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Abstract

The achievable region of reliabilities in the model with several possible hypothetical probability distributions par-
titioned into the pair of families is considered. The achievable region for many hypotheses testing was examined
by Tuncel. Decisions concerning realized probability distribution of the object must be made on the base of the
samples which are received in each stage of the two-stage test. It is proved that the defined region for the vectors
of reliabilities in the two-stage test characterizes the set of all achievable vectors and advantages of the two-stage
testing are revealed.
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1. Introduction

In present paper, the approach of Tuncel [11] for the achievable region of reliabilities of testing of the model that
follows a probability distribution (PD) from one of a pair of families is developed. The list of S hypothetical PDs
is given. The statistical problem is to detect actual PD from this list and to find the achievable region using a
sample of N experiments outcomes. The overwhelming majority of published works are dedicated to the case of
two hypotheses [10]. The Logarithmically asymptotically optimal (LAO) testing of two hypotheses is the procedure
ensuring the best exponential decrease with growing N of the error probability of one hypothesis subject to the
given exponent of the error probability of the other hypotheses. Hoeffding [9] and later Tusnady [12] and others
investigated LAO tests in the case of two hypotheses. The LAO testing for multiple hypotheses first was considered
by Haroutunian [6]. In [1, 5, 6] some results on multiple hypotheses testing and identification are presented. The
two-stage tests have become popular in applications, especially in the field of clinical trials and genomics [5].
Ahlswede and Haroutunian [1] proposed the problem of statistical hypotheses optimal testing and identification
for many objects. Haroutunian et al. [7] investigated reliability criteria in information theory and in statistical
hypothesis testing. Yessayan et al. [13] solved achievable region of reliabilities in testing of many hypotheses for
two independent objects. The model of the two-stage LAO testing of multiple hypotheses for the pair of families of
distributions is investigated in [8].

The map of this correspondence is as follows. In Section 2, briefly the problem statement and some needed
definitions are declared. In Section 3, achievable region in the one-stage test considered by E. Tuncel [11] is
introduced. In Section 4, the analysis of achievable region at the first stage of two-stage test is investigated. In
Section 5, achievable region at the second stage of two-stage test is studied. In Section 6, achievable region at the
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two-stage test composed of the first and the second stages of test is declared. Finally in last Section, a conclusion
for achievable region at two-stage test in the pair of families of PDs is disclosed.

2. Problem statement and definitions

Let X be a random variable (RV) taking values in the finite set X and P(X ) be the space of all possible PDs on
X . Suppose S known hypothetical PDs from P(X ) are given and they are partitioned into two disjoint families of
PDs. The first family includes R PDs Ps = {Ps(x), x ∈ X}, s = 1, R, and the second family includes S − R PDs
Ps = {Ps(x), x ∈ X}, s = R + 1, S such that the considered object characterized by RV X follows to one of this S
PDs.

Let x = (x1, x2, . . . , xN ) be a vector of results of N independent observations of the RV X and N = N1 + N2,
such that:

N1 = dψNe, N2 = [(1− ψ)N ], 0 < ψ < 1,

x1 = (x1, x2, . . . , xN1), x1 ∈ XN1 ,

x2 = (xN1+1, xN1+2, . . . , xN ), x2 ∈ XN2 ,

x = (x1, x2), x ∈ XN , XN = XN1 ×XN2 .

An achievable region of the problem of many hypotheses two-stage testing concerning an object at two stages of
test is investigated. At first stage of test, one family of PDs is denoted, then at the next stage, object’s distribution
between selected family of PDs is detected.

The statistician must accept one of the families of PDs in the first stage on the base of a sample x1 and then he
accept one of the PDs in the second stage, on the base of other sample x2.

The procedure of making decision on the base of N observations called the test and denote it by φN for the
one-stage test and by ΦN for the two-stage test. The test ΦN may be composed of the pair of tests ϕN1

1 and ϕN2
2

for two consecutive stages and it is written by ΦN = (ϕN1
1 , ϕN2

2 ). The first stage of making decision for selecting
a family of PDs is a non-randomized test ϕN1

1 (x1). The next stage of making decision for PD acceptance in the
determined family of PDs is a non-randomized test ϕN2

2 (x2|ϕN1
1 (x1) = i), i = 1, 2, on the base of the sample x2 and

on the result 1 or 2 of the test ϕN1
1 (x1).

We need some formulations of method of types. Let N(x|x) be the number of repetitions of the element x ∈ X
in the vector x ∈ XN . The distribution

Qx (x)
4
=

N (x|x)
N

, x ∈ X ,

is called in information theory, “the type” of x [1, 3, 4].
Let PN (X ) be the set of all possible types of vectors from XN and T N

Q be type class of PD Q, the set of all
vectors x of the type Q ∈ PN (X ) [3]. The divergence (Kullback-Leibler distance) for PDs P and Q, is defined as
follows [3, 4, 6]:

D (Q ‖ P )
4
=

∑

x∈X
Q(x) log

Q(x)
P (x)

.

The number of distinct types for vectors of length N grows at most polynomially with N [2, 3]. More specifically
quantity of elements of PN (X ) can be estimated as follows

|PN (X )| ≤ (N + 1)|X |.

For any type Q, population of the type class T N
Q is estimated as follows [2, 3]

(N + 1)−|X| exp
{
NH(Q)

} ≤ |T N
Q | ≤ exp

{
NH(Q)

}
,

where H(Q) denotes the entropy of distribution Q [2, 3]

H(Q)
4
= −

∑

x∈X
Q(x) log Q(x).

Probability of members x of a type class T N
Q provided x is i.i.d. by PD P is given by the formula [2, 3]

PN (x) = exp
{−N [H(Q) + D(Q‖P )]

}
.

Bounds on the total probability of a type class T N
Q when x is i.i.d. by PD P are [2, 3]

(N + 1)−|X| exp
{−ND(Q‖P )

} ≤ PN (T N
Q ) ≤ exp

{−ND(Q‖P )
}
.
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3. Achievable region at the one-stage test

In multiple hypotheses testing, decision making on the base of N -sample x for accepting a realized PD between
S PDs Ps, s = 1, S, the test φN can be defined by partitioning the sample space XN into S disjoint subsets
G(N)

s , s = 1, S. The set G(N)
s consists of all vectors x for which s-th PD is adopted.

G(N)
s

4
=

{
x : φN (x) = s

}
, s = 1, S,

S⋃
s=1

G(N)
s = XN .

Let αl|k be the probability of the erroneous acceptance of PD Pl provided Pk is true

αl|k(φN )
4
= PN

k

(
G(N)

l

)
, l, k = 1, S, l 6= k.

The probability to reject Pk, when it is true, is

αk|k(φN )
4
= PN

k

(
G(N)

k

)
=

∑

l 6=k

αl|k(φN ), l, k = 1, S.

The infinite sequences of tests is denoted by φ, corresponding the reliabilities of φ are defined as follows

El|k(φ)
4
= lim inf

N→∞

{
− 1

N
log αl|k

(
φN

)}
, l, k = 1, S.

We now formally define the concept of achievability of a set of error probability exponents in S-ary hypotheses
testing. Consider the S(S − 1)-dimensional Euclidean space, and index the dimensions as {l, k}, where l, k =
1, S. We denote by E = {El|k, l 6= k} the vector, element of which correspond to the set of error exponents
− 1

N log
{
PN

k (G(N)
l )

}
.

Definition 3.1 [11] The set of error exponents indicated by the vector E is called achievable if for all ε > 0
and large enough N there exists a decision scheme G(N)

s , s = 1, S, satisfying for l, k = 1, S, l 6= k the following
conditions:

− 1
N

log αl|k
(
φN

)
> El|k(φ)− ε.

The set of all achievable vectors is defined by R.

Let us define a region E in the error-exponent space as follows:

E 4
= {E : ∀Q, ∃l, D(Q‖Pk) > El|k(φ), k 6= l, l, k = 1, S}.

Theorem 3.2 [11] The following inclusion take place E ⊂ R. Conversely if E ∈ R, then for any δ > 0, Eδ ∈ E,
where Eδ = {El|k(φ)− δ}.

4. Achievable region at the first stage of two-stage test

Suppose D1 = {1, R} and D2 = {R + 1, S} and the pair of disjoint families of PDs P1 and P2:

P1 = {Ps, s ∈ D1}, P2 = {Ps, s ∈ D2}.

The first stage of decision making for selection of a family of PDs is a test ϕN1
1 (x1), which can be defined by

partitioning the sample space XN1 into the pair of disjoint subsets

AN1
i

4
= {x1 : ϕN1

1 (x1) = i}, i = 1, 2, AN1
1 ∪ AN1

2 = XN1 .

The set AN1
i consists of all vectors x1 for which i-th family of PDs is adopted.



410 International Journal of Applied Mathematical Research

The test ϕN1
1 (x1) have two kinds of errors for the pair of hypotheses P ∈ Pi, i = 1, 2. Let α′2|1(ϕ

N1
1 ) be the

probability of the erroneous acceptance of the second family of PDs provided the first family of PDs is true. And
α′1|2(ϕ

N1
1 ) be the probability of the erroneous acceptance of the first family of PDs provided the second family of

PDs is true:

α′2|1(ϕ
N1
1 )

4
= max

s:s∈D1
PN1

s (AN1
2 ),

α′1|2(ϕ
N1
1 )

4
= max

s:s∈D2
PN1

s (AN1
1 ).

And corresponding reliabilities of the infinite sequence of tests ϕ1, are:

E′
i|j(ϕ1)

4
= lim inf

N1→∞

{
− 1

N1
log α′i|j(ϕ

N1
1 )

}
, i, j = 1, 2.

We denote by E′ = {E′
i|j , i 6= j, i, j = 1, 2} the vector, element of which correspond to the set of error exponents

− 1
N1

log
{
α′i|j(ϕ

N1
1 )

}
.

For given E′
2|1, the test ϕN1

1 is defined by partitioning XN1 into

A(N1)
1 =

⋃

Qx1 : min
s:s∈D1

D(Qx1 ||Ps)≤E′2|1

T N1
Qx1

and A(N1)
2 = XN1 \ A(N1)

1 disjoint subsets [8].

Definition 4.1 [11] The set of error exponents indicated by vector E′ is called achievable if for all ε > 0 and large
enough N1 there exists a decision schemes A(N1)

i , i = 1, 2 satisfying for i, j = 1, 2, i 6= j the following conditions:

− 1
N1

log α′i|j
(
ϕN1

1

)
> E′

i|j(ϕ1)− ε.

The set of all achievable vectors is defined by R′.

Let us define a region E ′ in the error-exponent space as follows:

E ′ 4= {
E′ : ∀Q, ∃i, min

s:s∈Dj

D(Q‖Ps) > E′
i|j(ϕ1), j 6= i, i, j = 1, 2

}
.

So we have

E ′ =
{
E′ : ∀Q, min

s:s∈D1
D(Q‖Ps) > E′

2|1(ϕ1), or min
s:s∈D2

D(Q‖Ps) > E′
1|2(ϕ1)

}
.

Theorem 4.2 The following inclusion take place E ′ ⊂ R′. Conversely if E′ ∈ R′, then for any δ > 0, E′δ ∈ E ′,
where E′δ = {E′

i|j(ϕ1)− δ}.
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Proof. If E′ ∈ E ′, then

α′2|1(ϕ
N1
1 ) = max

s:s∈D1
PN1

s (AN1
2 ) = max

s:s∈D1

∑

x1∈AN1
2

PN1
s (x1)

= max
s:s∈D1

∑

Qx1 :T N1
Qx1

⊂AN1
2

PN1
s (x1 ∈ T N1

Qx1
)

= max
s:s∈D1

∑

Qx1 :T N1
Qx1

⊂AN1
2

|T N1
Qx1

| exp
{
−N1{H(Qx1) + D(Qx1‖Ps)}

}

≤ max
s:s∈D1

∑

Qx1 :T N1
Qx1

⊂AN1
2

exp
{

N1H(Qx1)
}

exp
{
−N1{H(Qx1) + D(Qx1‖Pr)}

}

= max
s:s∈D1

∑

Qx1 :T N1
Qx1

⊂AN1
2

exp
{
−N1D(Qx1‖Ps)

}

=
∑

Qx1 :T N1
Qx1

⊂AN1
2

exp
{
−N1 min

s:s∈D1
D(Qx1‖Ps)

}

≤
∑

Qx1 :T N1
Qx1

⊂AN1
2

exp{−N1E
′
2|1}

< (N1 + 1)|X | exp{−N1E
′
2|1}

= exp{−N1E
′
2|1 + |X | log(N1 + 1)}

= exp{−N1{E′
2|1 − ε}}.

So we have
− 1

N1
log α′2|1(ϕ

N1
1 ) > E′

2|1 − ε,

and similarly we get

− 1
N1

log α′1|2(ϕ
N1
1 ) > E′

1|2 − ε.

Therefore E′ = {E′
2|1, E

′
1|2} is achievable and E′ ∈ R′, so the first part of Theorem accomplished.

Conversely in the second part of Theorem if E′ ∈ R′ then for any N1 > N1(ε) we have:

− 1
N1

log α′2|1(ϕ
N1
1 ) > E′

2|1 − ε and − 1
N1

log α′1|2(ϕ
N1
1 ) > E′

1|2 − ε.

If E′δ /∈ E ′ then there exist a distribution Q such that:

min
s:s∈D1

D(Q‖Ps) ≤ E′
2|1 − δ, and min

s:s∈D2
D(Q‖Ps) ≤ E′

1|2 − δ.

Using the continuity properties of D(Q‖Ps) for a fixed s and PN1(X ) is dense in all PDs, we can find for large
enough N1 and Qx1 ∈ PN1(X ),

D(Qx1‖Ps) ≤ D(Q‖Ps) + δ/2.

Then it is clear that for all s : s ∈ D1, we receive to

min
s:s∈D1

D(Qx1‖Ps) ≤ min
s:s∈D1

D(Q‖Ps) + δ/2

≤ E′
2|1 − δ + δ/2,

and we receive to min
s:s∈D1

D(Qx1‖Ps) ≤ E′
2|1 − δ/2 < E′

2|1, and consequently we get

A(N1)
2 =

⋃

Qx1 : min
s:s∈D1

D(Qx1 ||Ps)>E′2|1

T N1
Qx1

= ∅,

that it contradict to Definition 4.1 and there is E′δ ∈ E ′ and proof of Theorem is completed.
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5. Achievable region at the second stage of two-stage test

At the second stage of decision making the test is ϕN2
2 (x2|ϕN1

1 (x1) = i), i = 1, 2, if the first (or the second) family
of PDs is accepted, then it can be defined by partitioning the sample space XN2 to R (or S − R) disjoint subsets
B(N2)

s , s ∈ D1 (or B(N2)
s , s ∈ D2). The set B(N2)

s consists of all vectors x2 for which s-th PD is adopted. So if the
i-th family of PDs is accepted, then

B(N2)
s

4
=

{
x2 : ϕN2

2

(
x2|ϕN1

1 (x1) = i
)

= s
}
, s ∈ Di, i = 1, 2,

⋃

s∈Di

B(N2)
s = XN2 , B(N2)

s ∩ B(N2)
l = ∅, l 6= s ∈ Di, i = 1, 2.

Let α′′l|k
(
ϕN2

2

)
be the probability of the erroneous acceptance of PD Pl at the second stage of test provided Pk is

true:
α′′l|k

(
ϕN2

2

) 4
= PN2

k

(
B(N2)

l

)
, l ∈ Di, l 6= k, i = 1, 2.

The probability to reject Pk, when it is true, is

α′′k|k
(
ϕN2

2

) 4
= PN2

k

(
B(N2)

k

)
=

∑

l 6=k

α′′l|k
(
ϕN2

2

)
, l ∈ Di, i = 1, 2. (1)

For the infinite sequences of tests ϕ2, corresponding reliabilities are defined as

E′′
l|k(ϕ2)

4
= lim inf

N2→∞

{
− 1

N2
log α′′l|k

(
ϕN2

2

)}
, l ∈ Di, i = 1, 2. (2)

It follows from (1) and (2) that
E′′

k|k (ϕ2) = min
l 6=k

E′′
l|k(ϕ2).

We denote by E′′ = {E′′
l|k, l 6= k, l, k = 1, S} the vector, element of which correspond to the set of error exponents

− 1
N2

log
{
PN2

k (B(N2)
l )

}
.

Similar to Definition 3.1. the set of error exponents indicated by vector E′′ is called achievable if for all ε > 0
and large enough N2 there exists a decision schemes B(N2)

l , l ∈ Di, i = 1, 2, satisfying for l, k = 1, S, l 6= k the
following conditions:

− 1
N2

log α′′l|k
(
ϕN2

2

)
> E′′

l|k(ϕ2)− ε.

The set of all achievable vectors is defined by R′′.
Let us define a region E ′′ in the error-exponent space as follows:

E ′′ 4= {E′′ : ∀Q, ∃l, D(Q‖Pk) > E′′
l|k(ϕ2), k 6= l, l, k = 1, S}.

Theorem 5.1 [11] The following inclusion take place E ′′ ⊂ R′′. Conversely if E′′ ∈ R′′, then for any δ > 0,
E′′δ ∈ E ′′, where E′′δ = {E′′

l|k(ϕ2)− δ}.

6. Achievable region at the two-stage test

The test ΦN = (ϕN1
1 , ϕN2

2 ) is composed by a pair of tests ϕN1
1 and ϕN2

2 . In the two-stage decision making, if at the
first stage of test, the i-th family of PDs is accepted then the test ΦN , can be defined by partitioning the sample
space XN to S disjoint subsets as follows:

C(N)
s

4
= A(N1)

i × B(N2)
s , s ∈ Di, i = 1, 2,

x = (x1, x2) ∈ C(N)
s : x1 ∈ A(N1)

i , x2 ∈ B(N2)
s , s ∈ Di, i = 1, 2.
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and the set C(N)
s consists of all vectors x for which in the two-stage test s-th PD is adopted and

⋃S
s=1 C(N)

s = XN .

Let α′′′l|k be the probability of the erroneous acceptance of PD Pl at the two-stage test, provided Pk is true:

α′′′l|k(ΦN )
4
= PN

k (C(N)
l ), l, k = 1, S, l 6= k.

And the probability to reject Pk at the two-stage test, when it is true, is

α′′′k|k
(
ΦN

) 4
= PN

k

(
C(N)

k

)
=

∑

l 6=k

α′′′l|k
(
ΦN

)
, l, k = 1, S.

The reliabilities of the infinite sequences of tests Φ = (ϕ1, ϕ2) are defined as

E′′′
l|k(Φ)

4
= lim inf

N→∞

{
− 1

N
log α′′′l|k

(
ΦN

)}
, l, k = 1, S.

We denote by E′′′ = {E′′′
l|k, l 6= k, l, k = 1, S} the vector, element of which correspond to the set of error exponents

− 1
N log

{
PN

k (C(N)
l )

}
.

Definition 6.1 [11] The set of error exponents indicated by vector E′′′ is called achievable if for all ε > 0 and large
enough N there exists a decision schemes C(N)

l , l = 1, S satisfying for l, k = 1, S, l 6= k the following conditions:

− 1
N

log α′′′l|k
(
ΦN

)
> E′′′

l|k(Φ)− ε.

The set of all achievable vectors is defined by R′′′.
Let us define a region E ′′′ in the error-exponent space as follows:

E ′′′ 4= {E′′′ : ∀Q, ∃l, D(Q‖Pk) > E′′′
l|k(Φ), k 6= l, l, k = 1, S}.

Theorem 6.2 The following inclusion take place E ′′′ ⊂ R′′′. Conversely if E′′′ ∈ R′′′, then for any δ > 0,
E′′′δ ∈ E ′′′, where E′′′δ = {E′′′

l|k(Φ)− δ}.
Proof. If E′′′ ∈ E ′′′ then for any type Q there exist at least one l such that D(Q‖Pk) > E′′′

l|k(Φ) for all k 6= l. If

there ara multiple such l , select one arbitrarily and assign the all type class T N
Q to C(N)

l . The result of probability
of error corresponding satisfies the following chain of inequalities:

PN
k (C(N)

l ) =
∑

x∈C
(N)
l

PN
k (x)

=
∑

Q:T N
Q ⊂C

(N)
l

|T N
Q | exp

{−N{H(Q) + D(Q‖Pk)}}

≤
∑

Q:T N
Q ⊂C

(N)
l

exp{−ND(Q‖Pk)}

< (N + 1)|X | exp{−ND(Q‖Pk)}
≤ exp{−N{E′′′

l|k − ε}}
So we have

− 1
N

log
{
α′′′l|k

(
ΦN

) }
= − 1

N
log

{
PN

k (C(N)
l )

}
> E′′′

l|k(Φ)− ε.

Consequently the first part of Theorem is proved.
Conversely in the second part of Theorem if E′′′ ∈ R′′′ then for every ε > 0, there exists some sequence of decision
schemes C

(N)
l , l = 1, S and some number N > N(ε) such that for all l 6= k

− 1
N

log
{
PN

k (C(N)
l )

}
> E′′′

l|k(Φ)− ε.
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If E′′′δ /∈ E ′′′, then there exists a distribution Q and δ > 0 such that

∃l : D(Q‖Pk) ≤ E′′′
l|k(Φ)− δ, k 6= l, l, k = 1, S.

Using the continuity properties of D(Q‖Pk) for a fixed k and PN (X ) is dense in all PDs, we can find for large
enough N and Qx ∈ PN (X ),

D(Qx‖Pk) ≤ D(Q‖Pk) + δ/2
≤ E′′′

l|k(Φ)− δ/2.

The corresponding result of error probabilities satisfy the following chain of inequalities:

PN
k (C(N)

l ) =
∑

x∈C
(N)
l

PN
k (x)

=
∑

Qx:T N
Qx
⊂C

(N)
l

|T N
Qx
| exp

{−N{H(Qx) + D(Qx‖Pk)}}

≥ (N + 1)−|X| exp
{−ND(Qx‖Pk)

}

≥ (N + 1)−|X| exp
{−N{E′′′

l|k(Φ)− δ/2}}

= exp
{−N{E′′′

l|k(Φ)− δ∗}}

So we have
− 1

N
log

{
α′′′l|k

(
ΦN

) }
= − 1

N
log

{
PN

k (C(N)
l )

} ≤ E′′′
l|k(Φ)− δ∗.

But this last inequality contradicts with Definition 6.1. and therefore E′′′ /∈ R′′′. Consequently if E′′′ ∈ R′′′, then
E′′′δ ∈ E ′′′ and the converse part of Theorem is accomplished.

7. Conclusion

The achievable region of reliabilities in multiple hypothesis testing problem for an object that follows a PD among
one of the pair of disjoint families of PDs is exposed . In the two-stage test, at the first stage of test ϕ1, an achievable
region of reliabilities R′ and at the second stage of test ϕ2 an achievable region of reliabilities R′′ are investigated
and consequently at the two-stage test Φ = (ϕ1, ϕ2) is shown by Theorem 6.2. that there exists an achievable region
of reliabilities R′′′ and the defined region for the vectors of reliabilities of the two-stage test characterizes the set of
all achievable vectors. Also advantages of procedures of the two-stage LAO testing was revealed in [8].
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