International Journal of Applied Mathematical Research, 1 (3) (2012) 355-359 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR

Weak and strong convergence of implicit iterative process for a finite family of asymptotically TJ mappings

Alireza ghorchizadeh

Faculty of Mathematical Sciences and Computer Shahid Chamran University, Ahwaz, Iran Email:alireza_ghorchi@yahoo.com

Abstract

In this paper we study the weak and strong convergence of implicit iteration process to a common fixed point for a finite family of asymptotically TJ mappings in Hilbert spaces. This paper is motivated by [Lin, Lai-Jiu; Chuang, Chih-Sheng; Yu, Zenn-Tsun *Fixed point theorems for some new nonlinear mappings in Hilbert spaces*, Fixed Point Theory Appl. (2011), 2011:51, 16 pp.].

Keywords: Fixed point, Asymptotic TJ mapping, Demi-closed principle, Opial's condition.

Mathematics Subject Classification: 47H09; 47J25

1 Introduction

Throughout this paper, let H be a real Hilbert space and C be a arbitrary non-empty closed convex subset of H. Let T is a mapping on H. We denotes the set of fixed points of T by F(T). The mappings that we work by those are asymptotic TJ mappings that defined as following (see [2])

Definition 1.1. We say $T: C \to C$ is an asymptotic TJ mapping if there exist two functions $\alpha: C \to [0, 2]$ and $\beta: C \to [0, k]$, k < 2, such that

(i)
$$2||Tx - Ty||^2 \le \alpha(x)||x - y||^2 + \beta(x) ||Tx - y||^2$$
 for all $x, y \in C$;

(ii) $\alpha(x) + \beta(x) \le 2$ for all $x \in C$.

Let $T: C \to C$ be a mapping, $x_0 \in C$ be arbitrary and $\{\alpha_n\}$ be a sequence of real numbers in the interval (0, 1), we define

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \qquad n = 0, 1, 2, \dots$$
(1)

The iteration process (1) is known as the Mann's type iteration process, see [3]. We extend the iteration process (1) by a finite family of asymptotically TJ mappings. Let T_1, T_2, \ldots, T_N be N asymptotically TJ mappings of C into itself such that

$$F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset.$$

We can define a sequence $\{x_n\}$ as follows

$$x_{1} = \alpha_{1}x_{0} + (1 - \alpha_{1})T_{1}x_{1}$$

$$x_{2} = \alpha_{2}x_{1} + (1 - \alpha_{2})T_{2}x_{2}$$

$$\vdots$$

$$x_{N} = \alpha_{N}x_{N-1} + (1 - \alpha_{N})T_{N}x_{N}$$

$$x_{N+1} = \alpha_{N+1}x_{N} + (1 - \alpha_{N+1})T_{1}x_{N+1}$$

$$\vdots$$

We write the above iteration process in the following compact form

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \qquad n = 1, 2, \dots,$$
(2)

where $T_n = T_{n(\text{mod}N)}$ that the mod N function takes values in $\{1, 2, ..., N\}$. We'll show that under suitable conditions the sequence $\{x_n\}$ is weakly convergence to an element of F.

2 Preliminaries

In this section we collect some well-known results.

Throughout this paper, we denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \rightharpoonup x$, respectively. From [5], for each $x, y \in H$ and $\alpha \in (0, 1)$, we have

$$\|\alpha x + (1-\alpha)y\|^2 = \alpha \|x\|^2 + (1-\alpha)\|y\|^2 - \alpha(1-\alpha)\|x-y\|^2.$$
 (3)

It's well-known that each Hilbert space H satisfies the *Opial's condition*, see [4]; that is, for any sequence $\{x_n\} \subset H$ that $x_n \rightharpoonup x$ we have

$$\lim_{n \to \infty} \sup \|x_n - x\| < \lim_{n \to \infty} \sup \|x_n - y\| \quad for \ all \quad y \in H \setminus \{x\}.$$

Definition 2.1. Let C be a closed subset of H. The mapping $T : C \to C$ is semi-compact whenever for any bounded sequence $\{x_n\}$ in C such that $||x_n - Tx_n|| \to 0$ as $n \to \infty$, there exists a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $x_{n_j} \to x \in C$ as $j \to \infty$.

Now we recall the Demi-closedness principle, see [1], in the following lemma.

Lemma 2.2. Let H be a Hilbert space, C be a nonempty closed convex subset of H and $T: C \to C$ be an asymptotically TJ mapping. Then I - T is demi-closed at zero, i.e. for each sequence $\{x_n\}$ in H, if $\{x_n\}$ converges weakly to $p \in C$ and $\{(I - T)x_n\}$ converges strongly to 0, then (I - T)p = 0.

3 Main Results

In this section, we state our main results. We begin by the following theorem.

Theorem 3.1. Let H be a Hilbert space that satisfying Opial's condition and C be a nonempty closed convex subset of H. Let $T_1, T_2, \ldots, T_N : C \to C$ be N asymptotic TJ mappings with $F := \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\{\alpha_n\}$ be a sequence in (0, 1). If the sequence $\{x_n\}$ defined as (2) and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, then $x_n \to p$ as $n \to \infty$, for some $p \in F$.

Proof. Assume $p \in F$. Since $T_{n(\text{mod}N)}$ is asymptotic TJ mapping, then for each $n \in \mathbb{N}$, we have

$$||T_{n(\text{mod}N)}x_n - p|| \le ||x_n - p||.$$
(4)

From (3) and (4) we infer that

$$||x_{n} - p||^{2} = ||\alpha_{n}x_{n-1} + (1 - \alpha_{n})T_{n(\text{mod}N)}x_{n} - p||^{2}$$

$$= \alpha_{n}||x_{n-1} - p||^{2} + (1 - \alpha_{n})||T_{n(\text{mod}N)}x_{n} - p||^{2}$$

$$- \alpha_{n}(1 - \alpha_{n})||x_{n-1} - T_{n(\text{mod}N)}x_{n}||^{2}$$

$$\leq \alpha_{n}||x_{n-1} - p||^{2} + (1 - \alpha_{n})||x_{n} - p||^{2}$$

$$- \alpha_{n}(1 - \alpha_{n})||x_{n-1} - T_{n(\text{mod}N)}x_{n}||^{2}.$$
 (5)

Hence, we have

$$||x_n - p||^2 \le ||x_{n-1} - p||^2.$$

Thus $\{\|x_n - p\|\}$ is a decreasing sequence, so $\lim_{n\to\infty} \|x_n - p\|$ exists. Also, by ineq uality (5) we have

$$\alpha_n(1-\alpha_n)\|x_{n-1} - T_{n(\text{mod}N)}x_n\|^2 \le \|x_{n-1} - p\|^2 - \|x_n - p\|^2,$$

since $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, we deduce

$$\lim_{n \to \infty} \|x_{n-1} - T_{n(\text{mod}N)}x_n\| = 0.$$
 (6)

On the other hand

$$||x_n - x_{n-1}|| = ||\alpha_n x_{n-1} + (1 - \alpha_n) T_{n(\text{mod}N)} x_n - x_{n-1}||$$

$$\leq (1 - \alpha_n) ||T_{n(\text{mod}N)} x_n - x_{n-1}||.$$

From the last inequality and (6) we obtain that

$$\lim_{n \to \infty} \|x_n - x_{n-1}\| = 0.$$
(7)

Triangle inequality, (6) and (7) imply that

$$\lim_{n \to \infty} \|x_n - T_{n(\text{mod}N)}x_n\| = 0, \tag{8}$$

and

$$\lim_{n \to \infty} \|x_n - x_{n+j}\| = 0, \qquad \forall j \in \{1, 2, \dots, N\}.$$
 (9)

Assume $j \in \{1, 2, ..., N\}$. Since $T_{n(\text{mod}N)+j}$ is an asymptotic TJ mapping, there are two functions $\alpha := \alpha_{n(\text{mod}N)+j}$ and $\beta := \beta_{n(\text{mod}N)+j}$ that satisfy conditions of Definition 1.1. We have

$$\begin{aligned} \|x_n - T_{n(\text{mod}N)+j}x_n\| \\ &\leq \|x_n - x_{n+j}\| + \|x_{n+j} - T_{n(\text{mod}N)+j}x_{n+j}\| + \|T_{n(\text{mod}N)+j}x_{n+j} - T_{n(\text{mod}N)+j}x_n\| \\ &\leq (1 + \sqrt{\frac{\alpha(x)}{2}})\|x_n - x_{n+j}\| + \|x_{n+j} - T_{n(\text{mod}N)+j}x_{n+j}\| \\ &+ \sqrt{\frac{\beta(x)}{2}}\|T_{n(\text{mod}N)+j}x_{n+j} - x_n\| \\ &\leq (1 + \sqrt{\frac{\alpha(x)}{2}} + \sqrt{\frac{\beta(x)}{2}})\|x_n - x_{n+j}\| \\ &+ (1 + \sqrt{\frac{\beta(x)}{2}})\|x_{n+j} - T_{n(\text{mod}N)+j}x_{n+j}\|. \end{aligned}$$

So by (8) and (9) we infer that

$$\lim_{n \to \infty} \|x_n - T_{n(modN)+j}x_n\| = 0 \qquad (1 \le j \le N).$$
(10)

Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of it such that $\{x_{n_k}\}$ converges weakly to $p \in C$. For any $l \in \{1, 2, ..., N\}$, (10) implies that

$$\lim_{k \to \infty} \|x_{n_k} - T_l x_{n_k}\| = 0.$$
(11)

Now we can apply Lemma 2.2 to infer that $(I - T_l)p = 0$, for any $l \in \{1, 2, ..., N\}$. Therefore $p \in F$. Now we prove $x_n \rightharpoonup p$ as $n \rightarrow \infty$. Let

 $\{x_{n_i}\}\$ be another subsequence of $\{x_n\}\$ such that $x_{n_i} \rightharpoonup q$ then we show that q = p. Assume $p \neq q$, then by Opial's condition we deduce

$$\lim_{n \to \infty} \|x_n - p\| = \lim_{k \to \infty} \|x_{n_k} - p\| < \lim_{k \to \infty} \|x_{n_k} - q\|$$
$$= \lim_{n \to \infty} \|x_n - q\| = \lim_{i \to \infty} \|x_{n_i} - q\|$$
$$< \lim_{i \to \infty} \|x_{n_i} - p\| = \lim_{n \to \infty} \|x_n - p\|,$$

which is a contradiction. Therefore we conclude that $x_n \rightharpoonup p$.

In the following theorem we infer the strong convergence.

Theorem 3.2. Let H be a Hilbert space satisfying Opial's condition and Cbe a nonempty closed convex subset of H. Let $T_1, T_2, \ldots, T_N : C \to C$ be Nsemi-compact asymptotic TJ mappings with $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ and $\{\alpha_n\}$ be a sequence in (0, 1). If $\{x_n\}$ defined as (2) and $\liminf_{n\to\infty} \alpha_n(1 - \alpha_n) > 0$, then $x_n \to p$ as $n \to \infty$ for some $p \in F$.

Proof. From the proof of Theorem 3.1, we know that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightharpoonup p$ as $k \rightarrow \infty$ for some $p \in C$ and satisfies (11). Since $T_l, l = 1, 2, ..., N$, is semi-compact we have $\lim_{k\to\infty} ||x_{n_k} - p|| = 0$. Therefore $x_n \rightarrow p$ as $n \rightarrow \infty$, because $\{||x_n - p||\}$ is convergence.

References

- [1] Chang, Shih-sen; Cho, Yeol Je; Zhou, Haiyun, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings-, *J. Korean Math. Soc.* 38 (2001), no. 6, 1245-1260.
- [2] Lin, Lai-Jiu; Chuang, Chih-Sheng; Yu, Zenn-Tsun Fixed point theorems for some new nonlinear mappings in Hilbert spaces, *Fixed Point Theory Appl.* (2011), 2011:51, 16 pp.
- [3] Mann, W. Robert, Mean value methods in iteration, Proc. Amer. Math. Soc. 4, (1953). 506-510.
- [4] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, *Bull. Amer. Math. Soc.* 73, (1967), 591597.
- [5] Takahashi, W., Introduction to nonlinear and convex analysis, Yokohama Publishers, Yokohama, 2009.