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Abstract

Lots of large graphs can be constructed from existing smaller graphs by using graph operations, such as the graph
products. Many properties of such large graphs are closely related to those of the corresponding smaller ones.In
this paper we consider some operations of Cayley graphs on semigroups.
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1. Introduction

Symmetric properties of graphs have been considered by lots of authors in the literature as well as properties of
Cayley graphs, see for example [2] and [3]. Cayley graphs of semigroups are also mentioned in some papers such
as [5]. Here we discuss about the Cayley graphs of semigroups and talk about some operations such as product of
them or complement of it, and finally verify whether the product of Cayley graphs with some special property has
the property as well.

Let Γ = (V,E) be a simple graph, where V is the set of vertices and E is the set of edges of Γ. An edge joins
the vertex u to the vertex v is denoted by (u, v). The group of automorphisms of Γ is denoted by Aut(Γ), which
acts on vertices of Γ. Γ is called X-vertex transitive if X 6 Aut(Γ) acts transitively on the set of vertices of Γ.

Let G be a semigroup and S ba a nonempty subset of G. The Cayley graph of G relative to S is denoted by
Γ = Cay(G,S) is a graph with vertex set G and (x, y) is an edge of Γ if and only if for some s ∈ S we have y = sx.
An automorphism φ of the Cayley graph Γ is called colour preserving if sx = y implies s(xφ) = yφ. Denote by
ColAutS(G) the set of all colour preserving automorphism of Γ and Γ is said to be Col-Aut-vertex transitive Cayley
graph if it is ColAutS(G)-vertex transitive [5].

Every semigroup S can be converted to a monoid S1 which is S if S is a monoid and otherwise is S ∪{1} where
1 is an element which is not contained in S with the the extention of definition of multiply by s.1 = 1.s = s∀s ∈ S
and 1.1 = 1.[4]

Many large graphs can be constructed by expanding of small graphs, thus it is important to know which prop-
erties of small graphs can be transfered to the expanded one, for example Wang in [7] proved that the lexicographic
of vertex transitive graphs is also vertex transitive as well as the lexicographic product of edge transitive graphs.
Specapan in [6] Found the fewest number of vertices fo Cartesian product of two graphs whose removal from the
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graph results in a disconnected or trivial graph.Motivated by these we consider five kinds of graph products as the
expander graphs which is described below and verify if we can regard the product of them as a Cayley graph of
the semigroup which is made by their product underlying semigroup and if the answer is positive does it inherit
Col-Aut-vertex property of them.

Definition 1.1. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs. Γ = (V,E), the product of them is a graph
with vertex set V = V1 × V2, and two vertices (u1, u2) is adjacent to (v1, v2) in Γ if one of the relevant conditions
happen depending on the product.

1. Cartesian product. u1 is adjacent to v1 in Γ1 and u2 = v2 or u1 = v1 and u2 is adjacent to v2 in Γ2.

2. Tensor product. u1 is adjacent to v1 in Γ1 and u2 is adjacent to v2 in Γ2.

3. Strong product. u1 is adjacent to v1 in Γ1 and u2 = v2 or u1 = v1 and u2 is adjacent to v2 in Γ2 or u1 is
adjacent to v1 in Γ1 and u2 is adjacent to v2 in Γ2.

4. Lexicographic. u1 is adjacent to v1 in Γ1 or u1 = v1 and u2 is adjacent to v2 in Γ2.

5. Co-normal product. u1 is adjacent to v1 in Γ1 or u2 is adjacent to v2 in Γ2.

and the complement of a graph Γ = (V,E) is denoted by ΓC is a graph with the same vertex set and two vertices
are adjacent iff they are not adjacent in the original graph Γ.

2. Cartesian product

Through this section we assume H and K are two semigroups, S and T be the subsets of Hand K respectively
which does not contain the identity and idempotent, if there exisit any. Γ1 = Cay(H,S) and Γ2 = Cay(K,T ) and
Γ = (V,E) be the Cartsian product of them and we denote it by Γ = Γ1�Γ2.

Theorem 2.1. Γ the Cartesian product of two Cayley graph of semigroups is also a Cayley graph of the monoid
H1 ×K1 with respect to the subset ({1H1} × T ) ∪ (S × {1K1}) of H1 ×K1.

Proof. ((h1, k1), (h2, k2)) is an edge of g if and only if h1 = h2 and k2 = tk1 for some t ∈ T or for some s ∈ Swe
have h2 = sh1 and k1 = k2, i.e. for some (1H1 , t) ∈ {1H1} × T we have (h2, k2) = (1H1 , t)(h1, k1) or for some
(s, 1K1) ∈ S ×{1K1} we have (h2, k2) = (s, 1K1)(h1, k1), and equivalantly for some α ∈ ({1H1}× T )∪ (S ×{1K1}),
the equiation (h2, k2) = α(h1, k1) holds.

Theorem 2.2. Let Γ1 and Γ2 be two Col-Aut-vertex transitive Cayley graphs of finite semigroups. Then Γ = (V,E)
the cartesian product of them is also Col-Aut-vertex transitive Cayley graph.

Proof. Let (h1, k1) and (h2, k2) be two arbitrary vertices of the graph Γ. Since Γ1 and Γ2 are Col-Aut-vertex
transitive, there exists α ∈ ColAutS(H) and β ∈ ColAutT (K) which sends h1 to h2 and k1 to k2 respectively,
implying (α, β) sends (h1, k1) to (h2, k2). Now we have to show that (α, β) is a colour preserving automorphism of
the graph Γ.

If u1 = v1 and u2 and v2 are adjacent in Γ2 , since β is an automorphism of Γ2, therefore (α, β)(u1, v1) is also
adjacent to (α, β)(u2, v2) in Γ. Similar argument can be done if u1 is adjacent to v1 in Γ1 and u2 = v2 as well,
yields that (α, β) is an automorphism of the graph Γ.

Now suppose for some (s, t) ∈ ({1H}×T )∪(S×{1K}) and (h, k), (h′, k′) ∈ H×K, we have (s, t)(h, k) = (h′, k′),
then either s = 1H , t ∈ T or s ∈ S, t = 1K . Without loss of generality we assume the first case happens and hence
h = h′. Since β ∈ ColAutT (K) and tk = k′, we have tkβ = k′β , implying (s, t)(h, k)(α,β) = (hα, k′β) = (h, k′)(α,β) =
(h′, k′)(α,β), i.e. (α, β) is colour preserving.

3. Tensor product

Through this section we assume H and K are two semigroups, S and T be the subsets of Hand K respectively
which does not contain the identity and idempotent, if there exisit any. Γ1 = Cay(H,S) and Γ2 = Cay(K,T ) and
Γ = (V,E) be the tensor product of them and we denote it by Γ = Γ1×Γ2. In the [1], authors proved the following
theorems.
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Theorem 3.1. Γ, tensor product of the graphs Γ1 and Γ2 is also a Cayley graph of the semigroup H × K with
respect to the subset S × T of H ×K.

Theorem 3.2. Let Γ1 and Γ2 be two Col-Aut-vertex transitive Cayley graphs of finite semigroups. Then Γ = (V,E)
the tensor product of them is also Col-Aut-vertex transitive Cayley graph.

4. Strong product

Through this section we assume H and K are two semigroups, S and T be the subsets of Hand K respectively
which does not contain the identity and idempotent, if there exisit any. Γ1 = Cay(H,S) and Γ2 = Cay(K,T ) and
Γ = (V,E) be the strong product of them and we denote it by Γ = Γ1 � Γ2.

By the definition 1.1, theorem 2.1 and theorem 3.1, we conclude the following theorems.

Theorem 4.1. Γ the strong product of two Cayley graph of semigroups is also a Cayley graph of the monoid
H1 ×K1 with respect to the subset ({1H1} × T ) ∪ (S × {1K1}) ∪ (S × T ) of H1 ×K1.

Theorem 4.2. Let Γ1 and Γ2 be two Col-Aut-vertex transitive Cayley graphs of finite semigroups. Then Γ = (V,E)
the strong product of them is also Col-Aut-vertex transitive Cayley graph.

5. Co-normal product

Through this section we assume H and K are two semigroups, S and T be the subsets of Hand K respectively
which does not contain the identity and idempotent, if there exisit any. Γ1 = Cay(H,S) and Γ2 = Cay(K,T ) and
Γ = (V,E) be the co-normal product of them and we denote it by Γ = Γ1 � Γ2.

Theorem 5.1. Γ the co-normal product of two Cayley graph of groups is also a Cayley graph of the group H ×K
with respect to the subset (H × T ) ∪ (S ×K}) of H ×K.

Proof. By definition 1.1, ((h1, k1), (h2, k2)) is an edge of Γ if and only if for some s ∈ S we have h2 = sh1 or
k2 = tk1 for some t ∈ T . Equivalently for some α = (s, t) ∈ (S ×K) ∪ (H × T ) we have (h2, k2) = α(h1, k1)

In the theorem 5.1, we brought a strong condition that H and K to be groups, because if they did not satisfy
the conditions of groups then we can not say the co-normal product of the corresponding Cayley graphs will be a
Cayley graph of the product semigroup H ×K. with respect to any subset of it. In the following example we bring
a evidence of the case.

Example 5.2. Let H be a semigroup and S be a subset of it, K be a monogenic of the semigroup generated by x
which satisfies the condition xn+r = xr for some n > 2 and r > 1. and T = {x}.

For aome v1 ∈ H and s ∈ S set u=sv1, u2 = xr and v2 = x. By the definition of 1.1, (u1, v2) is adjacent to
(v1, v2) in the graph Γ. If Γ is a Cayley graph of the group H ×K with respect to some subgroup W of it, then we
can say there exists w = (h, k) ∈ H ×K such that the condition (v1, x) = (h, k)(u1, x

r) holds, implying for some
k ∈ K, we have x = kxr which is sa contradiction by the definition of the monogenic K.

6. Lexicographic product

Through this section we assume H and K are two semigroups, S and T be the subsets of Hand K respectively
which does not contain the identity and idempotent, if there exisit any. Γ1 = Cay(H,S) and Γ2 = Cay(K,T ) and
Γ = (V,E) be the lexicographic product of them and we denote it by Γ = Γ1[Γ2 ].

Theorem 6.1. Γ the lexicographic product of two Cayley graph of groups is also a Cayley graph of the group H×K
with respect to the subset ({1H} × T ) ∪ (S ×K}) of H ×K.

Proof. By definition 1.1, ((h1, k1), (h2, k2)) is an edge of Γ if and only if for some s ∈ S we have h2 = sh1 or h1 = h2
and k2 = tk1 for some t ∈ T . Equivalently for some α = (s, t) ∈ (S ×K) ∪ ({1H} × T ) we have (h2, k2) = α(h1, k1)

The example 5.2 also provide a counter example for the case if we replace semigroup instead of group in the
theorem 6.1.



International Journal of Applied Mathematical Research 57

7. Complement

Through this section we assume H is a group and S be the subset of H which does not contain the identity.
Γ = Cay(H,S) and Γc = (V,E) be the complement of it.

Theorem 7.1. Γc the complement of the Cayley graph of a group is also a Cayley graph of the group H with respect
to the subset Sc − {1} of H ×K.

Proof. By definition 1.1, (h1, h2) is an edge of Γc if and only if it is not an edge of Γ and h1 6= h2, if and only if
h2 6= sh1 for all s ∈ S and h2 6= 1h1, thus we can consider Γc a Cayley graph of the same vertex set with respect
to Sc − {1}.
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