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Abstract

This paper is devoted to study the Navier-Stokes equations by applying the curl and using a current function, we
obtain a non-linear biharmonic problem where the pressure disappears and instead of the velocity, we are working
with a scalar function. After a linearization, we obtain a sequence of linear problems. We study the existence and
uniqueness of its solutions. Finally we show the convergence of the sequence of the linearized problems obtained to
the non-linear one.
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1. Introduction

We consider the Navier-Stokes problem:

(P )





−ν∆u + (u∇)u +∇P = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

where Ω is a bounded and connected domain in R2 with lipschitz boundary Γ = ∂Ω,
u the velocity and p the pressure.
ν is a positive parameter called kinematic viscosity and the corresponding function f forces applied to the fluid is
given.
After the application of the curl and using a current function, we obtain a non-linear biharmonic problem.
The variational formulation of the Navier-Stokes equations in the classic form is well studied in [2], [4], and [6]. A
discretisation by Finite Element Methods of the problem is proposed by [4].

The standard discretization of the Stokes and Navier-Stokes equations in vorticity and stream function formu-
lation by affine finite elements is known for its bad convergence. Amara.M and Bernardi.C in [1] present a modified
discretization, they prove that the convergence is improved and they establish a priori error estimates.

The outline of the paper is as follows:
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In the second Section, we are concerned with the bi-harmonic equation by applying the curl and using a current
function.

In Section 3, we study the sequence of linearized problems. We show the existence and uniqueness of their
solutions .

In Section 4, we show the convergence of the sequence of solutions of the linearized problems obtained to the
non-linear one.

In section 5, we demonstrated the linear convergence.

2. Application of rotational

We have div u = 0, then it can be written in the form u = curl φ where φ is a scalar function called fairly regular
stream function.





u1 =
∂φ

∂y
,

u2 = −∂φ

∂x
.

Then by applying the curl to our problem (P ), we will have:

curl ∆u = −∆2φ,

curl (∇P ) = 0,

curl((u.∇)u) =
∂

∂x
(u1

∂u2

∂x
+ u2

∂u2

∂y
)− ∂

∂y
(u1

∂u1

∂x
+ u2

∂u1

∂y
),

since

div u = 0 this implies that
∂u1

∂x
= −∂u2

∂y
,

and then, we obtain:

curl((u.∇)u) = −∂φ

∂y

∂∆φ

∂x
+

∂φ

∂x

∂∆φ

∂y
.

The equation becomes

ν∆2φ− ∂φ

∂y

∂∆φ

∂x
+

∂φ

∂x

∂∆φ

∂y
= curl f,

and we have the following problem

(Q)





ν∆2φ− ∂φ

∂y

∂∆φ

∂x
+

∂φ

∂x

∂∆φ

∂y
= curl f in Ω,

φ = 0 on Γ,

∂φ

∂x
=

∂φ

∂y
= 0 on Γ.

A linearization gives:

ν∆2φn+1 − ∂φn

∂y

∂∆φn+1

∂x
+

∂φn

∂x

∂∆φn+1

∂y
= curl f.

We set
cn =

∂φn

∂y
, dn =

∂φn

∂x
,
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we have:

ν∆2φn+1 − cn
∂∆φn+1

∂x
+ dn

∂∆φn+1

∂y
= curl f.

Therefore, our problem is:

(Qn+1)





ν∆2φn+1 − cn
∂

∂x
∆φn+1 + dn

∂

∂y
∆φn+1 = curl f in Ω,

φn+1 = 0 on Γ,

∂φn+1

∂x
=

∂φn+1

∂y
= 0 on Γ,

3. Variational formulation

We multiply both sides of the first equation of (Qn+1) by a test function v ∈ V = H2
0 (Ω) and integrating over Ω,

we have the following variational problem:

(QV )n+1

{
Find φn+1 ∈ V such as
a(φn+1, v) = L(v), ∀ v ∈ V,

where a(., .) is a bilinear form on V × V given by:

a(u, v) = a0(u, v) + an(u, v), (1)

where

a0(u, v) = ν

∫

Ω

∆u∆vdX, (2)

an(u, v) =
∫

Ω

∆u

(
∂φn

∂y

∂v

∂x
− ∂φn

∂x

∂v

∂y

)
dX, (3)

and L(.) is a linear form on V defined by the following expression:

L(v) =
∫

Ω

curl f v dX. (4)

For the existence and uniqueness of the solution, we need this lemma:

Lemma 3.1. [5], ∀u ∈ H2(Ω) ∩H1
0 (Ω), there exist c′(Ω) > 0 such that

‖u‖2H2 ≤ c′(Ω)‖∆u‖22 ≤ c∗‖∆u‖22. (5)

where c∗ will be chosen later.

Theorem 3.2. For f ∈ H1(Ω) and curl f small enough: ‖curl f‖2 < c(ν) ,the problem (QV )n+1 has a unique
solution φn+1 ∈ V .

Proof. 1. Continuity of a:
We show the continuity and coercivity of the bilinear form a(., .).
We put u = φn+1 and we deal with each term separately, we begin by:

|a0(u, v)| ≤ ν‖∆u‖2‖∆v‖2,
≤ ν‖u‖H2‖v‖H2 .

(6)

And using the continuous injection of H1(Ω) in L4(Ω), an(., .) will be bounded as bellow

|an(u, v)| =
∣∣∣∣
∫

Ω

∆u(∇v ∧∇φn)dX

∣∣∣∣ ,

≤ ‖∆u‖2‖∇v‖L4‖∇φn‖L4 ,

≤ c‖∆u‖2‖∇v‖H1‖∇φn‖H1 ,

≤ c‖φn‖H2‖u‖H2‖v‖H2 .

(7)
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Therefore,

|a(u, v)| ≤ Cn‖u‖H2‖v‖H2 , (8)

where Cn is a constant which depends on n given by:

Cn = ν + c‖φn‖H2 .

This implies that, for each fixed n, a(., .) is continuous on V .

2. Coercivity of a:
We have:

a0(u, u) = ν‖∆u‖22, (9)

and taking v = u in (7), we obtain:

|an(u, u)| ≤ c‖φn‖H2‖u‖2H2 , (10)

then using (5)

a(u, u) ≥ ν‖∆u‖22 − c‖u‖2H2‖φn‖H2 ,

≥ ν

c′(Ω)
‖u‖2H2 − c‖u‖2H2‖φn‖H2 ,

≥ (
ν

c′(Ω)
− c‖φn‖H2)‖u‖2H2 .

(11)

To get the coercivity, we should have:

ν

c′(Ω)
− c‖φn‖H2 > 0, ∀n ∈ N, (12)

which means that

‖φn‖H2 <
ν

c′(Ω)c
, ∀n ∈ N. (13)

Let

α∗ =
ν

2c′(Ω)c
. (14)

We take φ0 ∈ Bα∗ where Bα = {v ∈ H2
0 (Ω); ‖v‖H2 ≤ α} and assume that φn ∈ Bα∗ ,

we must show by induction that: φn+1 ∈ Bα∗ .
Indeed, we have , if we put u = φn+1:

a(u, u) = L(u) =
∫

Ω

curl f u dX,

a(u, u) ≤ ‖curl f‖2‖u‖2, (15)

then

(
ν

c′(Ω)
− c‖φn‖H2)‖u‖2H2 ≤ ‖curl f‖2‖u‖H2 ,

and

(
ν

c′(Ω)
− c‖φn‖H2)‖u‖H2 ≤ ‖curl f‖L2 , (16)
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‖u‖H2 ≤ ‖curl f‖2
ν

c′(Ω) − c‖φn‖H2
.

If we assume that:

‖curl f‖2 <
ν2

4c′(Ω)2c
,

then we have :

‖u‖H2 ≤ ‖curl f‖2
ν

c′(Ω) − cα∗
≤ α∗,

which implies that a(., .) is coercive on V .

3. Continuity of L:
In the other hand, the linear form L is continuous:

‖L(v)‖2 ≤ ‖curl f‖2 ‖v‖2. (17)

Then, using Lax-Milgram Theorem, the problem (QV )n+1 has a unique solution φn+1 ∈ V .

4. Convergence of the sequence

The sequence (φn)n∈N obtained in the preceding section verifies:

‖φn‖V ≤ α∗, ∀ n ≥ 0,

which implies that the sequence (φn)n∈N is bounded in V .
Then there exist a subsequence that converges weakly to w in V .
Since the injection of V in H1

0 (Ω) is continuous, there exists a subsequence still noted φn which converges strongly
to w in H1

0 (Ω).
For the convergence, we need this regularity result:

Lemma 4.1. Assume that Ω is of class C2 and φ0 ∈ H2
0 (Ω) ∩H3(Ω), we have:

∀n ∈ N, φn+1 ∈ H2
0 (Ω) ∩H3(Ω).

Proof. The problem (Qn+1) can be written as




− ν∆ωn+1 + cn
∂ωn+1

∂x
− dn

∂ωn+1

∂y
= −curl f in Ω, (1)

∆φn+1 = ωn+1 in Ω, (2)

φn+1 ∈ H2
0 (Ω).

The variational formulation of (1) is
{

Find ωn+1 ∈ H1
0 (Ω) such as

An(ωn+1, v) = l(v), ∀ v ∈ H1
0 (Ω),

where

An(ωn+1, v) = ν

∫

Ω

∇ωn+1 ∇v dX +
∫

Ω

ωn+1 (dn
∂v

∂y
− cn

∂v

∂x
) dX,

l(v) = −
∫

Ω

curl f v dX.
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For the coercivity of An, we have:

An(v, v) = ν

∫

Ω

|∇v|2 dX +
∫

Ω

v (∇v ∧∇ωn) dX

≥ ν ‖∇v ‖22 − c‖∇v‖2‖v‖H1‖∇ωn‖H1

≥ νc1 ‖v ‖2H1 − cα∗‖v‖2H1 .

It suffices to choose in inequality (5): c∗ >
1

2c1
.

And by Lax-Milgram Theorem, we have ωn+1 ∈ H1(Ω).

The theory of regularity for weak solutions of the laplace problem applied to the variational formulation of (2)
gives φn+1 ∈ H3(Ω).

Then, we have this result of convergence :

Lemma 4.2. 1. We have, ∀v ∈ H2
0 (Ω) ∩H3(Ω):

lim
n→+∞

a0(φn+1, v) = a0(w, v).

2. We have, ∀v ∈ H2
0 (Ω) ∩H3(Ω):

lim
n→+∞

an(φn+1, v) = a∞(w, v) =
∫

Ω

∆w (∇v ∧∇w) dX.

Proof. 1. We have:

|a0(φn+1, v)− a0(w, v)| = |ν
∫

Ω

∆(φn+1 − w) ∆v dX|

≤ ν‖∇(φn+1 − w)‖2‖v‖H3 ,

then, we obtain the result.

2. On the other hand, we have:

|an(φn+1, v)− a∞(w, v)| = T1n + T2n

where

T1n = |
∫

Ω

(∆φn+1 −∆w)(∇v ∧∇φn)dX|,

and

T2n = |
∫

Ω

∆w · [∇v ∧ (∇φn −∇w)]dX|

By Green formula we have :

T1n = |
∫

Ω

(∇φn+1 −∇w) ∇(∇v ∧∇φn)dX|

which gives :

T1n ≤
2∑

i,j=1

|
∫

Ω

∂(φn+1 − ω)
∂xi

∂2v

∂xi∂xj

∂(φn)
∂xj

dX|+
2∑

i,j=1

|
∫

Ω

∂(φn+1 − ω)
∂xi

∂v

∂xj

∂2(φn)
∂xi∂xj

dX|.

and

T2n ≤
2∑

i,j=1

|
∫

Ω

∂(φn − ω)
∂xi

∂2ω

∂xi∂xj

∂v

∂xj
dX|
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According to the Sobolev imbedding Theorem the space H1(Ω) is continuously imbedded in L4(Ω) for n = 2.

Then by the Hölder’s inequality we have for ω, v, φn ∈ H2
0 (Ω) ∩H3(Ω):

∂ω

∂xi

∂2v

∂xi∂xj

∂(φn+1 − ω)
∂xj

∈ L1(Ω), 1 ≤ i, j ≤ 2,

with for T1n

|
∫

Ω

∂φn

∂xi

∂2v

∂xi∂xj

∂(φn+1 − ω)
∂xj

dX| ≤ ‖ ∂2v

∂xi∂xj
‖4‖∂φn

∂xi
‖4‖∂(φn+1 − ω)

∂xj
‖2

≤ C‖ ∂2v

∂xi∂xj
‖H1‖∂φn

∂xi
‖H1‖∂(φn+1 − ω)

∂xj
‖2

≤ C‖v‖H2‖φn‖H2‖∂(φn − ω)
∂xj

‖2,

and

|
∫

Ω

∂2φn

∂xi∂xj

∂v

∂xj

∂(φn+1 − ω)
∂xi

dX| ≤ ‖ ∂2φn

∂xi∂xj
‖4‖ ∂v

∂xj
‖4‖∂(φn+1 − ω)

∂xi
‖2

≤ C‖ ∂2φn

∂xi∂xj
‖H1‖ ∂v

∂xj
‖H1‖∂(φn+1 − ω)

∂xi
‖2

≤ C‖v‖H2‖φn‖H2‖∂(φn+1 − ω)
∂xi

‖2,

and for T2n we have

|
∫

Ω

∂2ω

∂xi∂xj

∂v

∂xj

∂(φn − ω)
∂xi

dX| ≤ ‖ ∂2ω

∂xi∂xj
‖4‖ ∂v

∂xj
‖4‖∂(φn − ω)

∂xi
‖2

≤ C‖ ∂2ω

∂xi∂xj
‖H1‖ ∂v

∂xj
‖H1‖∂(φn − ω)

∂xi
‖2

≤ C‖v‖H2‖ω‖H2‖∂(φn − ω)
∂xi

‖2,

Then, by the strongly convergence in H1
0 (Ω), we will have

lim
n→+∞

an(φn+1, v) = a∞(w, v).

Proposition 1. w is a solution of Q.

Proof. It follows from Lemma (4.1) that:

lim
n→+∞

a0(φn+1, v) + an(φn+1, v) = a0(w, v) + a∞(w, v) = L(v). (18)

Which gives:

ν

∫

Ω

∆w ∆vdX +
∫

Ω

∆w (∇v ∧∇w)dX =
∫

Ω

curl f vdX, (19)

then
∫

Ω

(ν∆2w − ∂w

∂y

∂∆w

∂x
+

∂w

∂x

∂∆w

∂y
− curl f)vdX = 0, ∀v ∈ H2

0 (Ω), (20)

then

ν∆2w − ∂w

∂y

∂∆w

∂x
+

∂w

∂x

∂∆w

∂y
= curl f, ∀w ∈ H2

0 (Ω). (21)

So we can conclude that w is the solution of Q.
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5. Linear convergence

For this part, we set
wn+1 = φn+1 − w,

we have the following result:

Proposition 2. For wn+1 ∈ H2(Ω), there exist a constant C such that:

‖wn+1‖H2 ≤ C‖wn‖H2 . (22)

Proof. Taking the difference between the problem (Qn+1) and the problem (Q), we have:

ν∆2wn+1 − ∂φn

∂y

∂(∆wn+1)
∂x

+
∂φn

∂x

∂(∆wn+1)
∂y

= Fn, (23)

where

Fn =
∂(∆w)

∂x

∂wn

∂y
− ∂(∆w)

∂y

∂(wn)
∂x

. (24)

The variational formulation gives us:

β‖wn+1‖2H2 ≤ a(wn+1, wn+1) ≤
∫

Ω

|Fn|wn+1dX,

=
∫

Ω

|∆w(∇wn ∧∇wn+1)|dX,

≤ ‖∆w‖2‖∇wn‖4‖∇wn+1‖4,
≤ c‖∆w‖2‖∇wn‖H1‖∇wn+1‖H1 ,

≤ c′‖wn‖H2‖wn+1‖H2 ,

then, we obtain:

‖wn+1‖H2 ≤ C‖wn‖H2 , (25)

where C is given by:

C =
c′

β
, (26)

and β the constant of the coercivity.
Which implies the linear convergence.

6. Conclusion

In this paper, we studied the Navier-Stokes equations by applying the curl and using a current function through
the application of rotational, we obtained a non-linear biharmonic problem.
After a linearization, we proved the existence and uniqueness of weak solution of the variational formulation using
Lax-Milgram Theorem and which we can compute by finite element method.
And in a second part we showed the convergence of the sequence as well as the linear convergence.
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