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Abstract

In this paper we introduce a new version of the trial equati@thod for solving non-integrable partialfigirential equa-
tions in mathematical physics. Some exact solutions incfugoliton solutions, rational and elliptic function stns to the
generalized (21)-dimensional ZK-MEW equation and the generalized DaS&gwartson equation with the complex fiee
cients are obtained by this method.
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1 Introduction

The investigation of exact solutions of nonlinear evoloteguations (NLEES) plays a crucial role in the analysis ofiso
physical phenomena. It isfdiicult to obtain the exact solution for these problems. Inmécecades, there has been great
development in exact solution for nonlinear partiaf@iential equations (PDEs). Many powerful methods, sucthas t
Backlund transformation, the inverse scattering methdddilinear transformation, the tanh-sech method [2], tkieeded
tanh method, the pseudo-spectral method [3], the trialtfan@nd the sine-cosine method [4], the Hirota method [, t
tanh-coth method [6-7], the exponential function methddtf& G’/G)-expansion method [9-13], the homogeneous balance
method [14], the F-expansion method [15-20], the trial ¢ignamethod [21-31] have been used to investigate nonlinear
partial diferential equations problems. The types of solutions of N&,BRat are integrated using various mathematical

techniques, are very important and appear in various afgasysics, applied mathematics and engineering.
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The spatially one-dimensional KdV equation

Ut + @UUy + Uyyy = O,

governs the one-dimensional propagation of small-angsitweakly dispersive waves, and plays a major role in théosoli
concept. The term soliton was coined by Zabusky and Krug2jhM/ho found particle-like waves which retained their sb&ap
and velocities after collisions. The balance between thelimear convection termuy and the dispersionfiect termuyyy in

the KdV equation gives rise to solitons. Solitons are defaedon-linear waves characterized as follows [33]:
e localized waves that propagate without change of its shagbecity, etc.;

e localized waves that are stable against mutual collisiors r@tain their identities to indicate that soliton has the

property of a particle.

In this paper, extended trial equation methods is used @imhtgeneralized soliton solution with some free pararseiér
the generalized (21)-dimensional Zakharov-Kuznetsov-Modified Equal-Wi(fiK-MEW) equation [34,35]

Ut + a(U")x + (Bux + yUy)x = 0. Q)

and generalized Davey-Stewartson equation (DSE) thasairisthe study of fluid dynamics [36,37]

0 + a(Clho + Gyy) + DIO*"q = eqr 2

Fxx + fyy +ﬁ(|Q|2n)xx =0. (3

Exact solutions of the ZK-MEW equation were obtained botlusing the tanh and sine-cosine methods by Wazwaz [34] and
the modified simple equation method by Zayed and Arnous [BB§ Cauchy problem of the generalized Davey-Stewartson
systems and the global solvability and existence of setitar solutions to a generalized Davey-Stewartson systeme w
studied in some sense by Zhao [38]. Ebadi and Biswas studiepplying the G’/G)-method carry out the integration

of Davey-Stewartson equation [36] while Bekir and Cevikalé solved them using the sine-cosine and the exp-function
methods [37]. Subsequently, using the ansatz method thiatieq is integrated in (+ 2)-dimensions with power law
nonlinearity. Here, we use the extended trial equation oteth solve the soliton solutions of generalized @)-dimensional
ZK-MEW equation and generalized Davey-Stewartson egnatith the complex coficients. The extended trial equation

method will be employed to back up our analysis in obtainixapce solutions with distinct physical structures.

2 Theextended trial equation method
Sep 1. For a given nonlinear partialftiéerential equation with rank inhomogeneous
P(u, U, Uy, Uxx, ...) = 0, (4)

take the wave transformation

=z

=1

u(xg,...,xn,t) =u(m), n= A[Z Xj — ct), (5)



wherel # 0 andc # 0. Substituting Eq. (5) into Eq. (4) yields a nonlinear ordindifferential equation,
N(u,u’,u”,..) =0. (6)

Sep 2. Take transformation and trial equation as follows:

u= iriri, @)

i=0

in which
OM) &I+ .. +&T +&
)2 =A) = ops = 8
) ) YI) LTI+ +al+4’ ®)
wherer; (i =0,...,6),& (i =0,....,6) and (i =0, ..., €) are constants. Using the relations (7) and (8), we can find
o) (S )
N2 _ s _i-1
W = §m [ZO T ] : (9
o VOO - O¥O) (v ria), OO (g a2
u’ = 2¥2(T) ; Tl |+ ) ; i(i—Lnr' ], (10)
whered(I') and¥(I') are polynomials. Substituting these terms into Eq. (6)dgi@n equation of polynomi&l(I’) of I" :
Q) = o °+ ...+ 01+ 00 = 0. (11)
According to the balance principle we can determine a i@laii 9, €, ands. We can take some valueséfe, andé.
Sep 3. Let the coéicients ofQ(I") all be zero will yield an algebraic equations system:
0i=0 1i=0,.,s (12)

Solving this equations system (12), we will determine thHeesofé, ..., &; o, ..., {e andro, ..., Ts.

Sep 4. Reduce Eqg. (8) to the elementary integral form,

O SR )
-1 = [ = [ am® (13)

Using a complete discrimination system for polynomial tassify the roots of(I'), we solve the infinite integral (13) and

obtain the exact solutions to Eq. (6). Furthermore, we catehe exact traveling wave solutions to Eq. (4) respebltive

3 Applications

To illustrate the necessity of our new view concerning tfed &quation method, we introduce two case studies.
Example 1. Application to the generalized (2+1)-dimensional ZK-MEW equation
The generalized @1)-dimensional ZK-MEW equation [34,35] is in the form of

U + a(U")x + (Bux + yUy)x =0, (n>1)

wherea, 8 andy are arbitrary constants.

In order to look for travelling wave solutions of Eq. (1), weke the transformation

ux,y,t) = u(m), n=kiX+ky—ct,



wherex, k2 andc are real constants. Then, integrating the resulting eguiatith respect ta; and setting the integration

constant to zero yield the ordinaryfidirential equation

—CU + axgu" + (yk1k5 — CBKAU” = 0, (14)
Eq. (14), with the transformation
U= Wi, (15)
reduces to
(75 = Br1)Qua” + (yi5 — Bri)W(w')? - cw? + araw® = 0, (16)
where

Q=x/(N-1), W=xi(2-n)/(n-1)"

Substituting Egs. (9) and (10) into Eq. (16) and using baagrinciple yield®) = € + § + 2. If we taked = 3,¢ = 0 and

6 =1, then
& + &I + &1 + fo)
- fo '

whereés # 0, {p # 0. Respectively, solving the algebraic equation system (ltjly

(w')?

To(2ak17o(Br1€171(Q + W) — {oT0) — yK5¢171(3Q + 2W)) £ = ak1T1(24070 + Br1é171(Q + W)

°T 272(3apKiTo(Q + W) — yk5(3Q + 2W)) PR 70(3aBKETo(Q + W) — yk5(3Q + 2W))”
£ = 6ak170({oT0 + Braé1Ta(Q + W)) — yi3£171(3Q + 2W) oo (Q + W)(6ak1£075 + yx56171(3Q + 2W))

2- 6aBKiT3(Q + W) — 2yk370(3Q + 2W) ' ~ (BQ+2W)(o0 + BraéiTi(Q+ W)
&1=4£61, o ={os To =70, T1=T1.

Substituting these results into Eq. (8) and Eq. (13), we caiew

) = \/40ro(3aﬁxiro(Q +W) ~7i(3Q+ 2W) [ dr a7

= ak171(240T0 + Br1&171(Q + W) V¥ G2+ 6 + Lo
where

‘e 6ak17o({oTo + BrrérT1(Q + W) — yk3£171(3Q + 2W)
2- 2ak1711(2070 + BraérT1(Q + W) |
and
P &170(3aBr3To(Q + W) — yk5(3Q + 2W)) B 75(2ak1to(BriérT1(Q + W) — Loto) — yk5£171(3Q + 2W))
T aani(@omo + fadm(Q W) 0T 2ak1T3(24070 + BraérTa(Q + W) .
Integrating Eq. (17), we obtain the solutions to the Eq. Elficdiows:
1
+( — 10) = —2 VA — (18)

A -
+(n —10) = 24/ arctan, | 2 ar>a, (19)
a2 — Q1 @2 — Q1

A \/F—ag—\/a/l—a/z
+(n7 —no) = In
a1 — a2 \/l"—a2+ \/a/l—a/g

A
+(7—10) = 2,4/ Flp,l), a1>a2> a3,
@1 — a3

, @1 > Q, (20)




where

_ Zoto(3aBk370(Q + W) — ¥k5(3Q + 2W))

12 dw
9 F(()05|) = f —5
ak171(2{oto + fraérT1(Q + W) 0 -
\1-12sirfy
Y= arcsin M’ |2 — w
V a2 — a3 a1 — as

Also a1, a2 andas are the roots of the polynomial equation

A

and

1"3+§2F2+é1"+@=0.

&3 & &
Substituting the solutions (18)-(20) into (7) and (15), dmy r = 7o + 711, and setting

Ve (Q + W)(6ak1loth + yx5£171(3Q + 2W))
~ (3Q+ 2W)(24ot0 + Bri&1T1(Q + W))

we get, respectively,
1

4T1A ]”_1
(kiX+ K2y =Vt —n0)2 |~

1—tanh’-(¢%,/¥(/qx+ K2y—\/t—no)]}} 7 , (22)
uxy,t) = {T_+ T1(a1 - az)cosecﬁ(% \/ o ;\az (K1 X + K2y — Vt))}nl : (23)

If we takety = -7y, that ist = 0, andng = 0, then the solutions (21)-(23) can reduce to rational fiencfolution

T+

u(x.y,t) = (21)

u(x,y, t) = {T_+ T1(a2 — 1)

2
2vrA |
)= | ——— 24
ey =| 2| (24)
1-soliton solution
A
Uy, t) = ————— : (25)
coshr1 [FB(k1X + k2y — Wt)]
and singular soliton solution
A
uxy,t) = —— 2 , (26)
sSinhmT [B(k1X + k2y — Wt)]
where
1 1 1 a1 —
Ar = [r(@2 — )], Ag = [r1(a1 — a2)] ™1, B=§ 1A 2.

Here,A; andA; are the amplitudes of the solitong,is the inverse width of solitons in the-direction andk; is the inverse

width of solitons in they—direction andv is the velocity of the solitons. Thus, we can say that the@udi exist forr; > 0.



(a) Profile of 1-soliton solution (b) Profile of singular soliton solution

Figure 1: Figure 1 respectively is shown numerical soligiohl-soliton solution and singular soliton solutiomat 3, 1 =
kp=1 A=A, =4, B=1whilevt = 1.

Example 2. Application to the DSE in (1+2) dimensions
In (2) and (3),q andr are the dependent variables whiley andt are the independent variables. The first two of the
independent variables are the spatial variables whikpresents time. The exponents the power law parameter. It is
necessary to have> 0. In (2) and (3)g is a complex valued function whileis a real valued function. Als@, b, « andj

are all constant cdicients. For solving the Egs. (2) and (3) with the trial equatnethod, using the wave variables

axy. 1) = ume?, r(xy.t) = vin) 27)

¢ = p1X+ G2y + ¢pat, 1 = n1X+ n2y + nat (28)

wheregq, ¢2, ¢3, 11, 72 @andns are real constants, converts (2) and (3) to the system of ODEs

(13 + 2ag1m1 + 2agm2)u(y) = 0O, (29)
—(¢3 + ag1® + ag2)u(n) + a(m® + n2A)U” (1) + bu?™ (i) — au(m)v(y) = 0, (30)
(m® +n2®)V' () + B (W) () = O (31)

where primes denote the derivatives with respeet t&q. (31) is then integrated term by term two times wheregiragon

constants are considered zero. This converts it into

Bin?

V) = ), (32)
Substituting (32) into (30) gives
~(¢3+ ag1® + aga”)u(y) + alm® + mA)u” () + (b + aﬁ#izz) wi(n) = 0. (33)
Eq. (33), with the transformation
u(n) = Vi) (34)



reduces to
(35)

QUV” + P(V')? = [¢3 + ags® + ag?| RVZ + WV* = 0,

where

Q=an(n’+ 7722)2, P=a(l-n)(m’+ 7722)2, R=n?(m®+m%), W=n?|b(m®+mn?)+apn?|.

Substituting Egs. (9) and (10) into Eqg. (35) and using baamnciple yield®) = € + 26 + 2. If we taked = 4, ¢ = 0 and

6 =1, then
(V)2 = THET? + £31° + £2I% + &1T + &)
B o ’

whereé, # 0, ¢y # 0. Respectively, solving the algebraic equation system (lljly

2 5ot 210 ALt aggronW for2W

fo—(—) (é“z P+2Q] &1 = (fz " ZQ] S2=£6, &= P+20° “"Prag
b1=br. ba=dp ¢a= 2T QPN £o(62W(P + Q) — aR(P + 2Q)(¢2 + ¢2))
1 1 2 2, 3 ZR(P 120]

lo=4o, To=To, T1=TL

Also from Eq. (29), it can be seen thaf = —2a(¢1m1 + ¢2172). Substituting these results into Eqg. (8) and Eq. (13), we can

write
P+2Q dr
£r-10) = || [ , (36)
le \/1"4 + L3138 + L2 + 6T + €

where
oo, 6P+2Q _ 210(&2(P + 2Q) + 44015 W) = 5(£2(P +2Q) + 5§oT(2)W)
3 71 2= {o‘r%W T {m’iW ©0T {OT4W
Integrating Eq. (36), we obtain the solutions to the Egsa(®) (3) as follows:
B
(1 =10) = ~p—— (37)
—a
2B IT -
+(n—no) = (1’2’ az > ai, (38)
a1 — a2 - a1
- a1
+(n—n0) = , (39)
a1 —«a I'-a»
B V(I - a2)(a — a3) - V([ - as)(as — a2) Car>ap> as, (40)
V(T = a2)(a1 - a3) + V(T - az)(a1 — a2)

=m0 = e =

B
*(n—no) = 2\/ Flp,1), a1>a2>as>ay,
(a1 — az)(az — @4)

where
P+2Q dyr

B\ Fle= [

W o Ji-1sity

and
[T —an)(@2—aq) (a2 —as)(a1 — a)
¥ arcsm\/(r - ap)(a1 — as)’ "= (a1 — as)(az — aa)



Also a1, a2, @z anda, are the roots of the polynomial equation

Q(X,y,t) = {T0+T1a’1i

F4+§F3+ér2+él"+@ =0.
2 &a S &

Substituting the solutions (37)-(40) into (7) and (34), vikain

T]_B

mx+mn2y+

L .
o
nat —no

2 B 2
r(x,y,t) = —% {To + 1101 e } ,
me+n2 nX+n2y +nst —no
1
4B(az - "
qoey. t) = {To +Tyan + (a2 — 1)1y 2} do.
4B2 — [(a1 — @2) (X + 2y + N3t — no)]

r(x,y,t) = -

pn?
m? + 122

{T0+T1a/1+

2
482(0’2 - 0/1)7']_
4B2 — (a1 — a2) (mx+ m2y + nat — no)|* |

n

az —a1)T1 i
C](X,y,t) =<{T0 +T12 + -y ( ) elfp,
eXP( (X + m2y + 3t — 770)) -1
2
2 ay — @1)T

r(x,y,t) = - f’j-l 5 70+ T10 + — (2 )71 ’

e exp( B (m X+ m2y + 773'[—770))— 1

1
_ (01 —a2)ra i}
ax y,t) = {70 + 1121 + e?,

r(x,y,t) = -

m? + 122

a1 — a2

Bm®

exp( : B (X + 12y + 3t — 770)) -1

(@1 — a2)m1

To + 1101 +

a/l—ag(

exp(

2(a1 — a2)(a

N1X+ 12y + nat — 770)) -1

Sk

— a7 .
1— @3)T1 dé

ax,y,t) =t + 11 —

201 — a2 —az + (a’3 - a’z) COSl’( \/((1/1 —

Bna?

r(xy,t) = ————
Goyt) m? + 122

T0 + T11 —

az)(a1 — a3)

B (X + 172y + Tlst))

2(a1 — a2)(a1 — a3)71

201 — a2 — a3z + (0'3 - a'z) COS"(

Vi - Q’ZB)(“l ) (71X + 72y + 713t)

If we takety = —t1a1 andng = 0, then the solutions (41)-(50) can reduce to rational fionctolutions

a(x y,t) = (i L)ﬁ gl (@1X+ gy + ¢3t)’

mxmn={

mX+n2y + nat

r(x,y,t)=‘r( 1B

4B%(a; — a1)T1

2
X+ 12y + 773'[) ’

1

4B2? — [(a1 — a2) (X + 172y + 13t)

z}ﬁ ol (B1X+ pay + at)
|

|

b}

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)



2
2 _
r(xy,t) = T{ 4B7az — au)na 2} , (54)
4B? — [(a1 — a2) (X + 12y + n3t) ]
traveling wave solutions
qx,y,t) = {M {1 ¥ coth[alz_Ba2 (X + 12y + Tlst)]}} " d(@1x+ gy + gal) (55)
2
rx.y,t)y="17 {% {1 T coth[alZ_Ba2 (mX+n2y + 773'[)]}} , (56)
and soliton solutions
q(x Y, 1) = As - e (P1X+ poy + 3t) (57)
(D + cosh[By(m1X + n2y + ngt)])”
r(xy,t)="7 As 5 (58)
(D + cosh[By(mix + nay + T]3t)])
where X .
) &P+ QP +2Q) + o(672W(P + Q) — aR(P + 2Q)(¢2 + ¢2))
n3 = =2a(p1n1 + Pom2),  P3 = ZR(P + 20) ,
and )
me+n2 a3 — @2
and
B, = Vliar — a2)(a1 - as)’ D 201 — az — as
B a3 — a2

From (28),n71 andn, are the widths of the solitons in the- andy—directions respectively while; is the velocity of the
solitons. From the phase component givengby, and¢, are the phase frequencies in thkeandy-directions respectively
while ¢3 is the wave numbers of the solitons. Alg, andA, are the amplitudes of the solitons. Thus, we can say that the

solitons exist forr; < 0.

(a) Profile of (57) solution

Figure 2: Numerical solution of (57) at=1, n1=n2 =1, g3t =1, A3 =2, By =2andD < 0.
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(a) Profile of (58) solution foi > 0 (b) Profile of (58) solution fol" < 0

Figure 3: Numerical solutionsof (58)at =n, =1, nst=1, Ay =4, By =1andD < 0.

4 Conclusion

In this paper we have used the extended trial equation meéshaekive exact solutions with distinct physical structur€his
method with symbolic computation on the computer is useddastructing broad classes of periodic and soliton sahgtaf
two nonlinear equations arising in nonlinear physics. Btesitures of the 1-soliton solution and singular solitdnson were
analytically and numerically discussed. We proposed mereal trial equation method as an alternative approachttoro
the analytic solutions of nonlinear partiafidirential equations with generalized evolution in mathérahphysics. We use
the extended trial equation method aided with symbolic aatiauon to construct the soliton solutions, the elliptiadtion
and rational function solutions for generalized{2)-dimensional ZK-MEW equation and generalized Daveywatéson

system.
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