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Abstract

The effect of distributed delays with strong kernel in the dynamics in three-neuron BAM neural network model
is studied. Instead of destabilization phenomena this neural systems become asymptotically stable through Hopf
bifurcation with the gradual increment of mean delay. Existence of Hopf bifurcation is studied in frequency
domain. Direction and stability of Hopf bifurcating periodic solutions are analyzed using Nyquist criterion and
graphical Hopf bifurcation theorem.
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1. Introduction

Neural networks ususally have spatial extent due to presence of multitude of parallel pathways with varity of
axon sizes and lengths. As a result distribution of propagation of delays occur. Generally distributed delys was
considered in the models of poplulation biology and epidemic system. Recently it is observed that distributed
delays are considered in neural network system. Some of these research works studied how distributed delays
affect the dynamics differently from discrete delays. Atay[1,2] studied a system consisting of two simple oscillation
with gap junctional coupling by incorporating a uniform distribution of delays. He observed that it is easier to
destroy oscillations with a distribution of delays than with a discrete delay. Jirsa and Ding [3] analyzed an n
dimentional linear system with linear decay and arbitrary connections with common delay. They showed that the
stability region of the trivial solution for any distribution of delays is larger thanthat of discrete delay. Eurich et
al.[4] considered the effect of distributed delays in Predator-Prey models and ecological food webs. Generally the
occurrence of delays in population dynamics is usually regarded a destabilizing factor leading to the extinction
of species. They demonstrated complementarily that delay distribution yield larger stability regimes than that
of single delay. Meyer et al.[5] quantified the distribution of delays in the avian isthmotectal feed back loop. By
investigating a mathematical model of coupled neurons with distributed delays which enhance the stability of
the system. We also observed the stabilizing effect arrises from the contribution of smaller delays introduced
through the delay distribution. Zhang et al.[6] considered a Lotka-Volterra two species predator-prey system with a
distributed delay. In their study They found the positive equilibrium of the system is always locally asymptotically
stable. They also observed that at the positive equilibrium the system under goes the Hopf bifurcation when the
average time delay in the delay kernel crosses certain critical values.
From above discussions one can easily conclude that a system with a distribution of delays is inherently more
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stable than the same system with a discrete delay. In this paper we observed stabilization effect on neural network
system in presence of weak and strong kernel. The weak kernel qualitatively indicates that the maximum weighted
response of the growth rate is due to current population density. That is past densities have decreasing influence.
The strong kernel means that the maximum influence on growth rate responses for the past time [7].
The following three-neuron BAM neural network model with distributed delay having self connections under
dynamic threshold is considered.

dx1(t)/dt = −x1(t) + β
′
1f [x1(t)− γ

∫ 0

−∞
F (s)x1(t− s)ds− c1]

+b′f [x2(t)− γ

∫ 0

−∞
F (s)x2(t− s)ds− c2]

+b′f [x3(t)− γ

∫ 0

−∞
F (s)x3(t− s)ds− c3]

dx2(t)/dt = −x2(t) + a′f [x1(t)− γ

∫ 0

−∞
F (s)x1(t− s)ds− c1]

+β
′
f [x2(t)− γ

∫ 0

−∞
F (s)x2(t− s)ds− c2] (1)

dx3(t)/dt = −x3(t) + a′f [x1(t)− γ

∫ 0

−∞
F (s)x1(t− s)ds− c1]

+β
′
f [x3(t)− γ

∫ 0

−∞
F (s)x3(t− s)ds− c3]

where, xi(i = 1, 2, 3) denotes the mean soma potential of the neuron i. The non-negative constant β
′
, cor-

responds to the strength of neurons to itself. b
′

corresponds to the strength of neuron 2 and 3 on neuron 1. a
′

represents the strength of neuron 1 on neuron 2 and 3. γ 6= 0 is the measure of the inhibitory influence of the past
history. ci(i = 1, 2, 3) > 0 denotes the neuronal threshold. The term xi in the argument of function f represents
local positive feedback. The weight function F(s) is a non-negative bounded function defined on(0,∞) to reflect
the influence of the past states on the current dynamics. F(s) is called the delay kernel. Here F(s) is taken as
strong kernel in the form F (s) = µ2se−µs, s ∈ (0,∞), µ > 0.

Here we studied stability criteria of the system (1) in frequency domain. The frequency domain approach was
initiated and developed by Allwright[8], Mees and Chua [9] and Moiola and Chen[10]. There are many advantages
of frequency domain approach relative to time domain. A typical one is its pictorial characteristic that utilizes
advanced computer graphical capabilities. Using this approach we showed that system become stable when the
system can undergo a Hopf bifurcation when the mean delay µ crosses certain critical value. Sufficient conditions
are obtained for existence of Hopf bifurcation. The stability of the bifurcating periodic solutions are determined
by the Nyquist criterion[11] and the graphical Hopf bifurcation theorem[10]. Lastly we discussed about larger
stability region for strong kernel than that for weak kernel.

The paper is organised as follows: In section 2, we derived sufficient conditions are derived for the existence of
Hopf bifurcation in the frequency domain. In section 3, the stability of Hopf bifurcating periodic solutions are means
of Nyquist criterion and the graphical Hopf bifurcation theorem. Simulation results with figures are presented in
sec. 4 to justify the analytical results obtained. It appears from simulation results that an enlarged stability regime
is obtained for strong kernel in comparison to weak kernel. Finally conclusions are drawn in section 5.
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2. Existence of Hopf bifurcation

By using frequency domain technique we are going to deduce sufficient conditions for existence of Hopf bifurcation.
Let us assume that
(H1) f ∈ C4(R), f(0) = 0, and µf(µ) > 0 for µ 6= 0.
The general form of delay kernel F (s) is as follows:

F (s) = µn+1 sn e−µs

n!
, n = 0, 1, 2. (2)

where µ is a parameter denoting the rate of decay of the effects of past memories and it is a positive real number.
It is also known as exponentially fading memory.
n = 0 represents weak kernel whereas n = 1 represents strong kernel.

For simplicity let us set c1 = c2 = c3 = 0 , and let

x1(t) = y1(t)− γ

∫ ∞

0

F (s)y1(t− s)ds

x2(t) = y2(t)− γ

∫ ∞

0

F (s)y2(t− s)ds (3)

x3(t) = y3(t)− γ

∫ ∞

0

F (s)y3(t− s)ds

Then (1) assumes the following form:

dx1

dt
= −x1(t) + β′f [x1(t)]− β′γ

∫ ∞

0

F (−s)f [x1(t + s)]ds

+b′f [x2(t)]− b′γ
∫ ∞

0

F (−s)f [x2(t + s)]ds + b′f [x3(t)]

−b′γ
∫ ∞

0

F (−s)f [x3(t + s)]ds

dx2

dt
= −x2(t) + a′f [x1(t)]− a′γ

∫ ∞

0

F (−s)f [x1(t + s)]ds (4)

+β′f [x2(t)]− β′γ
∫ ∞

0

F (−s)f [x2(t + s)]ds

dx3

dt
= −x3(t) + a′f [x1(t)]− a′γ

∫ ∞

0

F (−s)f [x1(t + s)]ds

+β′f [x3(t)]− β′γ
∫ ∞

0

F (−s)f [x3(t + s)]ds

Since
F (r) = µ2re−µr

, we have
∫ 0

−∞
F (−r)f [x(t + r)]dr =

∫ 0

−∞
µ2(t− s)eµ(s−t)f [x(s)]ds

= µ2e−µt{t
∫ t

−∞
eµsf [x(s)]ds−

∫ t

−∞
seµsf [x(s)]ds} (5)
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Taking derivative on both sides of (4) and using (5) we get

d2x1

dt2
= −dx1

dt
+ β′f ′(x1)

dx1

dt
+ b′f ′(x2)

dx2

dt
+ b′f ′(x3)

dx3

dt

−µ

[
dx1

dt
+ x1 − β′f(x1)− b′f(x2)− b′f(x3)

]

−β′γµ2e−µt

∫ t

−∞
eµsf(x1)ds− b′γµ2e−µt

∫ t

−∞
eµs [f(x2) + f(x3)] ds (6)

d2x2

dt2
= −dx2

dt
+ a′f ′(x1)

dx1

dt
+ b′f ′(x2)

dx2

dt
− µ

[
dx2

dt
+ x2 − a′f(x1)− b′f(x2)

]

−a′γµ2e−µt

∫ t

−∞
eµsf(x1)ds− b′γµ2e−µt

∫ t

−∞
eµsf(x2)ds

d2x3

dt2
= −dx3

dt
+ a′f ′(x1)

dx1

dt
+ b′f ′(x3)

dx3

dt
− µ

[
dx3

dt
+ x3 − a′f(x1)− b′f(x3)

]

−a′γµ2e−µt

∫ t

−∞
eµsf(x1)ds− b′γµ2e−µt

∫ t

−∞
eµsf(x3)ds

Taking derivative again on both sides and setting x4 = dx1
dt , x5 = dx2

dt , x6 = dx3
dt , x7 = d2x1

dt2 , x8 =
d2x2
dt2 , x9 = d2x3

dt2 we get the following set of ordinary differential equations

dx1

dt
= x4

dx2

dt
= x5

dx3

dt
= x6

dx4

dt
= x7

dx5

dt
= x8

dx6

dt
= x9

dx7

dt
= −µ2x1 − (µ2 + 2µ)x4 − (2µ + 1)x7 + b′(1− γ)µ2[f(x2) + f(x3)] + b′(1− γ)µ2f(x1)

+2µb′[f ′(x2)x5 + f ′(x3)x6] + 2µb′f ′(x1)x4 + b′[f ′(x2)x8 + f ′(x3)x9] + b′f ′(x1)x7

+b′[f ′′(x2)x2
5 + f ′′(x3)x2

6] + b′f ′′(x1)x2
4 (7)

dx8

dt
= −µ2x2 − (µ2 + 2µ)x5 − (2µ + 1)x8 + a′(1− γ)µ2f(x1) + b′(1− γ)µ2f(x2) + 2µa′f ′(x1)x4

+2µb′f ′(x2)x5 + a′f ′(x1)x7 + b′f ′(x2)x8 + a′f ′′(x1)x2
4 + b′f ′′(x2)x2

5

dx9

dt
= −µ2x3 − (µ2 + 2µ)x6 − (2µ + 1)x9 + a′(1− γ)µ2f(x1) + b′(1− γ)µ2f(x3) + 2µa′f ′(x1)x4
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+2µb′f ′(x3)x6 + a′f ′(x1)x7 + b′f ′(x3)x9 + a′f ′′(x1)x2
4 + b′f ′′(x3)x2

6

(7) can be written as
dx

dt
= A(µ)x + H(x).

where x = (x1, x2, x3, ..., x9)T .

A(µ) =




0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
−µ2 0 0 −(µ2 + 2µ) 0 0 −(2µ + 1) 0 0
0 −µ2 0 0 −(µ2 + 2µ) 0 0 −(2µ + 1) 0
0 0 −µ2 0 0 −(µ2 + 2µ) 0 0 −(2µ + 1)




(8)

H(x) =




0
0
0
0
0
0
b′(1− γ)µ2[f(x2) + f(x3)] + b′(1− γ)µ2f(x1) + 2µb′[f ′(x2)x5 + f ′(x3)x6] + 2µb′f ′(x1)x4

− b′[f ′(x2)x8 + f ′(x3)x9] + b′f ′(x1)x7 + b′[f ′′(x2)x2
5 + f ′′(x3)x2

6] + b′f ′′(x1)x2
4

a′(1− γ)µ2f(x1) + b′(1− γ)µ2f(x2) + 2µa′f ′(x1)x4 + 2µb′f ′(x2)x5 + a′f ′(x1)x7

+ b′f ′(x2)x8 + a′f ′′(x1)x2
4 + b′f ′′(x2)x2

5

a′(1− γ)µ2f(x1) + b′(1− γ)µ2f(x3) + 2µa′f ′(x1)x4 + 2µb′f ′(x3)x6 + a′f ′(x1)x7

+ b′f ′(x3)x9 + a′f ′′(x1)x2
4 + b′f ′′(x3)x2

6




(9)

By introducing a ’state-feedback control’ u = g(y;µ) we obtain the following linear system with a non-linear
feedback,

dx
dt = A(µ)x + Bu
y = −Cx
u = g(y; µ)


 (10)

where

B =




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




; C = I.

and
u = g(y;µ) =




(b′(1− γ)µ2[f(−y2) + f(−y3)] + b′(1− γ)µ2f(−y1)− 2µb′[f ′(−y2)y5 + f ′(−y3)y6]
−2µb′f ′(−y1)y4 − b′[f ′(−y2)y8 + f ′(−y3)y9]− b′f ′(−y1)y7 + b′[f ′′(−y2)y2

5 + f ′′(−y3)y2
6 ]

+b′f ′′(−y1)y2
4)

(a′(1− γ)µ2f(−y1) + b′(1− γ)µ2f(−y2)− 2µa′f ′(y1)y4 − 2µb′f ′(−y2)y5 − a′f ′(−y1)y7

−b′f ′(−y2)y8 + a′f ′′(−y1)y2
4 + b′f ′′(−y2)y2

5)
(a′(1− γ)µ2f(−y1) + b′(1− γ)µ2f(−y3) + 2µa′f ′(−y1)y4 − 2µb′f ′(−y3)y6 − a′f ′(−y1)y7

−b′f ′(−y3)y9 + a′f ′′(−y1)y2
4 + b′f ′′(−y3)y2

6)




(11)
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Next taking a Laplace Transform on equation (10) we have a standard transfer matrix of the linear part as follows

G(s;µ) = c[sI −A(µ)]−1B

=




s 0 0 −1 0 0 0 0 0
0 s 0 0 −1 0 0 0 0
0 0 s 0 0 −1 0 0 0
0 0 0 s 0 0 −1 0 0
0 0 0 0 s 0 0 −1 0
0 0 0 0 0 s 0 0 −1
µ2 0 0 (µ2 + 2µ) 0 0 (s + 2µ + 1) 0 0
0 µ2 0 0 (µ2 + 2µ) 0 0 (s + 2µ + 1) 0
0 0 µ2 0 0 (µ2 + 2µ) 0 0 (s + 2µ + 1)




×




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




=
1

(1 + s)(s + µ2)




1 0 0
0 1 0
0 0 1
s 0 0
0 s 0
0 0 s
s2 0 0
0 s2 0
0 0 s2




(12)

To this end, if this feedback system is linearized about the equilibrium y = 0 , then the Jacobian of (11) at origin
is given by

J(µ) =
∂g

∂y

∣∣∣∣
y=0

=



−b(1− γ)µ2 −b(1− γ)µ2 −b(1− γ)µ2 −2µβ −2µb −2µb −β −b −b
−a(1− γ)µ2 −b(1− γ)µ2 0 −2µa −2µb 0 −a −b 0
−a(1− γ)µ2 0 −b(1− γ)µ2 −2µa 0 −2µb −a 0 −b


 (13)

where, a = a′f ′(0) , b = b′f ′(0) , b = b′f ′(0)
So we have,

G(s;µ)J(µ) =
1

(1 + s)(s + µ2)
×




−b(1− γ)µ2 −b(1− γ)µ2 −b(1− γ)µ2 −2µβ −2µb −2µb −β −b −b
−a(1− γ)µ2 −b(1− γ)µ2 0 −2µa −2µb 0 −a −b 0
−a(1− γ)µ2 0 −b(1− γ)µ2 −2µa 0 −2µb −a 0 −b
−bs(1− γ)µ2 −bs(1− γ)µ2 −bs(1− γ)µ2 −2µβs −2µbs −2µbs −βs −bs −bs
−as(1− γ)µ2 −bs(1− γ)µ2 0 −2µas −2µbs 0 −as −bs 0
−as(1− γ)µ2 0 −bs(1− γ)µ2 −2µas 0 −2µbs −as 0 −bs
−bs2(1− γ)µ2 −bs2(1− γ)µ2 −bs2(1− γ)µ2 −2µβs2 −2µbs2 −2µbs2 −βs2 −bs2 −bs2

−as2(1− γ)µ2 −bs2(1− γ)µ2 0 −2µas2 −2µbs2 0 −as2 −bs2 0
−as2(1− γ)µ2 0 −bs2(1− γ)µ2 −2µas2 0 −2µbs2 −as2 0 −bs2




(14)

Now let us set
h(λ, s; µ) = det |λI −G(s;µ)J(µ)| = 0 (15)

Then by applying the generalized Nyquist stability criterion with s = iω , the following results can be established.

Lemma 1
(Moila and Chen, 1996[10]) If an eigen value of the corresponding Jacobian of the non-linear system, in the time
domain, assumes a purely imaginary value iω0 at a particular µ = µ0 ,then the corresponding eigen value of the
constant matrix [G(iω0;µ0)J(µ0)] in the frequency domain must assume the value − 1 + i0 at µ = µ0.
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Let us consider the case b = 0 , γ = 1 .
To apply Lemma 1, let λ̂ = λ̂(iω, µ) be the eigen value of [G(iω, µ)J(µ)] , that satisfies λ̂(iω0, µ0) = −1 + i0 .
Then

h(−1, iω0;µ0)(β=0,γ=1) =
2ab

[
(µ0 + iω0)2 − µ2

0

]2
(1 + iω0)2(µ0 + iω0)4

− 1 = 0

⇒ 2ab
[
(µ0 + iω0)2 − µ2

0

]2
= (1 + iω0)2(µ0 + iω0)4 (16)

Separating real and complex parts of (16) we get

ω6 + m1ω
4 + m2ω

2 + m3 = 0 (17)

m4ω
4 + m5ω

2 + m6 = 0 (18)

where,
m1 = (2ab− 1)− 2µ(4 + 3µ)
m2 = µ2[6− 8ab + µ(8 + µ)]
m3 = −µ4

m4 = (1 + 2µ)
m5 = 2µ[2ab− 1− 3µ− µ2]
m6 = µ3(2 + µ)

Eliminating ω from (17) and (18) we have

(m2
2n

2
4 − 2m1m3m

2
4 −m1m2m4m5 + 3m3m4m5 + m2m

2
5)m6 + (m2

1m4 − 2m2m4 −m1m5)m2
6 + m3

6

−m3(−m3m
2
4 + m2m

2
4m5 −m1m4m

2
5 + m2

5) = 0

⇒ c0 + c1µ + c2µ
2 + ... + c7µ

7 + c8µ
8 = 0 ≡ g(µ) (19)

where,
c0 = 96(−0.5 + ab)3

c1 = −96 + 464ab− 512ab2

c2 = −332 + 1192ab− 492ab2

c3 = −296(−5.03397 + ab)(−0.425487 + ab)
c4 = −64(−22.0845 + ab)(−0.540538 + ab)
c5 = −664 + 704ab
c6 = −376 + 136ab
c7 = −120
c8 = −16

(20)

Now we have the following results:
Theorem 1
(i) The Hopf bifurcation for system(1) occurs at µ which is unique root of g(µ) under the condition ab > 0 and∑8

i=0 ci < 0.
(ii) There is no possibility of Hopf bifurcation if ab = 0 or ab < 0 along with c1, c2, ..., c8 < 0 , where cis are
given in equation (20).

Proof: Using Descarte’s rule of sign results are easily verifiable.
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3. Stability of bifurcating periodic solution

To study the stability of bifurcating periodic solutions the frequency-domain formulation of Moiola and Chen(1996)
is applied. By applying second order harmonic balance approximation to the output, we have

y(t) = y∗ + R(
2∑

k=0

Ykeikωt) (21)

where y∗ is the equilibrium point, R is the real part of the complex constant, and the complex coefficients Yk are
determined by the approximation as shown below: we define an auxiliary vector of the following form

ξ1(ω̃) =
−ωT [G(ω̃; τ̃)]p1

ωT v
(22)

. where τ̄ is a fixed value of the parameter τ , ω̄ is the frequency of the intersection between the λ̄(iω̄; τ̄)locus and
the negative real axis closest to the point (−1+ i0), ωT and v are the left and right eigenvectors of [G(iω̄; τ̄)]Je−iω̄τ ,
respectively, associated with the value

λ̄(iω̄; τ̄)

and

p1 = [D2(V02 ⊗ v + 1/2v̄ ⊗ V22) + 1/8D3v ⊗ v ⊗ v̄], (23)

where,

D2 =
∂2g(y; τ)

∂y2
, D3 =

∂3g(y; τ)
∂y3

(24)

V02 = −1
4
[I + G(0; τ̄)J(τ̄)]−1G(0; τ̄)D2v ⊗ v̄, (25)

V22 = −1
4
[I + G(2iω̄; τ̄)J(τ̄)]−1G(2iω̄; τ̄)D2v ⊗ v (26)

Then we have,

D2 = [a(i, j)]3×81, D3 = [b(i, j)]3×729

where non-zero elements of D2 and D3 are listed below:
a(1,1),a(1,4),a(1,7),a(1,11),a(1,14),a(1,17),a(1,21),a(1,24),a(1,27),a(1,28),a(1,31),a(1,31),
a(1,38),a(1,41),a(1,48),a(1,51),a(1,55),a(1,65),a(1,75),
a(2,1),a(2,4),a(2,7),a(2,11),a(2,14),a(2,17),a(2,28),a(2,31),a(2,38),a(2,41),a(2,55),a(2,65),
a(3,1),a(3,4),a(3,7),a(3,21),a(3,24),a(3,27),a(3,28),a(3,31),a(3,48),a(3,55),a(3,75),
b(1,1),b(1,4),b(1,7),b(1,28),b(1,31),b(1,55),b(1,92),b(1,95),b(1,98),
b(1,119),b(1,122),b(1,135),b(1,174),b(1,177),b(1,180)etc.

Theorem 2 (The graphical Hopf bifurcation theorem[10])Suppose that the locus of the distinguished charac-
teristic function λ̄(s)intersects the negative real axis at λ̄(iω̄)that is closest to the point (-1+i0) when the variable
s sweeps on the classical Nyquist contour. Moreover, suppose that ξ1(ω̄) is non zero and the half-line L1 starting
from (-1+i0) and pointing to the direction parallel to that of ξ1(ω̄), first intersects the locus of λ̄(iω) at

λ̄(iω) = P̄ = −1 + ξ1(ω̄)θ̄2, (27)

at which θ̄ = θ(ω̄) ≥ 0 and θ = O(|µ− µ0|1/2). Finally, suppose that the following conditions are satisfied:
(i)The eigenlocus λ̄ has nonzero rate of change with respect to its parametrization at the critical point (ω0, µ0),
that is,

M(ω0, µ0) = det

[ ∂F1
∂µ

∂F2
∂µ

∂F1
∂ω

∂F2
∂ω

]

(ω0, µ0)

6= 0 (28)
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where
F1(ω; µ) = <[h(−1, iω;µ)].

(ii)The intersection is transversal, namely,

det

[ <[ξ1(iω̄)] =[ξ1(iω̄)]
< d

dω λ̄(ω)|ω=ω̄ = d
dω λ̄(ω)|ω=ω̄

]
6= 0 (29)

(iii)There are no other intersections between any of the characteristic loci and the line segment joining the point
(-1+i0) to P̄ , at at least within a small neighborhood of radius δ > 0.
Then system (10) has a periodic solution Y(t) of frequency ω = ω̄ + O(θ̄4). Moreover, by applying a small
perturbation around the intersection P̄ and using the generalized Nyquist stability criterion, the stability of the
periodic solution Y(t) can be determined.
According to theorem 2 we have the following conclusion:
If the total number of the point P1 = P̄ + εξ1(ω̄), for a small enough ε > 0, is equal to the number of poles of λ(s)
that have positive real parts, then the limit cycle is stable; otherwise, it is unstable.

According to eq. (15) we have

λ2(s) =
2ab[(µ0 + s)2 − µ2

0]
(1 + s)2(µ0 + s)4

Hence, s = −1,−1,−µ0,−µ0,−µ0,−µ0 are poles of a λ(s) that have positive real parts is zero.

Theorem 3 Let ρ be the total number of anticlockwise encirclements of the point P1 = P̄ + εξ1(ω̄) for a small
enough ε > 0, where P̄ is the intersection of the half-line L1 and the locus λ̄(iω). If ρ=0, then bifurcating periodic
solutions of system (1) is stable and if ρ 6= 0, bifurcating periodic solutions of system (1) is unstable.

4. Numerical examples

In this section, some numerical simulations are given to verify Theorem 1 and stability of periodic solutions. The
bifurcation diagram depicts how distributed delays play important role to stabilize the system.
Let us consider the three-neuron network model with distributed delay as follows

dy1(t)/dt = −y1(t) + b[tanh[y2(t)−
∫ ∞

0

µ2se−µsy2(t− s)ds]]

+b[tanh[y3(t)−
∫ ∞

0

µ2se−µsy3(t− s)ds]] (30)

dy2(t)/dt = −y2(t) + a[tanh[y1(t)−
∫ ∞

0

µ2se−µsy1(t− s)ds]]

dy3(t)/dt = −y3(t) + a[tanh[y1(t)−
∫ ∞

0

µ2se−µsy1(t− s)ds]]

we have following numerical simulations:
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Figure 1: For µ = 0.7, a = 0.5, b = 0 origin is locally asymp-
totically stable.
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Figure 2: For µ = 1, a = 0, b = 1.2 origin is locally asymp-
totically stable.
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Figure 3: For µ = 0.7, a = −0.5, b = 1.5 origin is locally
asymptotically stable.
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Figure 4: For µ = 0.3, a = 1.2, b = −0.8 origin is locally
asymptotically stable.
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Figure 5: Forµ = 0.8, a = 1, b = 1.5 time series depicts stable
periodic oscillations.
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Figure 6: Forµ = 0.8, a = 1, b = 1.5 phase portrait of
y1, y2, y3 shows stable limit cycle.
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Figure 7: For µ = 2.5, a = 1, b = 1.5 , when µ exceeds the
critical value near 2.2, origin becomes locally asymptotically
stable.
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Figure 8: Bifurcation diagram, when bifurcation parameter
µ varies.
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Figure 9: In µ−a parametric plane stability regime for strong
kernel is enhanced than that for weak kernel when β = 0.
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Figure 10: In µ − a parametric plane stability regime for
strong kernel is enhanced than that for weak kernel when β =
1.

5. Conclusions

With the help of the frequency domain approach we obtained the sufficient conditions for existence of Hopf bifurca-
tion. It is seen that Hopf bifurcation occurs only when two connection strengths a

′
and b

′
are either both excitatory

or inhibitory. Conditions are obtained for stability of Hopf bifurcating periodic solutions. One can determine the
direction of Hopf bifurcation with the help of appropriate software, which can handle the matrix of order 3× 729.
The stabilizing effect of distributed delays is observed here. We have two graphical representations Fig.9 and Fig.10
in µ− a parametric plane, where the gain parameter a is the product of connection strength a

′
and inclination of

activation function f at origin. In µ− a parametric plane stability regime for strong kernel is enhanced than that
of the weak kernel.
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