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Abstract

In this paper we propose a fuzzy goal programming method for ob-
taining a satisfactory solution to a bi-level multi-objective absolute-
value fractional programming (BLMO-A-FP) problems. In the proposed
approach, the membership functions for the defined fuzzy goals of all
objective functions at the two levels as well as the membership functions
for vector of fuzzy goals of the decision variables controlled by upper
level decision maker (ULDM) are developed in the model formulation
of the problem. Then fuzzy goal programming technique is used for
achieving highest degree of each of the membership goals by minimiz-
ing negative and positive deviational variables. The method of variable
change on the under- and over-deviational variables of the membership
goals associated with the fuzzy goals of the model is introduced to solve
the problem efficiently by using linear goal programming methodology.
Theoretical results is illustrated with the help of a numerical.
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1 Introduction

The concept of the Bi-level programming problem (BLPP) was first introduced
by Candler and Townsley [1] in 1982. Bi-level programming problem is a spe-
cial case of a multilevel programming problem (MLPP) of a large hierarchical
decision system. In a BLPP, two decision makers (DMs) are located at two
different hierarchical levels, each independently controlling one set of decision
variables and with different and perhaps conflicting objectives.

In the hierarchical decision process, the lower-level DM (LLDM) executes
his/her decision powers, after the decisions of the upper-level DM (ULDM).
Although the ULDM independently optimizes its own benefits, the decision
may be affected by the reaction of the LLDM. As a consequence, decision
deadlock arises frequently and the problem of distribution of proper decision
power is encountered in most of the practical decision situations.

Fuzzy goal programming (FGP) is an extension of the conventional goal
programming (GP) introduced by Charnes and Cooper [2] in 1961. As a robust
tool for MODM problems, GP has been studied extensively in [3] for the last 35
years. In the recent past, FGP in the form of classical GP has been introduced
by Mohamed [4] and further studied in [5, 6].

Abo-Sinha [7] discussed multi-objective optimization for solving non-linear
multi-objective bi-level programming problem in fuzzy environment. Baky [8]
studied FGP algorithm for solving decentralized bi-level multi-objective pro-
gramming problems. In this study, we formulated FGP algorithm for solving a
bi-level multi-objective fractional programming problems with absolute-value
functions. A bi-level multi-objective absolute-value fractional programming
problems involves a single decision maker viz. upper level decision maker with
multi-objectives at the upper level and a single decision maker viz. lower level
decision maker with multiple objectives at the lower level. The objective func-
tions of each level decision maker are absolute-value in natural and the system
constraints are linear functions.

2 Problem Formulation

Let both the ULDM and the LLDM have a motivation to cooperate with each
other and try to minimize his/her own benefit, paying serious attention to
the preferences of the other. Then, the vectors of decision variables X1 =
(x1

1, x
2
1, . . . , x

n1

1 ) and X2 = (x1
2, x

2
2, . . . , x

n2

2 ) where n = n1 + n2, are under the
control of the ULDM and LLDM, respectively. Also we assume that

Fi(X1, X2) : Rn1 × Rn2 −→ Rmi i = 1, 2,

be their respective differentiable absolute-value preference functions. Such a
BLMO-A-FP problem of minimization type can be presented as [8]
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(Upper Level)

min
X1

F1(X1, X2) = min
X1

(f11(X1, X2), f12(X1, X2), . . . , f1m1
(X1, X2)),

where X2 solves
(Lower Level)

min
X2

F2(X1, X2) = min
X2

(f21(X1, X2), f22(X1, X2), . . . , f2m2
(X1, X2)),

subject to

X ∈ S = {X = (X1, X2) ∈ Rn|A1X1 + A2X2







≤
=
≥





 b, b ∈ Rm} 6= ∅. (1)

Here

fij(X1, X2) =
αij +

∑n
k=1 cik|xk|

βij +
∑n

k=1 dik|xk|
, i = 1, 2, j = 1, 2, . . . , mi, (2)

where X is unrestricted, mi(i = 1, 2) are the number of DMs objective func-
tions, m is the number of the constraints, αij and βij(i = 1, 2, j = 1, 2, . . . , mi)
are the scalars, A1 and A2 are constant matrices, cik and dik (i = 1, 2, k =
1, 2, . . . , n) are unconstrained in sign, without loss of generality it is customary
to assume that βij +

∑n
k=1 dik|xk| > 0. Also we assume that l̄ij ≤ fij ≤ ūij

(i = 1, 2, j = 1, 2, . . . , mi) where l̄ij and ūij are, respectively, upper and
lower bounded of fij(X1, X2).

3 Formulation of the FGP Problem

In BLMO-A-FP, if an imprecise aspiration level is assigned to each of the
objectives, then the fuzzy objectives are termed as fuzzy goals.

The solutions usually are different because of conflicts of nature between
two objectives. Therefore, it can easily be assumed that all values larger
than or equal to ūij (i = 1, 2, j = 1, 2, . . . , mi) are absolutely unacceptable
to leader and follower, respectively. So ūij can be considered as the upper
tolerance limits of the respective fuzzy objective goals. Then, membership
functions µfij

(fij(X1, X2) for the ijth fuzzy goal can be formulated as

µfij
(fij(X1, X2) =















1 fij ≤ l̄ij
ūij−fij(X1,X2)

ūij−l̄ij
l̄ij ≤ fij ≤ ūij

0 fij > ūij

(3)

To build the membership functions for the fuzzy goals of the decision vari-
ables controlled by ULDM, the optimal solution X∗ = (X∗

1 , X
∗
2 ) of the upper
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level MO-A-FP problem should be determined first. We consider in this pa-
per the FGP approach of C. T. Chang [9] that solve fractional programming
problem with absolute-value function, to solving the first-level of problem. In
section 5, the FGP model of Chang for solving the ULDM problem, is presented
to facilitate the achievement of X∗ = (X∗

1 , X
∗
2 ).

Let tLk and tRk (k = 1, 2, . . . , n1) be the maximum acceptable negative and
positive tolerance values on the decision vector considered by the ULDM. This
is a triangular fuzzy member [10]. The tolerance give the lower level DMs
an extent feasible region to search for the satisfactory solution. The linear
membership functions for the decision vector X1 = (x1

1, x
2
1, . . . , x

n1

1 ) controlled
by the ULDM can be formulated as

µxk
1

(xk
1) =



























xk
1
−(xk∗

1
−tL

k
)

tL
k

xk∗
1 − tLk ≤ xk

1 ≤ xk∗
1

(xk∗
1

+tR
k

)−xk
1

tR
k

xk∗
1 ≤ xk

1 ≤ xk∗
1 + tRk

0 otherrwise

(4)

k = 1, 2, . . . , n1.

It is mentioned that the tolerance tLk and tRk are not necessarily same. Also
the DM may desire to shift the range of xk. Following Pramanik and Roy
[11] and Sinha [12], this shift can be achieved. In decision making situation,
the aim of each DM is to achieve highest membership value (unity) of the
associated fuzzy goal in order to obtain the absolute satisfactory solution.
However, in real practice, achievement of all membership values to the highest
degree (unity) is not possible due to conflicting objectives. Therefore, deci-
sion policy for minimizing the regrets of the DMs for all the levels should be
taken into consideration. Hence, each DM should try to maximize his or her
membership function by making them as close as possible to unity by mini-
mizing its negative-and positive-deviational variables. Therefore, in effect, we
are simultaneously optimizing all the objective functions. So, for the defined
membership functions in (3) and (4), the flexible membership goals having the
aspired level unity can be represented as

µfij
(fij(X1, X2)) + d−

ij − d+
ij = 1, i = 1, 2, j = 1, 2, . . . , mi,

µxk
1

(xk
1) + d−

k − d+
k = 1, k = 1, 2, . . . n1,

or equivalently as

ūij − fij(X1, X2)

ūij − l̄ij
+ d−

ij − d+
ij = 1, i = 1, 2, j = 1, 2, . . . , mi,

xk
1 − (xk∗

1 − tLk )

tLk
+ dL−

k − dL+
k = 1, k = 1, 2, . . . n1, (5)



346 M. Saraj, S. Sadeghi

(xk∗
1 + tRk ) − xk

1

tRk
+ dR−

k − dR+
k = 1, k = 1, 2, . . . n1,

here d−
k = (dL−

k , dR−
k ), d+

k = (dL+
k , dR+

k ) and d−
ij , dL−

k , dR−
k , d+

ij, dL+
k , dR+

k ≥ 0

with d−
ij×d+

ij = 0, i = 1, 2, j = 1, 2, . . . , mi, dL−
k ×dL+

k = 0 and dR−
k ×dR+

k = 0,
k = 1, 2, . . . n1, represent the under-and over-deviational, respectively, from the
aspired levels. Now, FGP approach to BLMO-A-FP problem can be presented
as:

MinZ =
m1
∑

j=1

w1j(d
−
1j + d+

1j) +
n1
∑

k=1

[wL
k (dL+

k + dL−
k ) + wR

k (dR+
k + dR−

k )]

+
m2
∑

j=1

w2j(d
−
2j + d−

2j)

subject to

ūij − fij(X1, X2)

ūij − l̄ij
+ d−

ij − d+
ij = 1, i = 1, 2, j = 1, 2, . . . , mi,

xk
1 − (xk∗

1 − tLk )

tLk
+ dL−

k − dL+
k = 1, k = 1, 2, . . . n1 (6)

(xk∗
1 + tRk ) − xk

1

tRk
+ dR−

k − dR+
k = 1, k = 1, 2, . . . n1

X ∈ S, X is unrestricted.

In the present formulation, numerical weights wij,(i = 1, 2, j = 1, 2, . . . , mi)
wL

k and wR
k (k = 1, 2, . . . n1) are determined as [4]

wij =
1

ūij − l̄ij
i = 1, 2, j = 1, 2, . . . , mi,

wL
k =

1

tLk
, wR

k =
1

tRk
, k = 1, 2, . . . n1. (7)

4 Linearization of Membership Goals

The ijth(i = 1, 2, j = 1, 2, . . . , mi) membership goal in (6) can be presented
as

hij ūij − hijfij(X1, X2) + d−
ij − d+

ij = 1 where hij =
1

ūij − l̄ij
.

Introducing the expression of fij(X1, X2) from (2). The above goal can be
presented as

hijūij − hij(
αij +

∑n
k=1 cik|xk|

βij +
∑n

k=1 dik|xk|
) + d−

ij − d+
ij = 1,
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or equivalently as

−hij(αij +
n

∑

k=1

cik|xk|) + d−
ij(βij +

n
∑

k=1

dik|xk|) − d+
ij(βij +

n
∑

k=1

dik|xk|)

= (1 − hij ūij)(βij +
n

∑

k=1

dik|xk|).

Hence we have

(−hijcik − L◦
ijdik)

n
∑

k=1

|xk| + d−
ij(βij +

n
∑

k=1

dik|xk|) − d+
ij(βij +

n
∑

k=1

dik|xk|)

= L◦
ijβij + hijαij , (8)

where L◦
ij = 1 − hijūij.

Letting D−
ij = d−

ij(βij +
∑n

k=1 dik|xk|), D+
ij = d+

ij(βij +
∑n

k=1 dik|xk|), Cij =
−hijcik − L◦

ijdik and Gij = L◦
ijβij + hijαij, then the form of the expression in

(8) is obtained as

Cij

n
∑

k=1

|xk| + D−
ij − D+

ij = Gij, (9)

with D−
ij , D

+
ij ≥ 0 and D−

ij×D+
ij = 0 since d−

ij, d
+
ij ≥ 0 and βij+

∑n
k=1 dik|xk| > 0.

Clearly, when a membership goal is fully achieved, d−
ij = 0 and its achievement

is zero, d−
ij = 1 are found in the solution. So, involvement of d−

ij ≤ 1 in the
solution leads to impose the following constraint to the model of the problem

D−
ij

βij +
∑n

k=1 dik|xk|
≤ 1,

i.e.

−
n

∑

k=1

dik|xk| + D−
ij ≤ βij . (10)

Next, we for linearize the absolute term dik|xk| that can be expressed as
follows:

program A:

Minimize dik|xk|, where (11)

dik|xk| =

{

dikxk xk ≥ 0,
−dikxk xk ≤ 0,
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using Program B as follows:

program B:

min bkxk + (bk − 1)xk

subject to (bk − 1)xk ≥ 0 (12)

bkxk ≥ 0,

where bk(k = 1, 2, . . . , n1) are binary variables.
Program A and Program B are equivalent in the sense that they have

the same optimal solution [9]. Also the quadratic mixed binary term bkxk in
program B can be linearized of the Ref. [13]. Therefore, under the framework
of minsum GP, the equivalent proposed FGP model of problem (6) becomes

MinZ =
m1
∑

j=1

w1j(D
−
1j + D+

1j) +
n1
∑

k=1

[wL
k (dL+

k + dL−
k ) + wR

k (dR+
k + dR−

k )]

+
m2
∑

j=1

w2j(D
−
2j + D−

2j)

subject to

C1j

n
∑

k=1

|xk| + D−
1j − D+

1j = G1j , j = 1, 2, . . . , m1

C2j

n
∑

k=1

|xk| + D−
2j − D+

2j = G2j , j = 1, 2, . . . , m2

(xk∗
1 + tRk ) − xk

1

tRk
+ dR−

k − dR+
k = 1, k = 1, 2, . . . n1

xk
1 − (xk∗

1 − tLk )

tLk
+ dL−

k − dL+
k = 1, k = 1, 2, . . . n1

−
n

∑

k=1

dik|xk| + D−
ij ≤ βij , i = 1, 2, j = 1, 2, . . . , mi

−
n

∑

k=1

dik|xk| + D+
ij ≤ βij , i = 1, 2, j = 1, 2, . . . , mi (13)

X ∈ S, X is unrestricted.

D−
ij , D

+
ij ≥ 0, i = 1, 2, j = 1, 2, . . . , mi

dL−
k , dL+

k ≥ 0 with dL−
k × dL+

k = 0, k = 1, 2, . . . , n1,

dR−
k , dR+

k ≥ 0 with dR−
k × dR+

k = 0, k = 1, 2, . . . , n1.

The FGP model (13) provides the most satisfactory decision for both the
ULDM and the LLDM by achieving the aspired levels of the membership goals
to the extent possible in the decision environment. The solution procedure is
straightforward and illustrated via the following example.
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5 FGP Model for ULDM Problem

In this section, the FGP model of Chang [9], for solving the first-level MOFP
problem with absolute-value function, is presented here to facilitate the achieve-
ment of X∗ = (X∗

1 , X
∗
2 ). This solution is used to elicit the membership func-

tions of the decision vectors X1 = (x1
1, x

2
1, . . . , x

n1

1 ), that included in the FGP
approach for solving BLMO-A-FP problem that proposed in this article.
The ULDM problem is

min F1(X1, X2) = min (f11(X1, X2), f12(X1, X2), . . . , f1m1
(X1, X2)),

subject to

X ∈ S = {X = (X1, X2) ∈ Rn|A1X1 + A2X2







≤
=
≥





 b, b ∈ Rm} 6= ∅.

And the FGP model of Chang [9] can be rewritten as

min Z =
∑m1

j=1 w1j(D
−
1j + D+

1j)

subject to

C1j

n
∑

k=1

|xk| + D−
1j − D+

1j = G1j , j = 1, 2, . . . , m1

−
n

∑

k=1

dik|xk| + D−
1j ≤ β1j, j = 1, 2, . . . , m1

−
n

∑

k=1

d1k|xk| + D+
1j ≤ β1j , j = 1, 2, . . . , m1 (14)

X ∈ S, X is unrestricted,

D−
1j , D

+
1j ≥ 0, j = 1, 2, . . . , m1.

6 Numerical Example

To demonstrate the solution method for BLMO-A-FP, let consider the follow-
ing example.

(Upper Level)

min
X1

(f11 : −1 ≤
|x1| + |x2| − 6

|x1| + |x2| + 4
≤ 1, f12 : 0 ≤

2|x1| + |x2| − 1

|x2| + 4
≤ 2)
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where X2 solves
(Lower Level)

min
X2

(f21 : 1 ≤
|x1| + |x2| + 2

2|x1| + |x2|
≤ 3, f22 : 0 ≤

|x1| + 3|x2|

2|x1| + |x2| + 1
≤ 3,

f23 : −4 ≤
−4|x1| + 2|x2|

|x1| + |x2|
≤ 2)

subject to
−x1 + x2 ≤ −1

2x1 − x2 ≤ 10

−2x1 − x2 ≤ 8

Now, based on (5) the membership goals of ULDM can be expressed as

µf11
(f11(x1, x2)) =

1 − |x1|+|x2|−6
|x1|+|x2|+4

2
+ d−

11 − d+
11 = 1,

µf12
(f12(x1, x2)) =

2 − 2|x1|+|x2|−1
|x2|+4

2
+ d−

12 − d+
12 = 1,

Also, the membership goals of LLDM can be expressed as

µf21
(f21(x1, x2)) =

3 − |x1|+|x2|+2
2|x1|+|x2|

2
+ d−

21 − d+
21 = 1,

µf22
(f22(x1, x2)) =

3 − |x1|+3|x2|
2|x1|+|x2|+1

3
+ d−

22 − d+
22 = 1,

µf23
(f23(x1, x2)) =

2 − −4|x1|+2|x2|
|x1|+|x2|

6
+ d−

23 − d+
23 = 1,

Table 1 summarizes the coefficients αij , βij, cik and dik for the first- and
second-level objectives of the BLMO-A-FP problem. The upper and lower
bound to the objective functions are also mentioned. The values hij, L

◦
ij , Cij, Gij

and the weights wij are calculated and also contained in the table.
First, the ULDM solves his/her problem based on (14) as follows:

min 0.5D−
11 + 0.5D+

11 + 0.5D−
12 + 0.5D+

12

subject to

−|x1| − |x2| + D−
11 − D+

11 = −1
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Table 1: Coefficients objective functions for the BLMO-A-FP problem
f11 f12 f21 f22 f23

αij -6 -1 2 0 0
βij 4 4 0 1 0
cij (1,1) (2,1) (1,1) (1,3) (-4,2)
dij (1,1) (0,1) (2,1) (2,1) (1,1)
ūij 1 2 3 3 2
l̄ij -1 0 1 0 -4
hij 0.5 0.5 0.5 0.33 0.167
L◦

ij 0.5 0 -0.5 0 0.67
Cij (-1,-1) (-1,-0.5) (0.5,0) (-0.33,-1) (0.-1)
Gij -1 -0.5 1 0 0
wij 0.5 0.5 0.5 0.33 0.167

−|x1| − 0.5|x2| + D−
12 − D+

12 = −0.5

−|x1| − |x2| + D−
11 ≤ 4

−|x1| − |x2| + D+
11 ≤ 4

−|x2| + D−
12 ≤ 4

−|x2| + D+
12 ≤ 4

−x1 + x2 ≤ −1

2x1 − x2 ≤ 10

−2x1 − x2 ≤ 8

where absolute terms in above can be linearized using problem B. The software
LINGO (ver. 11.0) is used to solve the problem. Optimal solution of the
problem is (x∗

1, x
∗
2) = (0,−1). Let the ULDM decide x∗

1 = 0 with the negative
and positive tolerance tR1 = tL1 = 0.4.

Then, by using (13) the LLDM solves the following problem as follows:

min 0.5(D−
11 + D+

11) + 0.5(D−
12 + D+

12) + 0.5(D−
21 + D+

21) + 0.33(D−
22 + D+

22)

+0.167(D−
23 + D+

23) + 2.5(dL−
1 + dL+

1 ) + 2.5(dR−
1 + dR+

1 )

subject to
−|x1| − |x2| + D−

11 − D+
11 = −1

−|x1| − 0.5|x2| + D−
12 − D+

12 = −0.5

0.5|x1| + D−
21 − D+

21 = 1
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−0.33|x1| − |x2| + D−
22 − D+

22 = 0

−|x2| + D−
23 − D+

23 = 0

−|x1| − |x2| + D−
11 ≤ 4

−|x1| − |x2| + D+
11 ≤ 4

−|x2| + D−
12 ≤ 4

−|x2| + D+
12 ≤ 4

−2|x1| − |x2| + D−
21 ≤ 0

−2|x1| − |x2| + D+
21 ≤ 0

−2|x1| − |x2| + D−
22 ≤ 1

−2|x1| − |x2| + D+
22 ≤ 1

−|x1| − |x2| + D−
23 ≤ 0

−|x1| − |x2| + D+
23 ≤ 0

2.5x1 + dL−
1 − dL+

1 = 0

−2.5x1 + dR−
1 − dR+

1 = 0

−x1 + x2 ≤ −1

2x1 − x2 ≤ 10

−2x1 − x2 ≤ 8

where absolute terms in above can be linearized using problem B. The software
LINGO (ver. 11.0) is used to solve the problem. Optimal solution of the
problem is (x1, x2) = (1, 0) with objective functions values f11 = −1, f12 =
0.25, f21 = 1.5, f22 = 0.33 and f23 = −4, with membership functions values
µ11 = 1, µ12 = 0.87, µ21 = 0.75, µ22 = 0.88 and µ23 = 1. Therefore we realize
that f11 and f23 has reached the goal exactly, f12 has 0.87 achieved, f21 has
0.75 achieved and f22 has 0.88 achieved.

7 Conclusion

This paper studies a bi-level multi-objective absolute-value fractional program-
ming problem with fuzzy goal programming approach. We have extended the
absolute-value fractional programming technique to bi-level multi-objective
absolute-value fractional programming problem. It can be further verified that
the constraints can be put in the form of absolute-value functions.
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