The primordial end calculus of prime numbers and mathematics

Vinoo Cameron
Hope research, Athens, Wisconsin, USA
E-mail:9900@frontier.com

Abstract

This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Annals of mathematics had been duly informed by letter of the new discovery of the concordance of prime numbers spirals with regular number spirals, but for the sake of fidelity. Mathematics is not complexity, but simplicity, the configuration of 1 is spiral .The relationship between pure mathematical numbers and empty space is a primordial relationship, and well defined by gaps, plus it has been validated by the author by the Publishing of the pure continuous Den-Otter Prime number sieve at $1 / 6$ and $5 / 6$ (and $1 / 3$ and $2 / 3$), and these prime sieves are reversible. Thus the relationship of the configuration of 1 is in two planes that expand in the frame of ($5 / 6$ and $1 / 6$) and ($1 / 3$ and $2 / 3$)are represented by spiral configuration, expressed by these numbers, as in :All prime numbers spirals are assigned infinitely by the simple -1 offset of the two spiral numbers cords

$1 / 3+2 / 3=1$
$5 / 6+1 / 6=1$
$1 / 3-1 / 6=1 / 6$
$5 / 6-2 / 3=1 / 6$
$1 / 3+1 / 6=0.5$
$5 / 6+2 / 3=1.5$
$1.5 / 0.5=3$
Note: the above is also confirmed by Arabian numerical shown below.
Primordial mathematics as created by the creator is absolute and precise whilst the mathematics invented by man is approximate .Current Mathematics of a thousand years has accomplished much by approximate theory, and it is very possible to land a man on the moon by approximate mathematics, but to precisely understand mass and energy, the nucleus of mass and the vastness of space, one must understand the precise nature and curvature of space.
Space and mathematics are curved precisely at $1: 3$ from primordial times(the basis for the π as shown under the publication Unified Theorem), and the warping of space is related to the $1: 3$ separation at precise 19 correct degrees separation and the precise right angled separation at $1: 3$ is at $360 / 19$ degrees. This mathematics is about the curved lay of the grid of mathematics and cannot be understood by the current linear obsession of mathematics, but the readers are immediately referred to the 8 published papers of the author as referenced below. The calculus below virtually negates the current mathematics ideas of linear ascension theories of the past 500 years. This calculus is true for all prime numbers. This involves a precise "combing" of all prime number spirals around a half line. This is clearly and singularly the solution to prime number spiral calculus, which is fairly simple after this discovery. The ruminations of George Riemann and others of the past 500 years in linear ascension mathematics of prime numbers are non- functional irrelevant mathematics, just collateral observations of the correct mathematics which is presented here as "Primum movens" of mathematics. In Mathematics there is only a single best resolution, whilst collateral equations abound, as they have for 500 years for prime numbers which we have proved are basically by two chords and ascend by a half-line. Einstein's observations and ruminations likewise are collateral and not central to the fact that the universe is precisely curved, and ascension of prime numbers are by two spiral chords.

1 Introduction

This massive mathematics can only be introduced by the published references provided below. Basically the entire mathematics is at $1: 3$ at 19 correct degrees by spatial configuration which is shown under. The basic novel continuous Prime number sieve at $1: 3$, at ($5 / 6: 1 / 6$) and $(2 / 3: 1 / 3)$ has been recently published, yet unnoticed. It is the Den- Otter prime sieve and is reversible
The word "Spiral" for the purposes of this paper indicates the three numbers of concordant gaps around a prime number. The symbol ($\mathrm{n}_{\mathrm{\prime}}$) represents a gap between numbers as an example for the prime number 11 the following are the spiral gaps.
By regular numbers at prime number 11: 9_11_13
By prime numbers at prime number 11: 5_11_17
The Basic Mathematics of concordance of spiral numbers is at gaps 12 and gap 4 as in the example above $(9+11+13)=(5+11+17)=33$ for regular numbers and is the base at $(12 / 4=3)$ and the fact that at this grid alone the total additional values for the regular spiral numbers at 4 span equal those of the Prime number spirals at 12 span, as shown further below, and is a constant, so is the constant 32 .The mentioned Spiral constants are constant throughout the entire mathematical grid between the Prime number spirals and the regular prime number spirals as follows, at the half line(Spiral gap 10,12,14,16,18,20,22,24, 26, 28,30. \qquad and so on.

1.1 Spiral progression of numbers/prime numbers by gap value

Constant 4 and 12 (example for prime numbers 19, 41, 43...)

13_19_29 17_19_21
$(29 * 19)-(13 * 19)=304$
$(21 * 19)-(17 * 19)=76$
304/76=4
$304-76=228$
228/19=12

31_41_47 39_41_43
$(47 * 41)-(41 * 31)=656$
$(43 * 41)-(39 * 41)=164$
656/164=4
656-164=492
492/41=12

37_43_53 41_43*45
$(53 * 43)-(43 * 37)=688$
$(45 * 43)-43 * 41)=172$
688/172=4
$688-172=516$
516/43=12
67_73_83 71_73_75
$(83 * 73)-(73 * 71)=1168$
$(75 * 73)-(73 * 71=292$
$1168 / 292=4$
$1168-292=876$
$876 / 73=12$

Gap 18 spirals: Constant 4.5 and 14(example prime numbers 29, 31, 47)
17_29_37 27_29_31
$(37 * 29)-(29 * 19)=522$
$((29 * 31)-(29 * 27)=116$
522/16=4.5
522-116=406
406/29=14
23_31_41 29_31_33
$(41 * 31)-(31 * 23)=558$
$(33 * 31-(29 * 31)=124$
558/124=4.5
558-124=434
$434 / 31=14$

41_47_59 45_47_49
$(59 * 47)-(47 * 41)=846$
$(49 * 47)-(47 * 45)=188$
846/188=4.5
846-188=658
658/47=14
Gap Spiral 20: Constant 5 and 16 (example Prime numbers 59, 97, 139, 151)
47_59_67 57_59_61
$(67 * 59)-(59 * 47)=1180$
$(59 * 61)-(59 * 57)=236$
1180/236=5
1180-236=944
944/59=16
83_97_103 95_97_99
$(103 * 97)-(97 * 83)=1940$
(99*97)- (95*97=388
1940/388=5
$1940-388=1552$
$1552 / 97=16$
131_139_151 95_97_99
$(151 * 139)-(139 * 131)=2780$
$(141 * 139)-(139 * 137)=556$
2780/556=5
2780-556=2224
$2224 / 139=16$

1.2 Indirect assignment of all spiral values of prime numbers by the offset of prime number dual chains at -1

Please note the -1base offset arrangement that delineate the spiral values for each prime number. Precise values are obtained from the new continuous Prime number sieve at $5 / 6,1 / 6$ and $1 / 3,2 / 3$ (Den-Otter prime number Sieve recently published by the author).The spiral gap is indicated as Prime number (spiral span)

Spiral gap		
1	$5(10)$	11
3	$7(10)$	13
5	$11(12)$	17
7	$13(12)$	19
11	$17(12)$	23
13	$19(16)$	29
17	$23(14)$	31
19	$29(18)$	37
23	$31(18)$	41
29	$37(14)$	43
31	$41(16)$	47
37	$43(16)$	53
41	$47(18)$	59
43	$53(18)$	61
47	$59(20)$	67
53	$61(18)$	71
59	$67(14)$	73
61	$71(18)$	79

67	73 (16)	83
71	79 (18)	89
73	83 (24)	97
79	89 (22)	101
83	97 (20)	103
89	101 (18)	107
97	103 (12)	109
101	107 (12)	113
103	109 (24)	127
107	113 (24)	131
109	127 (28)	137
113	131 (26)	139
127	137 (22)	149
131	139 (20)	151
137	149 (20)	157
139	151 (24)	163
149	157 (18)	167
151	163 (22)	173
157	167 (22)	179
163	173 (18)	181
167	179 (24	191
173	181 (20)	193
179	191 (18)	197
181	193 (18)	199
191	197 (20)	211
193	199 (30)	223
197	211 (30)	227
199	223 (30)	229
211	227 (22)	233
223	229 (16)	239
227	233 (14)	241
229	239 (22)	251
233	241 (24)	257
239	251 (24)	263
241	257 (28)	269
251	263 (20)	271
257	269 (20)	277
263	271 (18)	281
269	277(14)	283
271	281(22)	293
277	283 (36)	307
281	293 (34)	311
283	307(30)	313
293	311 (24)	317
307	313 (24)	331
311	317 (26)	337
313	331 (34)	347
317	337 (32)	349
331	347 (22)	353
337	349 (22)	359
347	353 (20)	367
349	359 (24)	373
353	367 (26)	379
359	373 (24)	383
367	379 (22)	389
373	383 (24)	397
379	389 (22)	401
383	397 (26)	409
389	401 (30)	419
397	409 (24)	421

401	419 (30)	431
409	421 (24)	433
419	431 (20)	439
421	433 (22)	443
431	439 (18)	449
433	443 (24)	457
439	449 (22)	461
443	457 (20)	463
449	461 (18)	467
457	463 (22)	479
461	467 (26)	487
463	479 (28)	491
467	487 (32)	499
479	491 (24)	503
487	499 (22)	509
491	503 (30)	521
499	509 (24)	523
503	521 (38)	541
509	523 (38)	547
521	541 (36)	557
523	547 (40)	563
541	557 (29)	569
547	563 (24)	571
557	569 (20)	577
563	571 (24)	587
569	577 (24)	593
571	587 (28)	599
577	593 (24)	601
587	599 (20)	607
593	601 (20)	613
599	607 (18)	617
601	613 (18)	619
607	617 (24)	631
613	619 (28)	641
617	631 (26)	643
619	641 (28)	647
631	643 (22)	653
641	647 (18)	659
643	653 (18)	661
647	659 (26)	673
653	661 (24)	677
659	673 (24)	683
661	677 (30)	691
673	683 (28)	701
677	691 (32)	709
683	701 (36)	719
691	709 (36)	727
701	719 (32)	733
709	727 (30)	739
719	733 (24)	743
727	739 (24)	751
733	743 (24)	757
739	751 (22)	761
743	757 (26)	769
751	761 (22)	773
757	769 (30)	787
761	773 (36)	797
769	787 (40)	809
773	797 (38)	811

787	$809(34)$	821
797	$811(26)$	823
809	$821(18)$	827
811	$823(18)$	829
821	$827(18)$	839
823	$829(20)$	853
827	$839(30)$	857
829	$853(30)$	859
839	$857(24)$	863
853	$859(24)$	877
857	$863(24)$	881
859	$877(24)$	883
So on		

And so on for all prime number spirals, and a clear calculus to predict all prime number spiral values, based on this end calculus and what follows below .Most clearly the spirals are predictable and constant.

1.3 Schematic distribution of the spirals by the half-line and the two spirals (the actual spirals are at a tangent to the half-line)

24	22	20	18	16	14	12	10	1	10	12	14	16	18	20	22	24
								2								
									3							

| | | | | | | | | 119 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | 120 | | | | | | | | |
| | | | | | | | | 121 | | | | | | | | |
| | | | | | | | | 124 | | | | | | | | |
| | | | | | | | | 125 | | | | | | | | |
| | | | | | | | | 126 | | | | | | | | |
| | $\mathbf{1 2 2}$ | | | | | | 122 | | | | | | | | | |
| 24 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 127 | 10 | 12 | 14 | 16 | 18 | 20 | $\mathbf{1 2}$ | |

Unscrambled distribution table of the spiral values: These values are for prime numbers and the concordant spirals of regular numbers at fixed span of 4 (absolute concordance is at 1:3 values as shown below): Prime number is in red, the collateral prime number on the left. On the right are the regular number spiral coordinates of the same prime numbers:

10S	Prime no		Prime no		
1	5	11	3	5	7
3	7	11	5	7	9
12 S					
5	11	17	9	11	13
7	13	19	11	13	15
11	17	23	15	17	19
97	103	109	101	103	105
101	107	113	105	107	109
1481	1487	1493	1485	1487	1489
14 S					
17	23	31	21	23	25
29	37	43	35	37	43
59	67	73	65	67	69
227	233	241	231	233	235
269	277	283	275	277	279
1277	1283	1291	1281	1283	1285
1289	1297	1303	1295	1297	1299
16S					
13	19	29	17	19	21
31	41	47	39	41	43
37	43	53	41	43	45
67	73	83	71	73	75
223	229	239	227	229	231
1087	1093	1103	1091	1093	1095
1423	1429	1439	1427	1429	1431
1471	1481	1487	1479	1481	1483
18S					
17	29	37	27	29	31
23	31	41	29	31	33
41	47	59	45	47	49
43	53	61	51	53	55
53	61	71	59	61	63
61	71	79	69	71	73
71	79	89	77	79	81
89	101	107	99	101	103
149	157	167	155	157	167
163	173	181	171	173	175
179	191	197	189	191	197
181	193	199	191	193	195
263	271	281	269	271	273
431	439	449	437	439	441
449	461	467	459	461	463
599	607	613	605	607	609
601	613	619	611	613	615
641	647	659	645	647	649

643	$\mathbf{6 5 3}$	661	651	$\mathbf{6 5 3}$	655
809	$\mathbf{8 2 1}$	827	819	$\mathbf{8 2 1}$	823
811	$\mathbf{8 2 3}$	829	821	$\mathbf{8 2 3}$	825
821	$\mathbf{8 2 7}$	839	825	$\mathbf{8 2 7}$	829
1091	$\mathbf{1 0 9 7}$	1109	1095	$\mathbf{1 0 9 7}$	1099
1213	$\mathbf{1 2 2 3}$	1231	1221	$\mathbf{1 2 2 3}$	1225
1279	$\mathbf{1 2 8 9}$	1287	1287	$\mathbf{1 2 8 9}$	1291
1283	$\mathbf{1 2 9 1}$	1301	1289	$\mathbf{1 2 9 1}$	1293
1471	$\mathbf{1 4 8 3}$	1489	1481	$\mathbf{1 4 8 3}$	1485
$20 S$					
47	$\mathbf{5 9}$	67	57	$\mathbf{5 9}$	61
83	$\mathbf{9 7}$	103	95	$\mathbf{9 7}$	99
131	$\mathbf{1 3 9}$	151	137	$\mathbf{1 3 9}$	141
137	$\mathbf{1 4 9}$	157	$147 *$	$\mathbf{1 4 9}$	151
153	$\mathbf{1 6 3}$	173	161	$\mathbf{1 6 3}$	165
191	$\mathbf{1 9 7}$	211	$195 *$	$\mathbf{1 9 7}$	199
257	$\mathbf{2 6 9}$	277	267	$\mathbf{2 6 9}$	271
369	$\mathbf{3 7 9}$	389	377	$\mathbf{3 7 9}$	381
443	$\mathbf{4 5 7}$	463	455	$\mathbf{4 5 7}$	459
557	$\mathbf{5 6 7}$	577	565	$\mathbf{5 6 7}$	569
587	$\mathbf{5 9 9}$	607	597	$\mathbf{5 9 9}$	601
593	$\mathbf{6 0 1}$	613	599	$\mathbf{6 0 1}$	603
1013	$\mathbf{1 0 2 1}$	1033	1019	$\mathbf{1 0 2 1}$	1023
1019	$\mathbf{1 0 3 1}$	1039	1029	$\mathbf{1 0 3 1}$	1033
1031	$\mathbf{1 0 3 9}$	1051	1037	$\mathbf{1 0 3 9}$	1041
1049	$\mathbf{1 0 6 1}$	1069	1059	$\mathbf{1 0 6 1}$	1063
1217	$\mathbf{1 2 2 9}$	1237	1227	$\mathbf{1 2 2 9}$	1231

1.4 End calculus of mathematics, by Arabic numerals $\mathbf{0 - 3 \wedge}$ (1:3), the correct numbers theorem

We demonstrate the concordance of regular spiral numbers (+2) and the spiral prime numbers of the Spiral gap 16, 14, 18 , and 20 to show concordance in the spirals. This is a very major proof against current mathematics number and prime number theory and their approach to "random" Prime numbers, which is non-existent, as there are no random prime numbers which has been a vain imagination of current mathematics throughout the centuries.
0,1,2,3,4,5,6
The above rational numbers are arranged so that 3 are at the half line of 0 and 6 . The exclusive value of 3 as a number is represented by
$3 * 2=6$ and $6 / 6=1(1: 3)$
$3 * 2=6$ and $3 * 4=12 ; 12 / 6=0.5(0.5)$
$0,(1) 2=0 / 2=0$
$0,1,(2), 3,4=(2 * 1 / 4=0.5)$
$0,1,2,(3), 4,5,6=(3 * 2 / 6=1)$
$0,1,2,3,(4), 5,6,7,8=(4 * 3 / 8=1.5)$
$0,1,2,3,4,(5), 6,7,8,9,10=(5 * 4 / 10=2)$
$0,1,2,3,4,5,(6), 7,8,9,10,11,12=(6 * 5 / 12=2.5)$
$0,1,2,3,4,5,6,(7), 9,10,11,12,13,14=(7 * 6 / 14=3)$
$0,1,2,3,4,5,6,7,(8), 9,10,11,12,13,14,15,16=(8 * 7 / 16=3.5)$
$0,1,2,3,4,5,6,7,8,(9), 10,11,12,13,14,15,16,17,18,(72 / 18=4)$

Conclusion:

$1: 4$ span is proportional to $1: 3$ [3 and $3^{\wedge} 2(9)$] [3 and $3 * 2(6)$] by a factor of $6(3 \wedge 2-3)$ and $3(4-1)$, and $0.5 / 60(1 / 360 / 3)$ is the logical offset at the base of mathematics as published separately. Thus clearly the span of mathematics by numbers and prime numbers is divergent at 3 and convergent at 6 , in concordance to $1: 4$
Note at 19, value is 9 :
At 3 values is 1

At 5 the value is 2
At 7 values are 3
At 9 value is $4\left(2^{\wedge} 2\right)$
At 19 value is $9\left(3^{\wedge} 2\right)$
$(19-7) /(9-5)=3$
$(9-3) /(4-2)=3$
$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(19), 20,21,22,23,24,25,26,27,28,29,30,31,31,32,33,34,35,26,37,38$
$(19 * 18) / 38=9\left(3^{\wedge} 2\right)$
So 19 as a proportionate prime number does represent 1:3 as we have said, but we have had to present mathematics in the most rudimentary manner, to make many mathematicians understand the primordial arrangement.

1.5 The configuration of 1 at ($5 / 6$ and $1 / 6$) and ($1 / 3$ and $2 / 3$) the author has prime number sieve at these proportions (den otter sieve)

This is the basic example of the precise configuration of mathematics and the understanding applies to the whole grid of the whole mathematics, and that's the way mathematics is, AND when the space numerations of the sets of calculation are applied to the ascension of mathematics, these are precise and very concordant to the grid of mathematics as shown under, but the understanding is difficult, but that is the lay of mathematics, it is not linear, it is curved precisely by prime numbers that are curved in the spatial expanse of mathematics. The author cannot express it any better, and the current understanding of mathematics is quite confused.
This diagram is precisely representative of the concordance of prime numbers and coned expansion of mathematics of which prime numbers are integral. The trigonometric association is a separate mathematics. This below is the general understanding of prime numbers and their relationship to curved space. Any mathematician, who still thinks that the numbers 2 and 3 are in the prime number configuration, should depart from this discussion and never come back, till they have rediscovered mathematical logic. Mathematically by serial numbers this is totally predictable, since the configuration is 4 alternating with 2, a no- brainer.
Prime number/ Pseudo prime number $/ 6=1 / 6$ or $5 / 6$, thus:
$1 / 6+5 / 6=1$
$5 / 6+7 / 6=2$
$7 / 6+11 / 6=3$
$11 / 6+13 / 6=4$
$13 / 6+17 / 6=5$
$17 / 6+19 / 6=6$
$19 / 6+23 / 6=7$
$[((19 / 6) / 7) /((23 / 6) / 7)=1]$
$23 / 6+25 / 6=8$
25/6+29/6=9
$29 / 6+31 / 6=10$
$31 / 6+35 / 6=11$
$35 / 6+37 / 6=12$
$37 / 6+41 / 6=13$
$41 / 6+43 / 6=14$
$43 / 6+47 / 6=15$
$47 / 6+49 / 6=16$
$49 / 6+53 / 6=17$
53/6+55/6=18
55/6+59/6=19
59/6+61/6=20
$61 / 6+65 / 6=21$
$65 / 6+67 / 6=22$
$67 / 6+71 / 6=23$
$71 / 6+73 / 6=24$
$73 / 6+77 / 6=25$
$77 / 6+79 / 6=26$
$79 / 6+83 / 6=27$
$83 / 6+89 / 6=28$
$85 / 6+89 / 6=29$
$89 / 6+91 / 6=30$
$91 / 6+95 / 6=31$

95/6+97/6=32
$97 / 6+101 / 6=33$
$101 / 6+103 / 6=34$
$103 / 6+107 / 6=35$
107/6+109/6=36
The above, when tallied for the "numerations and the sum total values " yields a stable rhythm of precisely 4, 3, $(3+1 / n), 3,(3+1 / n+2), 3,(3+1 / n+3)$, briefly as follows , simply denoting the stable nonrandom expansion of prime numbers in the matrix of non-linear space. This is as follows. Mathematically the values 2,3 are not prime numbers. Every alternate value is 3 , and every alternate value is predictable based on the numeration, two cords of this will isolate 3 values (numeration represents the gaps). The values are demonstrated by table following the diagrams.

INTRODUCTION
(c) represents the dead center of the square. An infinite extension of the 360/19 degrees line, infinitely transects all unidimensional squared spaces at $1 / 3,2 / 3$ and (C), in continuum
$19-\left(\frac{360}{19}\right)=\frac{1}{19} \ldots \ldots \ldots \ldots \cdot \frac{\sqrt{2}}{\left(\frac{90}{19}\right)} \cdot 1.11648439134=\frac{1}{3}$
Note: As a rule all calculations are limited to 11 decimal slots
Fig. 1

Representation

$\frac{5}{6}=\frac{1}{6}-$ Curve constant at -1
Fig. 2

1	$(5-1) / 1=$	4
2	$(12-6) / 2=$	3
3	$(23-13) / 3=$	$3 .+1 / 3$
4	$(36-24) / 4=$	3
5	$(53-37) / 5=$	$3 .+1 / 5$
6	$(72-54) / 6=$	3
7	$(95-73) / 7=$	$3+1 / 7$
8	$(120-96) / 8=$	3
9	$(149-121) / 9=$	$3+1 / 9$
10	$(180-150) / 10=$	3
11	$(215-181) / 11=$	$3+1 / 11$
12	$(252-216) / 12=$	3
13	$(293-253) / 13=$	$3+1 / 13$
14	$(336-294) / 14=$	3
15	$(383-337) / 15=$	$3+1 / 15$
16	$(432-384) / 16=$	3
17		
18		
19		
20		

2 Study of the spiral grid of mathematics by a new numbers theorem

The author has already published a continuous prime number sieve at $1 / 6$ and $5 / 6$; and $2 / 3$ and $1 / 3$ (Den-Otter Prime Sieve), but unfortunately in the current obsession with current Mathematics theory, it has not yet been noticed, as current mathematics is celebrating larger and larger prime numbers, to what logic?
The exclusivity of $1: 3$ for spiral $12(6-x-6)$ grid has to be noted, should have been noted by the mathematicians, as the grid is equalized by the prime numbers: numbers as shown ($12 / 4=3$), as an example,
$11+17+23=15+17+19=51$ (prime 17 Spiral 12)
$10+16+22=14+16+18=48$ (non- prime $16,1: 3$ spiral 12)
(Spiral 12(1:3) grid) and represents the spiral ascension of mathematics at 0.5 ($2 / 3$ twist and $1 / 3$ twist of the mathematics) is the base grid in which the sum of the regular spirals equals the sum of the prime number spirals. In this concordant grid between the alternate cord of regular numbers with gaps of 4 and the cord of numbers with gaps of 12 are demonstrated for prime numbers. Please note this was discussed in a previous paper that concordance is absolutely equal at a span of 12 and for a span of 16 it is -4 . For a span
There are two constants in this mathematics grid at $1: 3$
A. Constant $3: 8$, for all numbers in the grid as discussed above in the beginning of the manuscript, prime 17 is an example
11_17_23......15_17_19
$(17 * 23)-(17 * 11)=204$
$(19 * 17)-(17 * 15)=68$
204/68=3
$204-68=136$
$136 / 17=8$
B. Constant 32 , this is from the grid below and is a constant for all numbers

11_17_23 15_17_19
$(19 * 15)-(23 * 11)=32$ Constant for all values in the grid.
The 32 constant leads to the consistent whole number numeration
$(19 * 15) / 32=8.90625$
$(23 * 11) / 32=7.90625$
Starting at the $1^{\text {st }}$ value:

1.40625	0.40625
1.875	0.875
3	2
3.65625	2.65625
4.375	3.375
5.15625	4.15625
6	5
6.90625	5.90625
7.875	6.875

8.90625	7.90625
10	9
11.15625	10.15625
12.375	11.375
13.65625	12.65625
15	14
16.40625	15.40625
17.875	16.875
19.40625	18.40625
21	20
22.65625	21.65625
24.375	23.375
28	27
29.90625	28.90625
31.875	30.875
33.90625	32.90625
36	35

The above translates to a spatial numeration as follows:
$3,6,10,15,21,28,36$, which is,
$(1+2)+(3+3)+(6+4)+(10+5)+(15+6)+(21+7)+(28+8) \ldots \ldots$.
$(1 / 2=0.5)+(3 / 3=1)+(6 / 4=1.5)+(10 / 5=2)+(15 / 6=2.5)+(21 / 7=3)+(28 / 8=3.5)$
You can precisely place each number in mathematics in a perfect precise place for that number in the grid. This grid has the following characteristics and is precise and stable. That is how prime numbers are exactly placed:

1) On the right side are three coordinates of regular alternate numbers with a span of 4 , on the left there are three coordinate numbers spirals with a span of 12
2) The sum product of the numbers on the right is precisely equal till infinity to the sum of the numbers on the left $(5+11+17)=(9+11+13)=33$
3) The number 32 is a constant throughout the grid (13*9)-(17*5) $=32$ for all coordinates
4) Values progress by span count ($3,6,10,15,21,28,36,45,55,66,78,91,105 \ldots$)
5) The grid is predictably concordant with other spiral values i.e $12,14,16,18,20 \ldots$ spiral grid values of prime numbers spirals, even though these are available indirectly above, these values by predictive equation seals the final
6) The final equations for the entire spiral Prime number values by direct equation is the EXTENSIVE END CALCULUS EQUATIONS, that which is evident indirectly as the half line spiral values (span) in the method above and for the first time in history there is predictive Prime number spiral value, when the World is still stuck on Twin Prime numbers. These equations, based on the grids etc. are a no brainer and the author might just keep these secret from the mathematicians, to give the opportunity to mathematicians to recant their mathematics theory

2.1 Twin prime numbers are predictable and calculable by number series

This is integral to mathematics that twin Prime numbers are predictable part of each spiral. The following is the twin prime grid: The author has not expended his capital on this as this is integral to the grid of mathematics. These have to be indefinite, and represent the mathematics of the grid, but beyond that this paper is to understand the lay of the forest, and not the natty gritty at this juncture. The prime numbers spirals on the left, the regular number are on the right

Twin Prime numbers placement:					
Spiral10					
1	5	11	3	5	7
3	7	13	5	7	9
Spiral12					
5	11	17	9	11	13
7	13	19	11	13	15
Spiral14					
Spiral16					
31	41	47	39	41	43
37	43	53	41	43	45
Spiral18					
17	29	37	27	29	31
23	31	41	29	31	33
179	191	197	189	191	193
181	193	199	191	193	195
1279	1289	1297	1287	1289	1291
1283	1291	1301	1289	1291	1293

The Grid of Mathematics At 1:3, Prime Spiral 12 Span

1(+6)	7(+6)	13	5(+2)	7(+2)	9	+++21	$=21 / 3$	7
2	8	14	6	8	10	+++24	$=24 / 3$	8
3	9	15	7	9	11	+++27	$=27 / 3$	9
4	10	16	8	10	12	+++30	=30/3	10
5*	11*	17*	9*	11*	13*	+++33	=33/3	11
6	12	18	10	12	14	+++36	=36/3	12
7*	13*	19*	11*	13*	15*	+++39	=39/3	13
8	14	20	12	14	16	+++42	$=42 / 3$	14
9	15	21	13	15	17	+++45	$=45 / 3$	15
10	16	22	14	16	18	+++48	$=48 / 3$	16
11*	17*	23*	15*	17*	19*	+++51	$=51 / 3$	17
12	18	24	16	18	20	+++54	$=54 / 3$	18
13	19	25	17	19	21	(+++57)	$=57 / 3$	19
14	20	26	18	20	22	+++60	$=60 / 3$	20
15	21	27	19	21	23	+++63	$=63 / 3$	21
16	22	28	20	22	24	+++66	$=66 / 3$	22
17	23	29	21	23	25	+++69	$=69 / 3$	23
18	24	30	22	24	26	+++72	$=72 / 3$	24
19	25	31	23	25	27	+++75	$=75 / 3$	25
20	26	32	24	26	28	+++78	=78/3	26
21	27	33	25	27	29	+++81	$=81 / 3$	27
22	28	34	26	28	30	+++84	$=84 / 3$	28
23	29	35	27	29	31	+++87	$=87 / 3$	29
24	30	36	28	30	32	+++90	=90/3	30
25	31	37	29	31	33	+++93	=93/3	31
26	32	38	30	32	34	+++96	=96/3	32
27	33	39	31	33	35	+++99	=99/3	33
28	34	40	32	34	36	+++102	$=102 / 3$	34
29	35	41	33	35	37	+++105	= 105/3	35
30	36	42	34	36	38	+++108	= $108 / 3$	36
31	37	43	35	37	39	+++111	$=111 / 3$	37
32	38	44	36	38	40	(+++114)	$=114 / 3$	38
33	39	45	37	39	41	+++117	$=117 / 3$	39
34	40	46	38	40	42	+++120	$=120 / 3$	40
35	41	47	39	41	43	+++123	= $123 / 3$	41
36	42	48	40	42	44	+++126	$=126 / 3$	42
37	43	49	41	43	45	+++129	$=129 / 3$	43
38	44	50	42	44	46	+++132	= $132 / 3$	44
39	45	51	43	45	47	+++135	$=135 / 3$	45
40	46	52	44	46	48	+++138	$=138 / 3$	46
41	47	53	45	47	49	+++141	$=148 / 3$	47
42	48	54	46	48	50	+++144	$=144 / 3$	48
43	49	55	47	49	51	+++147	$=147 / 3$	49
44	50	56	48	50	52	+++150	$=150 / 3$	50
45	51	57	49	51	53	+++153	= 153/3	51
46	52	58	50	52	54	+++156	= $156 / 3$	52
47	53	59	51	53	55	+++159	= $159 / 3$	53
48	54	60	52	54	56	+++162	$=162 / 3$	54
49	55	61	53	55	57	+++165	= 165/3	55
50	56	62	54	56	58	+++168	$=168 / 3$	56
51	57	63	55	57	59	(+++171)	$=171 / 3$	57
52	58	64	56	58	60	+++174	$=174 / 3$	58
53	59	65	57	59	61	+++177	$=177 / 3$	59
54	60	66	58	60	62	+++180	= 180/3	60
55	61	67	59	61	63	+++183	$=183 / 3$	61
56	62	68	60	62	64	+++186	= 186/3	62
57	63	69	61	63	65	+++189	= 189/3	63
58	64	70	62	64	66	+++192	= 192/3	64

59	65	71	63	65	67	+++195	= 195/3	65
60	66	72	64	66	68	+++198	= 198/3	66
61	67	73	65	67	69	+++201	=201/3	67
62	68	74	66	68	70	+++204	=204/3	68
63	69	75	67	69	71	+++207	$=207 / 3$	69
64	70	76	68	70	72	+++210	$=210 / 3$	70
65	71	77	69	71	73	+++213	$=213 / 3$	71
66	72	78	70	72	74	+++216	$=216 / 3$	72
67	73	79	71	73	75	+++219	$=219 / 3$	73
68	74	80	72	74	76	+++222	$=222 / 3$	74
69	75	81	73	75	77	+++225	=225/3	75
70	76	82	74	76	78	(+++228)	=228/3	76
71	77	83	75	77	79	+++231	= $231 / 3$	77
72	78	84	76	78	80	+++234	=234/3	78
73	79	85	77	79	81	+++237	$=237 / 3$	79
74	80	86	78	80	82	+++240	$=240 / 3$	80
75	81	87	79	81	83	+++243	$=243 / 3$	81
76	82	88	80	82	84	+++246	=246/3	82
77	83	89	81	83	85	+++249	$=249 / 3$	83
78	84	90	82	84	86	+++252	=252/3	84
79	85	91	83	85	87	+++255	=255/3	85
80	86	92	84	86	88	+++258	=258/3	86
81	87	93	85	87	89	+++261	$=261 / 3$	87
82	88	94	86	88	90	+++264	=264/3	88
83	89	95	87	89	91	+++267	$=267 / 3$	89
84	90	96	88	90	92	+++270	=270/3	90
85	91	97	89	91	93	+++273	=273/3	91
86	92	98	90	92	94	+++276	=276/3	92
87	93	99	91	93	95	+++279	=279/3	93
88	94	100	92	94	96	+++282	$=282 / 3$	94
89	95	101	93	95	97	(+++285)	=285/3	95
90	96	102	94	96	98	+++288	$=288 / 3$	96
91	97	103	95	97	99	+++291	=291/3	97
92	98	104	96	98	100	+++294	=294/3	98
93	99	105	97	99	101	+++297	=297/3	99
94	100	106	98	100	102	+++300	=300/3	100
95	101	107	99	101	103	+++303	= $303 / 3$	101
96	102	108	100	102	104	+++306	= 306/3	102
97*	103*	109*	101*	103*	105*	+++309	=309/3	103
98	104	110	102	104	106	+++312	$=312 / 3$	104
99	105	111	103	105	107	+++315	$=315 / 3$	105
100	106	112	104	106	108	+++318	$=318 / 3$	106
101*	107*	113*	105*	107*	109*	+++321	=321/3	107
1481*	1487*	1493*	1485*	1487*	1491	+++4459	= $4459 / 3$	1487

3 Conclusion

This is clearly and singularly the solution to prime number spiral calculus and the absolute arrangement of the entire mathematics, which is reasonably simple after this discovery. The ruminations of George Riemann and others in linear ascension mathematics of prime numbers are non-functional irrelevant mathematics, just collateral observations of the correct mathematics, as was the observations of Einstein. In Mathematics there is only a single best resolution, whilst collateral equations abound, as they have for 500 years for prime numbers which we have proved are basically by two cords and ascend by a half-line and concordance with regular number.
Alternate Regular numbers at base of 4 are totally and precisely concordant at with all the numbers with the base span of 12 , and including all Prime number spirals with a base span offset at 12 .

Acknowledgements

1) Jesus Christ for his grace and the inspiration of the blessed Virgin Mary first and foremost in my case (And due respect for all the good in all religions, including Islam, Buddhism, Hinduism, Judaism, Sikhism) who gave the author humility, wisdom, inspiration and standing amongst all the so called super mathematicians, by his special grace, truth, to throw the houlihan of mathematics. (A cowboy's lasso).
2) Dr. Belal Mohammed Batiha, PhD, a magnanimous humble mathematician and human being to the author, Editor of IJAMR
3) Dr. Hong Ma, PhD, the brave editor of Journal of American science, for his pragmatism that the best ideas come from the least expected sources
4) Janice Kay my long suffering wife Janice Kay, a thank you for simple mathematical insights.
5) IJAMR, for its integrity and open mindedness; unlike many other journals in mathematics, they do not pinch the nostrils of creativity, neither do they direct the milk of liberty in the sciences into their own suckers. Knowledge is for the free, not the elite.

References

[1] Cameron.V. The first ever precise predictive prime number placement, International journal of applied mathematics research 2(3) (2013)345351) (journal listed by the American mathematics) society)
[2] Cameron. V. The spiral code of prime numbers, International journal of applied Mathematics research 2 (2) (2013)279-292)
[3] Cameron. V. The unified Theorem at -1 (Vedic Zero), International Journal of Mathematics research, 2(2) (2013) 221-251)
[4] Cameron .V, The disproof and fall of the Riemann's hypothesis by quadratic base: The correct variable distribution of prime numbers by the clear mathematics of the half-line values ("Chan function") of prime numbers, International Journal of Applied Mathematical Research, 2 (1) (2013) 103-110.
[5] Cameron V, den Otter T. Prime numbers 2012. Jam Sci 2012; 8(7):329-334]. (ISSN: 1545-1003), http://www.jofamericanscience.org.
[6] Cameron V, Prime number Coordinates and calculus J Am Sci, 2012; 8(10):9-10]. (ISSN: 1545-1003).http://www.jofamericanscience.org
[7] Cameron: Prime number19, Vedic Zero and the fall of western mathematics by theorem. International journal of applied mathematical research 2(1) (2013)111-115
[8] Cameron: The rational variability of all empty space by prime number: International journal of applied mathematical research, 2(2) (2013)157174
[9] Cameron :The poison pill of current mathematics theory, delivered : International journal of applied mathematical research;2(3)(2013)387402)

