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Abstract

In this paper, we construct a backward difference scheme for a class of general SIR epidemic model with general incidence function f . We
use the step size h > 0, for the discretization. The dynamical properties are investigated (positivity and the boundedness of solution). By
constructing the Lyapunov function, under the conditions that function f satis�es some assumptions. The global stabilities of equilibria are
obtained. If the basic reproduction number R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable. If R0 > 1, the endemic
equilibrium is globally asymptotically stable.
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1. Introduction

In the theory of epidemic dynamical models there are two kinds of mathematical models, the continuous-time models described by differ-

ential equations and the discrete-time models described by difference equations.

Nowadays, in order to study the continuous time SIR and SIRS epidemic models, many various discrete dynamical model have been con-

structed and then, dynamical properties have been considered in many papers such as ([9, 5, 11, 12, 13]). The fact that the epidemiological

data are usually collected in discrete time units, such as daily, weekly or monthly, makes the discrete model a natural choice to describe a

disease transmission. The result of the discrete model can also be compared with the actual data directly. The discrete model also exhibits

rich dynamical behavior, though it is more complicated than the corresponding continuous model. However, the study of the discrete

epidemic models is comparatively few due to the complicates expressions and the dif�culties in the dynamical analysis. In this paper, we

discretize the continuous-time model studied in [6], by using the backward difference scheme with time step size h. The SIR model under

consideration here use a general incidence function with delay f (S, It ) and generalize a SIRmodel studied in [2] with a particular incidence

function
bSIt

1+aIt
.

In [2], a detailed analysis of the current model is presented. It is shown that when the basic reproduction number R0 ≤ 1, then the disease-

free equilibrium is globally asymptotically stable and when the R0 > 1, then the endemic equilibrium is globally asymptotically stable,

without any further conditions on the parameters. In this paper, we construct a backward difference scheme for a class of continuous-time

SIR models with general nonlinear incidence function with delay. We study the dynamical properties, especially the global stability of the

disease-free equilibrium and endemic equilibrium for this discrete model. Primary, we study the basic properties of the model, such as,

the positivity and the boundedness of solutions. Furthermore, we construct discrete type of Lyapunov functions and use stability theory of

difference equations to establish the global stability of equilibria.

The paper is organized as followed, in second section we give the discrete mathematical model, the basic reproduction number R0 and the

existence and uniqueness of disease-free equilibrium and endemic equilibrium. Thirdly, we study the positivity and the boundedness of

solution. At fourth, we study the stability of disease-free equilibrium, when R0 ≤ 1. In section 5, we study the global stability of unique

endemic equilibrium when R0 > 1. In the section 6, we give a particular incidence function used for our numerical simulation and the

numerical results. We end with some remarks a conclusion.

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Discrete mathematical mode

In this section, we study a discrete SIR mathematical model. In fact, we considere the following continuous model from [2] with a general

nonlinear incidence function given by:


�S= B−m1S− f (S, It ),

�I = f (S, It )− (m2+ g)I,

�R= gI−m3R.

(1)

Where

mi, i= 1,2,3 denote the death rate of the different class,

S is the size of the susceptible individus,

I is the size of the infected individus,

R is the size of the individus recovered, B is the recruitment rate of susceptible hots,

g is the treatment rate of infected,

f is a general incidence function, which must satis�es some conditions.

We make the following hypothesis

H1: f is non-negativeC1 function on the non-negative orthant.

H2: for all (S, I) ∈ R2
+, f (S,0) = f (0, I) = 0.

Let us denote by f1 and f2 the partial derivatives of f with respect to the �rst and to the second variable.

We assume that system (1) holds with initial conditions

S(0) ∈ R+ and I(q) = f(q) for q ∈ [− j,0]; 0≤ j ≤ n−1.

Let us denote by f ∈ C =C([− j,0],R+), the space of continuous functions from [− j,0] to R+.

The disease-free equilibrium of system (1) is given by,

E0 = (S0, I0,R0) = (
B

m1
,0,0)

and the endemic equilibrium by:

E∗ = (S∗, I∗,R∗).

Also, the basic reproduction number is

R0 =
f2(S

0,0)

m2+ g

Remark 2.1: The basic reproduction number evaluates the average number of new infections generated by a single infected individual in

a completely susceptible population. We can summarize the stability of the equilibria by the following theorem:

Theorem 2.1: The following statements hold.

(i) If R0 ≤ 1. Then the disease-free equilibrium E0 of (1) is globally asymptotically stable.

(ii) Let assume R0 > 1. Then the endemic equilibrium E∗ of (1) is globally asymptotically stable.

Now, we use the backward difference scheme to discretize model (1). Let h> 0 be the time step size.

Since

dS(t)

dt
= lim

h−→0

S(t+h)−S(t)

h
,

dI(t)

dt
= lim

h−→0

I(t+h)− I(t)

h
,

and
dR(t)

dt
= lim

h−→0

R(t+h)−R(t)

h
,

we obtain

lim
h−→0

(
B−m1S(t+h)− f (S(t+h), I j(t+h))

)
= B−m1S(t)− f (S(t), It (t))

lim
h−→0

(
f (S(t+h), I j(t+h))− (m2+ g)I(t+h)

)
= f (S(t), It (t))− (m2+ g)I(t)

and

lim
h−→0

gI(t+h)−m3R(t+h) = gI(t)−m3R(t).

Therefore, we can derive from the continuous model (1), the discrete one for any step size h > 0, by using a variation of backward Euler

method:



S(t+h)−S(t)

h
= B−m1S(t+h)− f (S(t+h), I j(t+h))

I(t+h)− I(t)

h
= f (S(t+h), I j(t+h))− (m2+ g)I(t+h)

R(t+h)−R(t)

h
= gI(t+h)−m3R(t+h).

(2)
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Let us denote by

t = n, t+h= n+1, S(t) = Sn, I(t) = In, R(t) = Rn, S(t+h) = Sn+1, I(t+h) = In+1, and R(t+h) = Rn+1.

From system (2) we obtain the following discrete SIR epidemic model with general nonlinear incidence function:


Sn+1−Sn = h[B−m1Sn+1− f (Sn+1, I

j
n+1

)]

In+1− In = h[ f (Sn+1, I
j
n+1

)− (m2+ g)In+1]

Rn+1−Rn = h[gIn+1−m3Rn+1].

(3)

Where B,g and mi, i= 1,2,3 are some positive constants, similar to those in the continuous system (1). Since Rn does not appear in the �rst

and the second equation of system (3), it is suf�cient to analyze the behavior of Sn and In.

System (3) always admits a disease-free equilibrium

E0 =

(
B

m1
,0,0

)
and an endemic equilibrium

E∗ = (S∗, I∗,R∗);

where

S∗ =
b − (m2+ g)I∗

m1
and R∗ =

g

m3
I∗.

Let also make these hypothesis:

H3: f (Sn, I
j
n)≤ f2(S

0,0)In for all n≥ 0 and j ≤ n.

H4: for all n≥ 0,
In+1

I∗
≤ Sn+1

S∗
≤

f (Sn+1, I
j
n+1

)

f (S∗, I∗)
.

Remark 2.2: The assumption H4 is used to prove that the difference of the Lyapunov functionVn+1−Vn ≤ 0, in addition, this assumption

is also used to show that Sn > 0 ∀n ∈ N.

3. Basic properties

We consider that the initial conditions of system (3) :

S(0)> 0, I(0)> 0 and R(0)> 0. (4)

Proposition 3.1: Let (Sn, In,Rn) be the solution of system (3), with initial conditions (8). Then Sn > 0, In > 0 and Rn > 0 for all n. Proof.

To prove this proposition, we use the system (3).
Assume that Sn > 0, In > 0 and Rn > 0.

From the second equation of (3) we have,

(1+h(m2+ g))In+1 = In+h f (Sn+1, I
j
n+1

),

since In > 0 and f a non-negative function, we have In+1 > 0 for all step size h> 0.

From the last equation of system (3) we have,
(1+hm3)Rn+1 = Rn+hgIn+1,

since Rn > 0 and In+1 > 0; then, we have Rn+1 > 0 for all step size h> 0.

For the positiveness of Sn+1 we use the assumption H4 and then, we get (Sn, In,Rn) ∈ R∗3
+ for all n≥ 0

�
Proposition 3.2: Any solution (Sn, In,Rn) of system (3), with initial condition (4) satis�es

lim
n→+¥

sup(Sn+ In+Rn)≤
B

m
;

with m =min{m1,m2,m3}. Proof. Let us note Nn+1 = Sn+1+ In+1+Rn+1 and Nn = Sn+ In+Rn.
By adding the different equation of system (3) we have,

Nn+1−Nn = h[B−m1Sn+1−m2In+1−m3Rn+1]

≤ h[B−m(Sn+1+ In+1+Rn+1)]

≤ h[B−mNn+1]

=⇒ (1+hm)Nn+1−Nn ≤ hB,

so

lim
n→+¥

sup((1+hm)Nn+1−Nn) = lim
n→+¥

suphmNn+1

=⇒ lim
n→+¥

supNn+1 ≤
B

m
.

Hence we have

lim
n−→+¥

sup(Sn+ In+Rn)≤
B

m
;

with m =min{m1,m2,m3}.
�

Theorem 3.1:
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(i) If R0 ≤ 1, then model (3) has only a unique disease-free equilibrium

E0 = (S0,0,0).

(ii) If R0 > 1, then model (3) has a unique endemic equilibrium

E∗ = (S∗, I∗,R∗).

Proof. Any equilibrium E = (S, I,R) satis�es
B−m1S− f (S, I) = 0

f (S, I)− (m2+ g)I = 0

gI−m3R= 0.

(5)

By using the second equation of (5) we obtain:
f (S, I)

I
= (m2+ g).

Now let us consider the function j de�ned by,

j(I) =
f (S0− m2+g

m1
I, I)

I
− (m2+ g).

Hence, we have

lim
I→0+

j(I) =
¶ f

¶ I
((S0,0))− (m2+ g)

= (m2+ g)

(
f2(S

0,0)

m2+ g
−1

)
= (m2+ g)(R0−1),

and in the other hand

j(Ī) =−(m2+ g), where Ī =
m1S

0

m2+ g
.

When R0 ≤ 1, we have lim
I→0+

j(I)≤ 0. Consequently, there is not any I∗ > 0 such that j(I∗) = 0. Therefore, model (3) has a unique

disease-free equilibrium E0. When R0 > 1, we have lim
I→0+

j(I)> 0. Therefore, there exists a unique I∗ ∈]0; Ī[ such that j(I∗) = 0.

Furthermore, we have S∗ = S0 − m2+ g

m1
I∗ > 0 and R∗ =

g

m3
I∗ > 0 and this implies that model (3) has unique endemic equilibrium

E∗ = (S∗, I∗,R∗).
�

Reamark 3.1: The space K = R+×C is positively invariant and attracting domain for system (3).

4. Stability of the disease-free equilibrium

4.1. Local stability of the disease-free equilibrium

In this subsection, we will study the stability of the disease-free equilibrium E0 = (
B

m1
,0,0).

Theorem 4.1: When R0 ≤ 1, then disease-free equilibrium E0 of model (3) is locally asymptotically stable.

Proof. By computing the linearization system of model (3) at equilibrium E0, we have
Sn+1−Sn = h[−m1− f1(S

0,0)]Sn+1−h f2(S
0,0)In+1

In+1− In = h f1(S
0,0)Sn+1+h[ f2(S

0,0)− (m2+ g)]In+1

Rn+1−Rn = hgIn+1−hm3Rn+1.

(6)

The matrix A associate of system (6) is given by

A=


1+h[m1+ f1(S

0,0)] h f2(S
0,0) 0

−h f1(S
0,0) 1−h[ f2− (m2+ g)] 0

0 −hg 1+hm3

 . (7)

The system (6) can be rewrite by

Xn+1 = A−1Xn;

with Xn = (Sn, In,Rn)
t .

If all eigenvalues l of A satisfy |l |> 1, then eigenvalues s of A−1 will satisfy |s |< 1.
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The characteristic polynomial P(X) associated to A is:

P(X) = det(A−XI)

= (1+hm3−X)[(1+hm1+h f1(S
0,0)−X)(1−h f2(S

0,0)

+h(m2+ g)−X)+h2 f1(S
0,0) f2(S

0,0)].

Let l be a root of P(X), then

(1+hm3−l ) = 0

or

(1+hm1+h f1(S
0,0)−l )(1−h f2(S

0,0)+h(m2+ g)−l +h2 f1(S
0,0) f2(S

0,0) = 0.

The root l = 1+hm3 is strictly greater than one.

Now we prove that the roots of the polynomial equation

(1+hm1+h f1(S
0,0)−l )(1−h f2(S

0,0)+h(m2+ g)−l )+h2 f1(S
0,0) f2(S

0,0) = 0 (8)

are also strictly greater than one.

For this, let us suppose that equation (8) have root l1 = |l |< 1.

Thus, we have

(1+hm1+h f1(S
0,0)−l1)(1−h f2(S

0,0)+h(m2+ g)−l1)+h2 f1(S
0,0) f2(S

0,0) = 0. (9)

So from (9), we have:

(1+hm1+h f1(S
0,0)−l1)(1−h f2(S

0,0)+h(m2+ g)−l1) =−h2 f1(S
0,0) f2(S

0,0). (10)

By using the second member of (10) and the fact that R0 ≤ 1, we get:

−h2 f1(S
0,0) f2(S

0,0) = (h f1(S
0,0))(−h f2(S

0,0))

≤ (hm1+h f1)(−h[ f2(S
0,0)− (m2+ g)])

< (1+h(m1+f1)−l1)(1−h[ f2(S
0,0)−(m2+ g)]−l1).

Hence equation (10) cannot have roots. Hence, E0 is locally asymptotically stable according to Theorem 2 in [10].

4.2. Global stability of the disease-free equilibrium

Theorem 4.2: The disease-free equilibrium is globally asymptotically stable in K whenever R0 ≤ 1. Proof. In this proof we used the

comparison theorem [8] and the assumption H3 . By using the equation of the infectious class in (3) and the assumption H3 above, we

have:

In = [1+h(m2+ g)]In+1−h f (Sn+1, I
j
n+1

),

so

In ≥ (1+h[(m2+ g)− f2(S
0,0)])In+1, (11)

and

M−1In ≥ In+1 withM = 1+h[(m2+ g)− f2(S
0,0)].

By using the fact that R0 ≤ 1, we have (m2+ g)− f2(S
0,0) ≥ 0. So the constant M is greater than one. We conclude that the linearized

equation (11) is stable whenever R0 ≤ 1. By a standard comparison theorem [8], In → 0 as n→ ¥ for equation (11) and substituting In = 0

in system (3), we get Sn → S0, In → 0 as n → +¥. Thus, (Sn, In) → (S0,0) as n → +¥ for system (3); when R0 ≤ 1. Therefore, E0 is

globally asymptotically stable if R0 ≤ 1.

�

5. Global stability of the endemic equilibrium

In this section, we study the global stability of the endemic equilibrium given by E∗ = (S∗, I∗,R∗). Theorem 5.1: When R0 > 1, the

endemic equilibrium point E∗ is globally asymptotically stable. Proof. By using the �rst and second equation of (3), at equilibrium point

E∗, we have:

B= m1S
∗+ f (S∗, I∗)

and

f (S∗, I∗) = (m2+ g)I∗,

which can be used for the following computation.

Let

g(x) = x−1− lnx
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and

VSn = g

(
Sn

S∗

)
, VIn = g

(
In

I∗

)
, V+n

=
j

å
l=0

g

(
In−l

I∗

)
.

Let us consider

Vn =VSn +VIn +V+n
.

Thus

Vn+1−Vn =VSn+1
−VSn +VIn+1

−VIn +V+n+1
−V+n

.

Let us calculate VSn+1
−VSn .

For this, we use the mean value theorem and we suppose that Sn ≤ Sn+1, the computation is the same when Sn+1 ≤ Sn.

VSn+1
−VSn = g

(
Sn+1

S∗

)
−g

(
Sn

S∗

)
=

Sn+1−Sn

S∗
− lnSn+1+ lnSn

=

(
1

S∗
− lnSn+1− lnSn

Sn+1−Sn

)
(Sn+1−Sn)

=
1

S∗

(
1−S∗

lnSn+1− lnSn

Sn+1−Sn

)
(Sn+1−Sn).

By using the mean value theorem we have:

1−S∗
lnSn+1− lnSn

Sn+1−Sn
≤ 1− S∗

Sn+1

.

Hence,

VSn+1
−VSn ≤ 1

S∗

(
1− S∗

Sn+1

)
(Sn+1−Sn)

≤ h

S∗

(
1− S∗

Sn+1

)
(B−m1Sn+1− f (Sn+1, I

j
n+1

))

≤ h

S∗

(
1− S∗

Sn+1

)
(m1S

∗+ f (S∗, I∗)−m1Sn+1− f (Sn+1, I
j
n+1

))

VSn+1
−VSn ≤ h

S∗

(
1− S∗

Sn+1

)
(m1S

∗−m1Sn+1+ f (S∗, I∗)− f (Sn+1, I
j
n+1

))

≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+
h

S∗

(
1− S∗

Sn+1

)
( f (S∗, I∗)− f (Sn+1, I

j
n+1

))

≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+
h f (S∗, I∗)

S∗

(
1− S∗

Sn+1

)(
1−

f (Sn+1, I
j
n+1

)

f (S∗, I∗)

)
.

Now, let us put

xn+1 =
Sn+1

S∗
, yn+1 =

In+1

I∗
, z

j
n+1

=
I
j
n+1

I∗
.

F(z
j
n+1

) =
f (Sn+1, I

∗z j
n+1

)

f (S∗, I∗)
=

f (Sn+1, I
j
n+1

)

f (S∗, I∗)

and

x =max

{
h f (S∗, I∗)

S∗
,
h f (S∗, I∗)

I∗
, 1

}
we have,

VSn+1
−VSn ≤ −hm1

S∗

(
Sn+1−S∗

)2

Sn+1

+
h f (S∗, I∗)

S∗

(
1− S∗

Sn+1

)(
1−

f (Sn+1, I
j
n+1

)

f (S∗, I∗)

)

≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+
h f (S∗, I∗)

S∗

(
1− 1

xn+1

)(
1−F(z

j
n+1

)

)

≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+
h f (S∗, I∗)

S∗

(
1−F(z

j
n+1

)− 1

xn+1

+
F(z

j
n+1

)

xn+1

)

≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+x

(
1−F(z

j
n+1

)− 1

xn+1

+
F(z

j
n+1

)

xn+1

)



38 International Journal of Applied Mathematical Research

Now, let us calculate VIn+1
−VIn . We use the mean value theorem and we assume that In ≤ In+1. Notice that the computation is the same

when In+1 ≤ In.

VIn+1
−VIn = g

(
In+1

I∗

)
−g

(
In

I∗

)

=
In+1− In

I∗
− ln In+1+ ln In

=

(
1

I∗
− ln In+1− ln In

In+1− In

)
(In+1− In)

=
1

I∗

(
1− I∗

ln In+1− ln In

In+1− In

)
(In+1− In).

By using the mean value theorem, we have:

1− I∗
ln In+1− ln In

In+1− In
≤ 1− I∗

In+1

.

Therefore,

VIn+1
−VIn ≤ h

I∗

(
1− I∗

In+1

)
( f (Sn+1, I

j
n+1

)− (m2+ g)In+1)

≤ h f (S∗, I∗)

I∗

(
1− I∗

In+1

)(
f (Sn+1, I

j
n+1

)

f (S∗, I∗)
− (m2+ g)In+1

f (S∗, I∗)

)

≤ h f (S∗, I∗)

I∗

(
1− I∗

In+1

)(
f (Sn+1, I

j
n+1

)

f (S∗, I∗)
− In+1

I∗

)

≤ h f (S∗, I∗)

I∗

(
1+

f (Sn+1, I
j
n+1

)

f (S∗, I∗)
− In+1

I∗
− I∗

In+1

f (Sn+1, I
j
n+1

)

f (S∗, I∗)

)

≤ h f (S∗, I∗)

I∗

(
1+F(z

j
n+1

)− yn+1−
F(z

j
n+1

)

yn+1

)

≤ x

(
1+F(z

j
n+1

)− yn+1−
F(z

j
n+1

)

yn+1

)
.

Now, let us evaluate V+n+1
−V+n

.

V+n+1
−V+n

=
j

å
l=0

[
g

(
In+1−l

I∗

)
−g

(
In−l

I∗

)]

= g(zn+1)−g(z
j
n)

= zn+1− z
j
n− lnzn+1+ lnz

j
n

≤ x (zn+1− z
j
n− lnzn+1+ lnz

j
n).

By adding and subtracting

1+ lnxn+1, ln
F(z

j
n+1

)

xn+1

andln
F(z

j
n+1

)

yn+1

,

we have:
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Vn+1−Vn ≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+x

(
− z

j
n+1+ lnz

j
n+1− lnyn+1−

1

xn+1

+ lnxn+1+1−1+ ln
1

xn+1

+
F(z

j
n+1

)

xn+1

+ ln
F(z

j
n+1

)

xn+1

− ln
F(z

j
n+1

)

xn+1

−
F(z

j
n+1

)

yn+1

+ ln
F(z

j
n+1

)

yn+1

− ln
F(z

j
n+1

)

yn+1

)

≤ −hm1
S∗

(
Sn+1−S∗

)2

Sn+1

+x

(
− z

j
n+1+ lnz

j
n−

1

xn+1

+1+ ln
1

xn+1

+
F(z

j
n+1

)

xn+1

−1− ln
F(z

j
n+1

)

xn+1

−
F(z

j
n+1

)

yn+1

+1+ ln
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)
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)
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)
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)]
.

By using H4 and the fact that the function g is monotone increasing on each side of point 1 and is minimized at this point 1, we obtain:

g

(
F(z

j
n+1

)

xn+1

)
≤ g

(
F(z

j
n+1

)

yn+1

)
.

Thus, we have

Vn+1−Vn ≤ 0.

Hence, by the Lyapunovs theorems on the global asymptotical stability for difference equations [7], we obtain that the endemic equilibrium

E∗ is globally asymptotically stable.

�

6. Simulation and comments

In this section, we present a numerical simulation of continuous-time model and discrete one given respectively by models (1) and (3).
Notice that Scilab is the software used for the simulations. We give the representation from the value of our step size h and the reproduction

rate R0. We discuss when reproduction rate R0 ≤ 1 and R0 > 1. The black curve gives the evolution of the different class for the continuous

time model and the red curve the evolution of the different class for the discrete time model. In our, simulation we use the mass action

incidence rate function de�ned by f (S, I) = bSI where b is a nonnegative constant. The parameters used in the simulation are: B =
100; m1 = 0.1; m2 = 0.02; m3 = 0.03; g = 0.2; b = 0.00023; c= 0.2; from this value we have R0 = 0.21< 1. When we change the value

of b to b = 0.023, we get R0 = 20.91> 1.

7. Conclusion

In this paper, motivate by the fact that discrete models are more appropriate forms than the continuous ones in order to �t the statistical data

concerning infectious diseases, we have studied the discrete forward difference version for a SIR model with general incidence function.

We use the backward Euler discretization with the step size h; the reproduction rate R0 is obtained and we show that the disease-free

equilibrium E0 is globally asymptotically stable if R0 ≤ 1 and the unique endemic equilibrium E∗ exist and is globally asymptotically

stable if R0 > 1 for this discrete SIR epidemic model with general incidence function (3) by using the technique of Lyapunov functional.

We observe that, there is no more great difference between the two models, the dynamics are almost the same. The step size h is h= 1, but

this step can be seen as a bifurcation parameter and we project to investigate this in our future works.
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Susceptible

Time

Figure 1: Susceptible: Case where R0 < 1, Red curve represents the discrete model and black one the continuous model.
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Susceptibles

Time

Figure 2: Susceptible: Case where R0 > 1, Red curve represents the discrete model and black one the continuous model.
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Infected

Time

Figure 3: Infected: Case where R0 < 1, Red curve represents the discrete model and black one the continuous model.
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Infectious

Time

Figure 4: Infected: Case where R0 > 1, Red curve represents the discrete model and black one the continuous model.
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Recovered

Time

Figure 5: Recovered: Case where R0 < 1, Red curve represents the discrete model and black one the continuous model.
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Recovered

Time

Figure 6: Recovered: Case where R0 > 1, Red curve represents the discrete model and black one the continuous model.
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