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Abstract 

 

In this paper, we describe a meshless approach to solve singularly perturbed differential- difference equations of the 

second order with boundary layer at one end of the interval. In the numerical treatment for such type of problems, first 

we approximate the terms containing negative and positive shifts which converts it to a singularly perturbed differential 

equation. Next, a numerical scheme based on the moving least squares (MLS) method is used for solving singularly 

perturbed differential equation. The MLS methodology is a meshless method, because it does not need any background 

mesh or cell structures. The proposed scheme is simple and efficient to approximate the unknown function. Several 

examples are presented to demonstrate the efficiency and validity of the numerical scheme presented in the paper. 
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1. Introduction 

A singularly perturbed differential-difference equation is an ordinary differential equation in which the highest order 

derivative term is multiplied by a positive small parameter and involving at least one delay or advance term. Such 

problems arise frequently in the study of human pupil light reflex [1], control theory [2], mathematical biology [3], 

study of bitable devices [4], etc. The mathematical modeling of the determination of the expected time for the 

generation of action potentials in nerve cells by random synaptic inputs in dendrites includes a general boundary value 

problem for singularly perturbed differential- difference equation with small shifts. 

There exist several numerical studies for approximating the solution of singularly perturbed differential- difference 

equations. For example Kadalbajoo and Sharma [5-8], Kadalbajoo and Ramesh [9], Amiraliyeva and Erdogan [10], 

Amiraliyeva and Amiraliyev [11], Rao and Chakravarthy[12] developed robust numerical schemes for dealing with 

singularly perturbed differential- difference equations. 

In recent years, much interest of scientists and engineeres has been paid on meshless based methods, particularly 

moving least squares (MLS) method [13-17]. 

In this paper, we employ a numerical method based on the MLS method to approximate the unknown function for 

solution of singularly perturbed differential-difference equations. The main idea of this method is to approximate the 

unknown field function by a linear. 

Combination of shape function built without having recourse to mesh the domain. Instead, nodes are scattered in the 

domain and a certain weight functions with a local support is associated with each of these nodes.  

The rest of this paper is organized as follow: the outline of MLS method is discussed in section 2. In section3, the 

proposed method is employed on singularly perturbed differential- difference equations. In section4, numerical results 

for some problems are obtained. Finally in section 5 this report ends with conclusion and some offers for future 

researches. 

http://creativecommons.org/licenses/by/3.0/
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2. The moving least squares approximation 

The moving least squares (MLS) approximation was devised by mathematicians in data fitting and surface construction 

[18-19]. Since the numerical approximations of MLS are based on the scattered set of nodes, there have many meshless 

methods based on the MLS for the numerical solution of differential equations in recent years. 

Consider an unknown scalar function of a field variable      in the domain Ω. The MLS approximation )(xuh  of 

     can be defined as follows 
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Where )(xp a complete monomial basis function of the spatial coordinates is, m  is the number of basic functions. For a 

1D example, the linear basis is )(xpT  [1 x ] and the quadratic basis is )(xpT  [1 x  2x ]. In equation (1),      is a 

vector of coefficients given by 
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The coefficients      can be obtained by minimizing the following weighted discrete 
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where   is number of nodes in the support domain of   for which the weight function 0)( xwi and iu is the nodal 

parameter of   at ixx  . The stationary of J in Eq. (3) with respect to      leads to the following linear relations 

( ). ( ) ( ).A x a x B x US  ,                                                                                                                                                      (4) 
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SU the vector that collects the node parameters of the field is functions for all the nodes in the support domain, 
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A(x) and B(x) are defined by 
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Where matrices P and W are defined as 

( )1

( )2

( )
( 1)

T
p x

T
p x

p

T
p x n n m



 

 
 
 
 
  

M
,

( ) 01

0 ( )

w x

W

w xn n n





 
 
 
 

L

M O M

L

                                                                                                         (8) 

Solving Eq. (4) for     , we have 
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Substituting (9) into Eq. (1), we get 
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)(xj are called the shape functions of MLS approximation, corresponding to the nodal points jx . 

The Gaussian weight function is applied in the present paper is as follows 
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where
jj xxd  ,  is a constant controlling the shape of the weight function 

jw and 
jh which is the size of the 

support. 

3. Description of the problem 

We consider a model problem for singularly perturbed differential- difference equation of the form 
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Where )1,0(x and     , subject to the interval and the following boundary conditions, respectively 
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where )(0  o  and )(0  o , are the delay and advance parameters, respectively and     , 

                          and      are sufficiently smooth functions. The solution of (14) and (15) exhibits, layer at 

the left end of the interval if                    and layer at the right end of the interval, if            
       . If       , then one may have oscillatory solution or two layers. 

4. Numerical scheme 

In this section, we consider the numerical treatment for model problem (14) and (15). The first step in this direction is 

the use of Taylor approximation for the terms containing delay and advance in the problem (14) and (15). Taking 

Taylor series expansions of the terms         and        in equation (14), we have 

                  ,                                                                                                                                            (16) 

and  
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Using (16)-(17) in (14)-(15), we obtain  

                                 
            
            
where                         and                   . Since the delay and advance are sufficiently 

small the following new problem becomes 
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This provides a good approximation to the solution   of the problem (14)-(15). 

Now, to employ the MLS method, at first N nodal points }{ jx are selected on interval [0, 1], where

10 21  Nxxx  . The distribution of the nodes could be selected regularly or randomly. Next, instead of  , 

we can replace    from Eq. (10), therefore, Eq. (18) becomes 
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Assume that Eq. (22) holds true at jx , namely 
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Then we have the following linear system of equations  

AU F                                                                                                                                                                            (27) 

Finding the values of iu by solving the linear system (27) with an appropriate procedure such as Gauss elimination 

method, yields the following approximate solution 
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5. Numerical results 

To show the applicability of MLS method, we consider boundary value problem (14)-(15) with constant coefficients. 

The exact solution of such a problem is given by: 
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Cubic basis functions and Gaussian weight functions are utilized in the above computation. All routines are written in 

MATLAB 2007a. In this regard, we have reported the values of absolute error in the following graphs. 

 

Example 1: Consider the following singularly perturbed differential- difference equation with layer at the left end 

                               
                                       
 

 
Fig. 1: Graph of the absolute errors for example1 for 01.0  and different values of . 

 

Example 2: Consider the following singularly perturbed differential- difference equation with layer at the left end 
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Fig. 2: Graph of the absolute error for example 2 for 005.0  and different values of  and  . 

 

Example 3: In this example we consider the singularly perturbed differential- difference equation with layer at the right 

end 

                              
                                        
 

Example 4: In this last example, we consider the following singularly perturbed differential- difference equation 

                                      
                                                         
 

 
Fig. 3: Graph of the absolute error for example 3 for 005.0  and different values of . 

 

6. Conclusion 

We have described an efficient and simple numerical scheme based on the moving least squares (MLS) for solving 

BVPs for singularly perturbed differential- difference equation with small shift. The MLS method is a truly meshless 

method, which requires no domain discretization for approximation. The method can be easily implemented and its 

algorithm is simple and efficient to approximate the unknown function. A number of numerical experiments are carried 

out in support of the predicated theory via tabulating the maximum absolute errors which show the efficiency of the 

method for solving these types of singularly perturbed equation. 
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Fig. 4: Graph of the absolute error for example 4 for 1.0  and different values of  and . 
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