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Abstract 

 

Blocked two-level fractional factorial designs are very useful in screening experiment and other areas of scientific 

research. In some experiments, apart from the main effects, some two-factor interactions may be important and should 

be estimated. Thus, the postulated model should include all main effects, some important two-factor interactions and 

blocking effects. The remaining two factor interaction and some other higher order interactions not included in the 

postulated model may confound and bias the estimate of the effects in the model which in turn lower the precision of 

the parameter estimate. It is therefore necessary to select an optimal design from the design space that will minimize 

this bias (contamination). In this article, two designs were selected with respect to confounding pattern and the bias 

accounted in the estimation of the regression coefficient of the postulated models were evaluated and compared. The 

confounding pattern of design I and II is (0, 6, 1) and (4, 2, 2) respectively; it was observed that bias accounted in the 

estimation of regression coefficient is higher in design II. 
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1. Introduction 

Fractional factorial designs enable researchers to investigate many factors in an economical number of runs. In 

particular, for two-level factors, a regular fractional factorial design with n factors and N = 2
n-k 

runs can accommodate 

up to n = N-1 factors for resolution III designs. Small fractional factorial designs are often performed as completely 

randomized designs. However the larger the run size N, the more advantageous running the experiment in blocks 

becomes [17]. Then how can we block and come up with a better selected design?  

The most commonly used criterion for 2
m-p

 design selection is the minimum aberration criterion proposed by Fries and 

Hunter [6]. For small number of factors, Franklin [5] provided a useful catalogue of 2
m-p 

designs with minimum 

aberration. Several researchers addressed the construction of minimum aberration blocked designs. Sitter, et al [9] 

provided some collections of minimum aberration blocked designs with all 8 and 16 runs, 32 runs up to 15 factors, 64 

runs up to 9 factors, and 128 runs up to 9 factors. Chen and Cheng [2] developed a theory to characterize minimum 

aberration blocked designs in terms of their blocked residual designs and gave collection of minimum aberration 

blocked designs with all 8 and 16 runs, and 32 runs up to 20 factors. Cheng and Wu [4] compared minimum aberration 

blocked designs with respect to different combined word length patterns for 8, 16 ,32 ,64 and128 runs up to 9 factors; 

they also provide collections of minimum aberration blocked designs with all 27 runs, and 81 runs up to 10 factors. Xu 

[15] and Xu and Lau [16] further developed some theories and constructed minimum aberration blocked designs with 

all 32 runs, all 81 runs, and 64 runs up to 32 factors. 

All these researchers discussed blocking schemes for the models containing main effects and blocking effects only. 

Their discussions were mainly based on the schemes that have optimal estimation of the main effects and the blocking 

effects of the experiments. However, Ke [14] considered the selection of blocked 2
m-p

 designs when some two factor 

interactions are considered to be important. When some  

2-factor interactions are important; the postulated model should consist of all main effects, blocking effect and these 

important 2-factor interactions. If the effects not in the postulated model cannot be completely ignored, they bias the 
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estimate of the effects in the model. To solve this problem, the key issues are to permit estimation of the main effects, 

blocking effects, and the important 2-factor interactions in the postulated model and then minimize the bias caused by 

the other effects not included in the postulated model [14]. To minimize this bias, an optimal design should be selected 

such that the contamination caused by these non-negligible effects is minimized. This can be achieved by sequentially 

minimizing the confounding pattern of the design [14]. In this article we evaluate the negative effect of this 

contamination on the precision of the parameter estimate.  

The organization of this article is as follows: In section two the concept of two level fractional factorial designs was 

discussed. The criterion for selecting blocked 2
m-p 

designs was presented in section three. In section four the 

performance of designs were evaluated and a conclusion remark was offered in section five.   

2. Two level fractional factorial design  

A regular two-level fractional factorial design is commonly referred to as a 2
m-p 

design. It has m two-level factors with 

2
m-p 

runs, and commonly determined by p independent defining relations. When p = 0, a 2
m-p

 design reduces to a full 

factorial of a 2
m 

design. A defining relation is given by a word of letters which are levels of the factors denoted by 1, 2. . 

. m. The number of letters in a word is called its word length. The group of defining words generated by p independent 

defining words is called the defining contrast subgroup of the design. The length of the shortest word in the defining 

contrast subgroup is called the resolution of a design. The vector W(d) = [A1(d), A2(d), ..., Am(d)] is called the word 

length pattern of the design d, where Ai(d) is the number of words of length i in the defining contrast subgroup. The 

resolution of the design is the smallest r satisfying Ar ≥ 1. The resolution criterion proposed by Box and Hunter [1] 

select 2
m-p 

design that has higher resolution. Since two designs having the same resolution may have different word 

length pattern and may not be equally good; Fries and Hunter [6] proposed the minimum aberration criterion for further 

discrimination of   2
m-p 

designs. For instance consider two different designs d1 and d2, and suppose r is the smallest 

value such that Ar(d1) ≠ Ar(d2). d1 is said to have less aberration than d2 if Ar(d1) ˂ Ar(d2). If no any other design has less 

aberration than d1, then d1 is said to have minimum aberration. The minimum aberration criterion which selects 2
m-p 

designs with minimum aberration is most commonly used in selecting   2
m-p 

designs. In what follows, an example was 

used to illustrate 2
m-p 

designs and minimum aberration. Suppose it is desired to conduct an experiment with sixteen runs 

and several factors at two levels, levelled +1 and -1. Table 1 below gives the column of a sixteen runs saturated design 

with its columns arranged in Yates’s order, with the generating independent columns 1, 2, 4 and 8 in boldface. 

 
Table 1: Columns of a16-run saturated design in Yates’s order 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Response 

1 2 12 4 14 24 124 8 18 28 128 48 148 248 1248 
 

-1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 y1 

1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 y2 

-1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 y3 

1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 y4 

-1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 y5 

1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 y6 

-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 y7 

1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 y8 

-1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 y9 

1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 y10 

-1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 y11 

1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 y12 

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 y13 

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 y14 

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 y15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y16 

 

If columns 1, 2, 4 and 8 of Table 1 were used to set the level of four factors A, B, C and D, respectively, then y1 through 

y16 represent the responses at the 2
4
 = 16 possible combinations of factor settings. This gives a 2

4
 = 16 run, two-level, 

four-factor, full factorial design. By using this 2
4
 full factorial design, the main effects of A, B, C and D, as well as their 

interactions AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD and ABCD can be estimated. If it is required to study one 

more factor E using the 16-run design, we have different choices. For design d1, the level of factor E can be assign to 

column 15. This gives a 2
5-1

 fractional factorial design. Since 15 = 1248 or I = 2458 where I denotes the column of +1’s, 

the estimate of the main effect E could not be separated from the effect of the interaction between A, B, C and D. That is 

to say E = ABCD, or I = ABCDE. Here I = 2458 is the defining relation or defining word of the 2
5-1

 design. The 

resolution of the design is 4 and the word-length pattern W (d1) = (0, 0, 0, 1). For design d2, factor E was assign to 

column 14 = 248. The defining word is I = 128 and the resolution is 3. The word-length pattern W(d2) = (0 ,0, 1, 0). 

Obviously, d1 is better than d2 because it has higher resolution and minimum aberration. Both definition of resolution 
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and minimum aberration are based on the hierarchical assumption that: (i) lower order interactions are more important 

than higher order interactions, (ii) effect of the same order are equally important. The advantage of d1 is obvious based 

on this principle because the main effect in d1 is confounded with three-factor interactions and the main effect in d2 is 

confounded with two-factor interactions. The 16 run 2
m-p

 designs can be used to study up to fifteen factors by assigning 

these factors to all fifteen columns. This design is denoted by 2
15-11

 and is called saturated design. 

3. Criteria for selecting blocked 2
m-p

 designs 

For unblocked 2
m-p

 designs, Ke and Tang [7] proposed a minimum N-aberration criterion to select designs by 

systematically minimizing the bias. The criterion was further studied and summarized by Cheng and Tang [3]. For 

further discussion about this issue see Tang and Deng [12], [13], Tang [10], [11] and Ke, et al [8]. Ke [14] proposed a 

design selection criterion as follows; 

Design selection criterion: Let Nj, j = 2, 3, ..., Nm be the number of j-factor interactions not in the model confounded 

with the effects in the postulated  model including main effects, blocking effects, and some  important two-factor 

interactions. We select optimal blocked 2
m-p 

designs by sequentially minimizing  

N2 ,..., Nm. 

To gain further insight in to the criterion, let’s now examine the criterion in more detail. The postulated model consists 

of all main effects, important two-factor interactions, and blocking effects. Those two-factor interactions not in the 

model and other higher order interactions generally cause a bias on the estimation of the effects in the model. The 

measure of this bias as given by Nj, the number of j-factor interactions outside the model that are confounded with the 

effects in the model. Under the hierarchical assumption that lower-order effects are more important than higher-order 

effects; then to minimize the bias, the confounding pattern of a design should be sequentially minimized. Hence this 

criterion selects optimal design that has minimum N2, and so on 

Suppose that five factors A, B, C, and D and two-factor interactions AD and BC need to be studied by using a blocked 

design of 16 runs. Two designs dI and d2 were considered. Based on the provision of table 1 above, for d1, the five 

treatment factors A, B, C, D and E were assigned to column 1, 2,4, 8 and 15 and the blocking factor to column 11b ( ‘b’ 

was used to indicate blocking factor). The interactions to be estimated should be 18 and 24. Since 15 = 1248 and 11b = 

128, the defining contrast subgroup of the design is given by I = 2458 = 128(11b) = 145(11b). Hence we have 1=12458, 

2 = 458, 4 = 258, 8 = 245, 15 = 1248, 18 = 1245, 24 = 58 and 11b = 128 = 145. Therefore N2 = 1, N3 = 5 and N4 =2. 

Note that the interactions between blocking factors and treatment are assumed not existent and are not counted here. 

The confounding pattern of d1 is (1, 5, 2) which means that one 2-factor interactions ,five 3-factor interactions and two 

4-factor interactions not included in the model are confounded with the effects in the model. For d2, the five treatment 

factors A, B, C, D and E were assigned to column 1, 2, 4, 8 and 13 and the blocking factor to column 10b. The 

interactions to be estimated should be 18 and 24. Since 13 = 148 and 10b = 28, the defining contrast subgroup of the 

design d2 is given by I = 348 =28(10b) =234(10b). Hence we have 1 = 1348, 2 =2348, 4 = 38, 8 = 34, 13 = 148, 18= 134, 

24 = 238 and 10b=28 = 234. Hence the confounding pattern of d2 is (3, 4, 2) which means that three 2-factor 

interactions, four 3-factor interactions, and two 4-factor interaction not included in the model are confounded with the 

effects in the model. Based on our design selection criterion, d1 is better than d2 because N2 (d1) < N2(d2). 

4. Evaluating the performance of the designs 

As stated earlier, the aim is to evaluate the performance of design with respect to its confounding pattern. In this regard, 

two designs were compared by estimating the bias accounted in the estimation of regression coefficient. The structure 

of the two designs compared is given in table 2, below. 

 
Table 2: Structure of the two designs considered for this article 

Design type Mt + Mb Treatment factor 2-factor interaction Block factor (N2,N3,...Nm) 

D1 5+1 7 (1,8) 11 (0,6,1) 

D2 5+1 3 (1,8) 5 (4,2,2) 

 

Design I denoted by D1 is proposing that we assign the first four factors in the original column of the calculation matrix 

i.e. column 1, 2, 4 and 8 and confound the 5
th

 factor with column 7 and blocking factor with column 11 and estimate 

one 2-factor interaction in column 9. While design II is proposing that we assign the first four factors in the original 

column of the calculation matrix i.e. column 1, 2, 4 and 8 and confound the 5
th

 factor with column 3 and blocking factor 

with column 5 and estimate one 2-factor interaction in column 9. From table 2 the confounding pattern of D1 is (0, 6, 1) 

which means zero 2-factor interaction, six 3-factor interaction and one 4-factor interaction not in the model are 

confounded with the effect in the postulated model. For D2 the confounding pattern of design II is (4, 2, 2) which means 

four 2-factor interaction, two 3-factor interaction and two 4-factor interaction not in the model are confounded with the 

effect in the postulated model. The nature of the confounding pattern of a design determines the level of contamination 

which in turn lowers the precision of the parameter estimate. 
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4.1. Estimation of total bias 
 

The postulated model is given by   

                                                                                                                                                                      (1) 

where Y denotes the vector of n observations,     is the grand mean, I denotes the vector of n ones, γ1 is the vector of 

parameters containing all main effects, a set of important two-factor interactions, and blocking effects, W1 is the 

corresponding design matrix, and ε is the vector of uncorrelated random errors, assumed to have mean 0 and a constant 

variance,   . Since other interactions among treatment factors may not be negligible the true model can be written as 

                                                                                                                                          (2) 

 From the postulated model in (1) above, the least square estimator, 

       
    

    
        

  .  

To obtain the bias in the estimation of     the expectation of     from the true model is used. 

                          , where 

     =      
     and          

   .   

The bias of     
 
in estimating    is given by 

Bias (      ) =                , where 

     Is the contribution of    to the bias, and      is the contribution    to the bias. Since    is unknown we have to 

work with  . One size measure for matrix P is given by ║P║
2 
= trace (P

T
P).

 
 

Recall that for design I the cofounding pattern is (0, 6, 1) and         
    

    
   ,  

When j = 2, 

        
    

    
   . From the confounding pattern of design I, none of the two factor interaction not in the model 

confounded with the effect in the model. Therefore 
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When j = 3, we have six 3-factor interaction not in the postulated model confounded with the effect in the model. The 

six 3-factor interactions are 247, 147, 127, 124, 128 and 478. 
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Trace (P3
T
*P3) = 6. 

Similarly, when j = 4, only one 4-factor interaction (2478) not in the postulated model confounded with the effect in the 

model. 
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Bias (      )  =  trace (P2
T
*P2) + trace (P3
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*P3) + trace(P4

T
*P4) =  0 + 6 +1 = 7.   

For design II the confounding pattern is (4, 2, 2) and          
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When j = 3 
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When j =4 
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 Bias (      ) = trace (P2
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*P2) +trace (P3

T
*P3) +trace (P4

T
*P4) = 4 + 2 + 2 = 8.  

5. Conclusion 

Bias accounted In the estimation of   in the two designs were 7 and 8 respectively, this clearly shows the importance of 

taking in to consideration the nature of  confounding pattern when selecting a design. 
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