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Abstract

It is interesting to find the equivalent resistance between two nodes of an infinite electrical network. In this paper, we consider an infinite
electrical network that can be described as a series of squares whose edges are resistors with resistance R and whose corresponding vertices
are joined successively by resistors with resistance R as well. Our major work is to find the equivalent resistance between the diagonal
vertices of the base square of this infinite network. First, we apply the techniques of balanced bridges and symmetry of voltages to convert
each iteration of the network to a parallel circuit that includes the previous iteration. Then, we evaluate the equivalent resistance of each
iteration of the network and derive a recursive sequence of equivalent resistances with iterations. After that, we prove that the recursive
sequence is convergent using the contraction theorem in real analysis. Finally, we claim that the limit of the recursive sequence is the
equivalent resistance of the infinite network.
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1. Introduction

The first thorough mathematical description of electrical circuits goes back to Gustav Kirchhoff [5]. Ever since, the topic
has attracted many researchers and produced a great number of pedagogical articles. On one hand, networks are a source of
elegant problems and solutions or interesting experiments. On the other hand, electrical networks can be used to visually and
intuitively illustrate some complicated electrodynamical concepts.
Important question is determining the equivalent resistance between two nodes of finite or infinite electrical networks. Many
work has been done on finding equivalent resistance of different infinite electrical networks; see [1, 2, 3, 4, 9]. However, none
of these studies deal with a three dimensional infinite network constructed in this way: a series of squares whose edges are
resistors with resistance R and whose corresponding vertices are joined successively by resistors with resistance R as well; see
Figure 1. It is interesting to find the equivalent resistance between two nodes a and b of the base square.
Of course, infinite electrical networks do not exist in real world, but an infinite electrical network can be used as a model of an
electrical network with long-distance transmission lines.
If a node is only shared by two edges, such edges are said to be connected in series, and the equivalent resistance is the sum of
individual resistances. If two resistors are on edges connected across the same pair of nodes, such a connection is called in
parallel, and the equivalent resistance is the reciprocal of the sum of reciprocals of resistances. Both of these situations can be
generalized straightforwardly for more than two resistors.
It is clear that not every network can be simplified in series or parallel, for example, a bridge structure, as depicted in
Figure 2(a).
If a bridge network, such as the one depicted in Figure 2(a), satisfies that R1

R2
= R3

R4
, then the bridge is called a balanced bridge.

In this case, the voltage at node c equals the voltage at node d and no current flows through the resistor R5. Hence, the
resistance between a and b does not depend on the value of R5. Therefore, R5 can be replaced with a short; see Figure 2(b),
or entirely removed from the network; see Figure 2(c). We will use this feature to simplify the infinite network in Figure 1.
By the way, whenever two nodes of any network have the same voltage, there is no current flow between these two nodes.
Consequently, introducing a short between these two nodes will have no impact on the overall network. Further discussions of
circuit theory can be found in [7].
To complete the process, we need to introduce a few mathematics concepts. Please refer to [6] for detailed discussion.
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Figure 1: Infinite electrical network
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(c) The network with the bridge removed

Figure 2: Circuit with bridge structure

A sequence {an} of real numbers converges to a real number A if for each real number ε > 0, there exists a positive integer n∗

such that |an−A|< ε for all n≥ n∗.
A sequence {an} is said to be a contractive sequence if there exists a constant k with k ∈ (0,1), such that

|an+2−an+1| ≤ k|an+1−an|

for all n ∈ N.
The well known contraction principle states that every contractive sequence is convergent in R.

2. Main Results

Note that while the infinite network depicted in Figure 1 is three dimensional, it can be converted into a planar network, as
depicted in Figure 3. We attempt to find the equivalent resistance between nodes a and b using this planar network.
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Figure 3: The planar structure of the infinite network

Theorem 1. Let Rn denote the resistance of the nth subnetwork of Figure 1. Then the resistance of the (n+1)th subnetwork,
denoted by Rn+1, is

Rn+1 =
1

1
R + 1

2R+Rn

=
2R2 +RRn

3R+Rn
.

Proof. Suppose that the network depicted in Figure 4 having n connected squares in total represents the nth subnetwork of
Figure 1. Then, Rn is the resistance between the nodes d and f in the network.

d

f

Figure 4: The nth network

By adding an additional square with resistors of resistance R for each edge, and connecting the vertices of that square, via a
resistor of resistance R as well, to the corresponding vertices of the nth network, we have constructed the (n+1)th network as
depicted in Figure 5 and Rn+1 is the resistance between the nodes a and b in the (n+1)th network.
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Figure 5: The (n+1)th network

By symmetry, the nodes marked c have the same voltage. Thus, as described in balanced bridge in the previous sections, they
can be shorted to produce the network depicted in Figure 6. Note that for brevity, only the perimeter of the (n+1)th network is
depicted in Figure 6. We label the resistors in Figure 5 and Figure 6 to help readers understand the transition from Figure 5 to
Figure 6.
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Figure 6: The simplified (n+1)th network using symmetry and shorts

Since the resistor pair joining the nodes marked e and c is a bridge, the network as a whole is a bridge as well. The question
remains as to whether it is a balanced bridge. Note that the nth network is symmetric across the e axis, the network is balanced
since the remainder of the network is balanced. Thus, the resistors joining e and c are removable. After further simplification,
we arrive at the simplified network depicted in Figure 7.
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Figure 7: The further simplified (n+1)th network using balanced bridge

Applying the resistance formulas for parallel and series networks we conclude that

Rn+1 =
1

1
R/2+R/2 +

1
2R+Rn

=
2R2 +RRn

3R+Rn
.

Theorem 2. The sequence {Rn} defined by

Rn+1 =
2R2 +RRn

3R+Rn

is contractive, and, consequently, convergent. Furthermore, the limit is (
√

3−1)R.
Proof. Note that we have ∣∣Rn+2−Rn+1

∣∣
=

∣∣∣∣∣2R2 +RRn+1

3R+Rn+1
− 2R2 +RRn

3R+Rn

∣∣∣∣∣
=

∣∣∣∣∣ R2Rn+1−R2Rn

9R2 +3RRn +3RRn+1 +Rn+1Rn

∣∣∣∣∣
≤

∣∣∣∣∣R2Rn+1−R2Rn

9R2

∣∣∣∣∣= 1
9

∣∣Rn+1−Rn
∣∣.

This shows that the sequence {Rn} is contractive. By the well known contraction principle stated earlier, the sequence is
convergent. Let limn→∞ Rn = A. Then limn→∞ Rn+1 = A as well. Taking limits on both sides of

Rn+1 =
2R2 +RRn

3R+Rn

implies that

A =
2R2 +RA

3R+A
.

Solving the equation above gives A =−R±R
√

3. Because the resistance is nonnegative, we claim A = (
√

3−1)R.

3. Conclusion

The equivalent resistance between two nodes of an infinite electrical network is studied and derived in this paper. First, with
the clever use of balanced Wheatstone bridges, we are able to convert the original infinite network into a much simple planar
infinite network. Then, from the simplified infinite network, the resistance of the (n+1)th network is obtained in terms of the
resistance of the nth network which establish a recursive sequence of resistances. After that, with the help of real analysis, we
prove that the resistance sequence is contractive, hence, it is convergent by the famous contraction principle. Finally, we claim
that the limit of the resistance sequence is the equivalent resistance of the 3-dimensional infinite network.
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