to both vertex set and edge set of Path graph. The vertex set of      

G
++-

(Pn)  is defined as follows: 

i.e.[G
++-

(Pn)]=                        
Consider the colour class C={c1,c2,c3..cn}.  Assign the colour ci to vi for i=1,2,3..n 

and assign the colour cn+i  to ei for i=1,2,3..n-1. Due to the above mentioned non-

adjacency condition the above colouring does not produce a b-chromatic 

colouring. Thus, to make the above colouring as b-chromatic one, assign the 

colour ci to vi for 1≤ i≤ n and assign the colour c1 to e1 and ci+1  to ei for i=2,3..n-1. 

Now the vertices vi for i=1,2,3 and the vertices ei for 3≤ i≤ n-1  realizes its own 

colour, which produces a b-chromatic colouring.  

Thus the given colouring is b-chromatic. And by the very construction, it is the 

maximal colour class.  

Hence the proof. 
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Example 

 

Fig. 1: G
++-

(P5) 

2.1   Structural Properties of  G
++-

(Pn) 

The number of vertices in G
++-

(Pn) i.e. p[G
++-

(Pn)]= 2n-1, number of edges in the 

G
++-

(Pn) i.e. q[G
++-

(Pn)] = n
2
-n-1. The Maximum and Minimum degree of       

G
++-

(Pn) is denoted as ∆ = n and δ = n-1 respectively.  

 

3 b-Chromatic Number of G
++-

 of Cycle 

Theorem 3.1: The b-Chromatic number of G
++-

 of the Cycle Cn is n. 

Proof 

Consider a Cycle of length n, whose vertices are denoted as v1,v2,v3….vn and edges 

are denoted as  e1,e2,e3….en. We see that every point in Cycle Cn is non-adjacent 

with n-2 lines. Now consider G
++-

(Cn), here there is no non-incident lines. By the 

definition of Transformation graph G
++-

, the vertex set of G
++-

(Cn) corresponds to 

both vertex set and edge set of Cycle.. 
i.e. V[G

++-
(Cn)]=                      
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By observation, G
++-

(Cn) forms an-regular graph. Therefore the b-chromatic 

number of G
++-

(Cn)≥n. Now we prove for φ[G
++-

(Cn)] ≤ n,  for this consider a 

proper colouring of  G
++-

(Cn)  as follows.  

Consider the colour class C={c1,c2,c3..cn}. Assign the colour ci for i=1,2,3..n to 

the inner cycle of Cn. Next if we assign the colour cn+1 to any vertices in outer 

cycle, it does not realize the colour cn+1, So we should assign only the existing 

colours to the vertices in outer cycle . Hence by the colouring procedure, we 

cannot assign more than n colours to G
++-

(Cn) i.e. φ[G
++-

(Cn)] ≤n. Therefore 

φ[G
++-

(Cn)] =n. Thus by the colouring procedure the above said colouring is 

maximal and b-chromatic. 

Hence the Proof. 

 

Example   

       

   Fig. 2: C5   Fig. 3: φ[G
++-

(C5)]=5 

3.1   Structural Properties of G
++-

(Cn) 

The numberof vertices in G
++-

(Cn) i.e.p[G
++-

(Cn)]= 2n, number of edges in the 

G
++-

(Cn) i.e. q[G
++-

(Cn)] = n
2
. The Maximum and Minimum degree of G

++-
(Cn) 

are denoted as ∆ = n and δ = n respectively. Thus G
++-

(Cn) is an n-regular graph. 

 

4 b-Chromatic Number of G
++-

of Star Graph 

Theorem 4.1: If G is K1,n, then clearly φ[G
++-

(K1,n)] = n+1 

Proof 

Consider the graph K1,n with pendant vertices v1,v2,v3..vn and v where v is the root 

vertex with degree n. i.e. V(K1,n)=               and E(K1,n)=       
     between the vertices vvi for i=1,2,3..n. Here in K1,n we see there is no 

incident lines.  
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Consider G
++-

(K1,n). By the definition of the Transformation graph G
++-

, the 

vertex set is defined as V[G
++-

(K1,n)] =                         . 
Here the vertices           forms a clique of order n(sayKn) in G

++-
(K1,n). 

Therefore we say that the b-chromatic number of G
++-

(K1,n)≥n. Consider the 

colour class C={c1,c2,c3…cn+1}. Assign a proper colouring to the vertices as 

follows. 

 

Case 1 

First assign the proper colouring to the vertex ei. Assign the colour ci to the vertex 

ei for i=1,2,3..n, and assign the colour cn+1 to vi for i=1,2,3..n and assign any 

colour to root vertex other than the colour cn+1.Now the vertices ei realizes its own 

colour. Thus, by the colouring procedure the above said colouring produces a 

maximal and b-chromatic colouring.  

 

Example 

 
Fig 4: φ[G

++-
(K1,3)]=4 

Case 2 

Next assign proper colouring to the vertex v and vi  for i=1,2,3..n. 

Assign the colour c1 to the root vertex v and ci+1 to vi for i=1,2,3..n and assign the 

same set of  colour to ei which is already assigned for vi because vi  is not adjacent 

with ei for i=1,2,3..n, which produces a b-chromatic colouring. Thus  by colouring 

procedure the above said colouring is maximal and b-chromatic. Hence the proof. 

 

Example  

 

Fig. 5: φ[G
++-

(K1,3)]=4 
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4.1   Structural Properties of G
++-

(K1,n) 

The  Number of vertices in G
++-

(K1,n) i.e. p[G
++-

(K1,n)]= 2n+1, number of edges 

in the G
++-

(K1,n) i.e. q[G
++-

(K1,n)] = 
       

 
 .  The Maximum and Minimum 

degree of G
++-

(K1,n)is denoted as ∆ = n+1 and δ = n-1 respectively. The number 

of vertices having maximum and minimum degree in G
++-

(K1,n) is denoted by 

n(p∆)=n and n(pδ)=n+1. 

Theorem 4.2: For any Star graph K1,n, the number of edges in G
++-

(K1,n) is 

 
       

 
 . 

Proof 

q[G
++-

(K1,n)] = Number of edges in K1,n + Number of edges in Kn + Number of 

edges in crown graph Sn 

                       =   
 
 +  

 
 +n(n-1) 

                       = n+ 
      

 
 +n(n-1) 

 = n+n(n-1) 
   

 
   

                       = 
         

 
 

                       =
     

 
 

= 
       

 
   

Therefore q[G
++-

(K1,n)]= 
       

 
  

 

5 b-Chromatic Number of Corona Product of Path 
Graph with Cycle 

Theorem 5.1: For any integer n>3, φ (PnoCn) = n 

Proof:  

Let G1= Pn be a Path graph of length n-1 with vertices v1,v2,v3….vn  and edges 

e1,e2,e3….en-1.  Consider G2=Cn be a Cycle of length n whose vertices are denoted 

as v1,v2,v3….vn  and edges  are denoted by e1,e2,e3….en.  
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Consider the Corona product of G1and G2 i.e. G= PnoCn is obtained by taking 

unique copy of  Pn with n vertices and n copies of Cn and joining the i
th

 vertex of 

Pn to every vertex in i
th

 copy ofCn. . 

i.e.V(G) =V(Pn)   V(C
1
n)   V(C

2
n)   V(C

3
n)       V(C

n
n) 

where V(Pn) = {v1,v2,v3….vn } and V(C
i
n) =    

 
                

 

Now assign a proper colouring to these vertices as follows. Consider the colour 

class C= { c1,c2,c3….cn}. First assign the colour ci  to vertex vi for  i=1,2,3…n and 

assign the colour to   
 
  as ci+j when i+j ≤ n and ci+j-n when i+j > n for 1≤ i ≤n,     

1≤ j ≤ n-1. Now the only vertex  remaining to be coloured is   
 
 for j=n. Suppose 

if we assign any new colour to   
 
 for i=1,2,3.n, j=n it will not produce a              

b-chromatic colouring, because   
 
 (i=1,2,3..n, j=n)is adjacent only with ui

1 
and     

ui
n-1

.
.
 So we assign the colour to   

 
other than the colour which we assign for ui

1 

and ui
n-1

.  Now the vertices           realize its own colours,  which produces 

a b-chromatic colouring.  Thus by the colouring procedure the above said 

colouring is maximal and b-chromatic. Hence the proof 

 

Example   

 

Fig. 6: φ(P4oC4) = 4 

5.1   Structural Properties of (PnoCn) 

The Number of vertices in PnoCn(n>3) i.e. p(PnoCn)= n(n+1), number of edges in 

the PnoCn i.e. q(PnoCn) =2n
2
+n-1. The Maximum and Minimum degree of PnoCn 

is denoted as ∆ = n+2 and δ = n-1 respectively. The number of vertices having 

maximum and minimum degree in PnoCn is denoted by n(p∆)=n-2 and n(pδ)=n
2
. 

Corollary 5.1: For any integer n<4, φ (PnoCn) = n+1 

Theorem 5.2: q(Pno cn)= 2n
2
+n-1 
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Proof 

q(Pn o Cn) = Number of edges in largest subgraph + Number of edges not in any 

of the largest subgraph 

= n×(2n)+n-1 

= 2n
2
+n-1 

 

6 b-Chromatic Number of Corona Product of Path 
with Complete Graph 

Theorem 6.1: Let Pn and K2 be the Path graph and Complete graphs with n 

vertices respectively.Then 

φ (Pn oK2)  =   

              
                 
               
               

    

 

6.1   Structural Properties of Pno K2 

 The Number of vertices in PnoK2 i.e. p(PnoK2)= 3n, number of edges in the PnoK2 

i.e. q(PnoK2) =3n+(n-1). The Maximum and Minimum degree of PnoK2(n>3) is  

denoted as ∆ = 4 and δ = 3 respectively.  The number of vertices having maximum 

and minimum degree in PnoK2  is  denoted by  n(p∆)=n-2 and n(pδ)=2. 

Theorem 6.2: For any integer n, φ(PnoKn) = n+1 

Proof 

Let G1= Pn be a Path graph of length n-1 with n vertices and G2 = Kn be a 

Complete graph of  n vertices.  

Consider the Corona product of G1and G2 i.e.G= PnoKn is obtained by taking 

unique copy of Pn with n vertices and n copies of Kn and joining the i
th

 vertex of 

Pn to every vertex in i
th

 copy of Kn.  

i.e.V(G)= V(Pn)  V(K
1

n)  V(K
2

n)  V(K
3

n) …….. V(K
n

n). 

 where V(Pn) = { v1,v2,v3….vn } and V(K
i
n) =    

 
                            

By observation, we see that there are  n copies of  disjoint subgraph which induces 

a clique of  order n+1 (say Kn+1).  Therefore we can assign more than or equal to 

n+1 colours to every corona product of path graph with complete graph. Consider 

the colour class C={c1,c2,c3,c4…cn,cn+1}. Now assign a proper colouring to these 

vertices as follows. Suppose if we assign more than n+1colours, it contradicts the 
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definition of b-chromatic colouring. Due to this condition, we cannot assign more 

than n+1colours.  Hence we have φ(PnoKn)≤ n+1.Therefore φ(PnoKn)= n+1. 

Thus by the colouring Procedure the above said colouring is maximal and            

b-chromatic colouring. 

Example 

 
Figure 8:φ(P4 oK4) = 5 

6.2   Structural  Properties of (Pn o Kn) 

The Number of vertices in PnoKn  i.e. p(PnoKn)= n(n+1), number of edges in the 

PnoKn  i.e. q(PnoKn) = 
          

 
 . The Maximum and Minimum degree of PnoKn 

is denoted as ∆ = n+2 and δ = n respectively. The number of vertices having 

maximum and minimum degree in PnoCn  is  denoted by  n(p∆)=n-2 and n(pδ)=n
2
 . 

Theorem 6.3: For any path Pn and complete graph graph Kn the number of edges 

in corona product of Pn with Kn is 

q(Pno Kn)=  
          

 
  

Proof 

q(Pno Kn)  = Number of edges in all Kn+1+ Number of edges not in any of the Kn+1 

= n×q(Kn+1)+ Number of edges not in anyof  the Kn+1 

= n×    
 

 +n-1 

= n 
      

 
 +n-1 

= n 
    

 
 + n-1 

 =  
     

 
   n-1 

=  
          

 
  

Therefore q(Pno Kn)=  
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7 b-Chromatic Number of Corona Product Kn with 
Fan Graph 

Theorem 7.1:  

φ(F1,n oK2)= 
                   
                                

  

Theorem 7.2: φ (F1,noKn)= n+1 for every n>2. 

Proof 

The Proof of the theorem is similar to theorem (6.1). 

 

8 b-Chromatic Number of Corona Product K1,n with 
K2 

Theorem 8.1: If K1,nand  K2 are Star graph and Complete graphs respectively, 

then 

φ(K1,n oK2) =  
                 
                      

  

Theorem 8.2: φ (K1,noKn) =n+1 for every n>2  

Proof 

The Proof of the theorem is similar to theorem (6.1). 

 

9 Conclusion 

 In this paper, we discussed about b-chromatic number of Transformation graph 

G
++-

 of Cycle, Path and Star graph and the Corona product of Path graph with 

Cycle and Complete graph.  
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