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Abstract 

 

In this paper, Stokes problem of a free convective flow past a vertical infinite plate in a rotating system in presence of 

variable magnetic field is investigated. The fluid considered is electrically conducting. The equations governing the 

flow in this case are non-linear, thus they cannot be solved analytically. The finite difference method (FDM) and 

computer will be employed in solving the non-linear equations. The effects of the various parameters entering into the 

problem are discussed extensively and are shown graphically. Discussion of results is done by investigating the 

parameters: m (the Hall parameter), E (rotational parameter) and 2M  (The Magnetic parameter). If Gr > 0 (=0.5) then 

this is plate cooling by free convection currents, while when Gr < 0 (=-0.5), this is plate heating by free convection 

currents. The effect of a variable magnetic field is to retard the fluid motion by affecting the velocity and temperature.  
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1 Introduction 

The study of rotating fluids has had considerable progress in the last few decades. For instance, the effect of an applied 

variable magnetic field on unsteady free convection flow along a vertical plate has been given considerable interest 

because of its application in the cooling of nuclear reactors or in the study of the structures of stars and planets. 

Important engineering applications in which the study of MHD flows of rotating fluids with variable magnetic field 

poises includes: power generators, heat exchangers, reactors and MHD accelerators among other devices. As such, 

MHD is used to explain certain phenomena in the universe. 

A study on MHD free convective heat and mass transfer of a heat generating fluid past an impulsively started infinite 

vertical porous plate with Hall current and radiation absorptions was carried out [1]. [2] analyzed   MHD stokes free 

convection flow past an infinite vertical porous plate subjected to constant heat flux with ion-slip current and radiation 

absorption. 

In 2006 [3] studied computational challenges in fluid flow problems, a MHD Stokes problem of convective flow from a 

vertical infinite plate in a rotating fluid. A study on Hall current effect on Magnetohydrodynamic free convection flow 

past a semi-infinite vertical plate with mass transfer was done [4]. They discussed the effects of magnetic parameter, 

Hall parameter and the relative buoyancy force effect between species and thermal diffusion on the velocity, 

temperature and concentration. The problem of combined heat and mass transfer of an electrically conducting fluid in 

MHD free convection adjacent to a vertical surface has been analyzed by [5] taking into account the effects of Ohmic 

heating and viscous dissipation. 

An investigation of MHD effect on the flow structure and heat transfer characteristics was carried out [6]. This was 

studied numerically for a liquid-gas annular flow under a transverse magnetic field. The results showed that temperature 

distribution in the liquid film and the Nusselt number distribution in the angular direction were influenced by the flow 

structures with the side walls. [7] studied the effects of Ohmic heating and viscous dissipation on unsteady MHD and 

slip flow over a porous rotating disk with variable properties in the presence of Hall and Ion-slip currents. In 2003 [8] 

studied the nonlinear dynamics of traveling waves in rotating Rayleigh-Bernard convection in which he examined the 

effects of the boundary conditions and of the topology. In 2004 [9] studied the effect of slip velocity on oscillatory 

MHD flow with radiative heat transfer and variable suction. 
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In spite of all these investigations, much has not been done on Stokes problem of a convective flow past an infinite 

vertical plate in a rotating system in presence of a variable magnetic field. Our present investigation therefore seeks to 

study Stokes problem of a convective flow past an infinite vertical plate in a rotating system in presence of a variable 

magnetic field. The aim of the present investigation is to study the effects of a variable magnetic field resulting to Hall 

currents on MHD stokes problem for a vertical infinite plate in a rotating system. When there is a variable magnetic 

field, motion of the fluid is decelerated and Hall currents, Hartman numbers become significant and hence their 

consideration in the analysis has been important. 

 

2 Mathematical analysis 

In the present study Stokes flow past an infinite vertical plate in rotating system in presence of a variable magnetic field 

is considered. The magnetic field is applied transversely along the z-axis and perpendicular to the vertical plate. The 

plate is non-conducting and the fluid is electrically conducting. 

At 0t  , the vertical plate is set into impulsive motion in its own plane (x-axis direction) at a constant velocity U .The 

transverse inhomogeneous magnetic field is in the z-direction. The vertical plate is kept at a lower temperature than the 

fluid i.e. 
wT T  .Fluid flow is assumed incompressible, Newtonian, electrically conducting and the density fluctuations 

are Boussinesq approximated. The Boussinesq approximations means that the density differences are confined to the 

buoyancy term, without violating the assumption of incompressibility and that the effect of the pressure on the fluid 

density is negligible. The fluid flow being studied is free convectional and takes place along the x-axis under the action 

of transverse variable magnetic field. 
Geometry of the problem 
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Figure 1: The Flow Configuration with the Coordinate System 
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Let the fluid and the plate be in a state of rigid rotation with uniform angular velocity   about the Z* axis taken 

normal to the plate.  In this study the plate is taken to be of infinite length, thus all variables are functions of Z* and t* 

only.  Initially the temperature of the fluid and the plate are assumed to be the same.  At time t* >O, the plate starts 

moving impulsively in its own plane with velocity oU   and its temperature is instantaneously raised or lowered to *wT  

which is maintained constant. Later on it is assumed that the induced magnetic field is negligible so that   

 0,0, zH H  an assumption which is justified when the magnetic Reynolds is very small (Moreau (1990).  The 

equation of electric charge (i.e. equation 0J  , gives * tanzJ Cons t , where  *, *, *x y zJ J J J  . This constant is 

assumed to be zero, since * 0zJ             at the plate which is electrically non-conducting, thus * 0zJ  everywhere in the 

flow. The generalized ohm’s law including the effects of Hall currents and variable magnetic field (Cowling (1957)) is  

1e e
z e z e

o e

J J H E q H P
H e

  
        

 
        (1) 

Where  is the electrical conductivity, e the magnetic permeability, e the cyclotron frequency, e the collision time, 

e the electric charge, e the number density of electron and eP the electron pressure respectively. In equation (1), q

denotes the fluid velocity with components *u , *v and *w in the *x , *y and z  -axis directions respectively. In 

equation (1) the effects of ion-slip and thermoelectric are neglected. In our study we only consider a short circuit 

problem in which the applied electric field 0E  .Under these assumptions expanding equation (1) we have 

     *, * * , * * , *
e e

x y y o x o e o o

o

J J J H J H v H u H
H

 
                 (2) 

Equating the *x and *y components equation (2) yields 

* * *

* * *

x e e y e o

y e e x e o

J J v H

J J u H

    


    
              (3) 

Or 

* * *

* * *

x y e o

y x e o

J mJ v H

J mJ u H

   


   
                         (4) 

Where e em    is the Hall parameter. Eliminating *xJ  from (4) we have 

 2
* * *

1

e o
y

H
J mv u

m


 


                        (5) 

Similarly on eliminating *yJ  from (4) we have 

 2
* * *

1

e o
x

H
J mu v

m


 


                         (6) 

In equation (2) and (4) electron pressure has been neglected. 

In rotating frame of reference the equation of motion including the Coriolis force (i.e. 2 q  ) Greenspan (1968), in 

components form become: 

 
2

2

* * *
2 * * * *

* *

e y zu u J H
v g T T

t z


  
       

 
                      (7) 

2

2

* * *
2 *

* *

e x zu u J H
u

t z

  
    

 
                        (8) 

Where g is the acceleration due to gravity,  the coefficient of volume expansion,   kinematics viscosity and  the 

density of the fluid. On neglecting the energy dissipated as heat, energy equation becomes 
2

2

* *

* *p

T T

t C z

  


  
                         (9) 

Where  is the thermal conductivity, pC  the specific heat of the gas at constant pressure. In (7) *T and *T   denote 

the temperature in the boundary layer and free stream respectively, *xJ and *yJ are the current density components and

*u , *v are the velocity components in the *x  and *y  directions respectively. 

In our flow problem we first neglect the displacement current. The variable transverse magnetic field induces a current 

given by 
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e

B
J H   


                        (10) 

Applying the vector cross product rule equation (10) simplifies to 

 

0 0

z y z
e e e y e

z

i j k

H H H
H iH k j

x y z z x x

H

     
                 

                                           (11)  

The component of the current in the X-direction vanishes since any derivative with respect to y is equal to zero i.e. 

0xJ  . The resultant induced current which is in the y-direction can be expressed as 

z
y

H
J

x





                                                   (12) 

The Lorentz force is obtained as                                                

0 0

0 0

y z y

z

i j k

J B J eH J iH J

H

                                                                  (13) 

Substituting yJ  using equation (12) in equation (13) yields 

z
e z

H
J B J H H i

x


   


                                                              (14) 

This force which acts on the fluid particles is in the negative X-direction and therefore trying to oppose the flow. From 

Ohm’s law we have; 

   

 

J V B ui vj Bk

Buj Bvi

      


   


                          (15) 

 J B uj vi                                             (16) 

Thus  

 
2 2

J B B uj vi Bk

B ui B vj

      

   

                                     (17) 

 2J B B ui vj                                                        (18) 

Since eB H   

Then  

 2 2
eJ B H ui vj                                       (19) 

Or in component form we have 

 

 

2 2

2 2

x e

y e

J B H u

J B H v

   


   

                       (20) 

The induction equation is modified by substituting the magnetic field intensity H with the magnetic induction vector B . 

We consider that B  is in the direction of H and  yielding 

    21

e

B
u B B u B

t


     

 
                     (21) 

Substituting eB H  in (21) yields  

    21e
e e e

e

H
u H H u H

t


        

 
                    (22) 
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    21
e e

H
u H e H u H

t


      

 
                    (23)

    21
e

H
u H H u H

t

 
       

  
                     (24) 

    21

e

H
u H H u H

t


     

 
.                        (25) 

On expanding this equation and using the fact that    , , 0,0,x y z zH H H H H   and that the fluid flow depends on z 

and t only while the applied magnetic field depends on x and t, then 0u w   yields 
2

2

1z z z

e

H H H
u

t x x

  
 

   
                        (26) 

In this study we are considering a fully developed flow, thus in equations (7) to (9) the inertia terms have been 

neglected, Hermann Schlichting (1968). As a result of this the solution obtained will be true for a short time after the 

motion started and temperature jump at the wall (i.e. the results are true in the boundary layer).  

In this study we are interested with free convection flows only thus together with the condition of no-slip of the fluid at 

the wall the boundary and the initial conditions of this problem are: 

* 0, * 0, * *, * 0

* 0, * , * 0, * *, * 0

* , * 0, * 0, * *, *

o

t u T T at z

t u u v T T at z

t o u v T T at z







    


     
    

                                  (27) 

In order to normalize equations (7) to (9) we introduce the following non-dimensional quantities: 

 

2

2

3

2 2
2

2 2

* * *
, ,

* * * *
, ,

* *

* *
' , Pr
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o o

o

j o
j

wo

w p

o

o e

o o

t u z u u
t z u

v v u

v X u T T
v X

v T Tu

T T C
Gr g

ku

H v
M Er

u u








   


 

     


     



    
 

                                                         (28a, b, c, d) 

Using (28a) equations (7) to (9) become: 

 
 

2 2 2
1

2 2
2

1

z
r r

u u M H
E G mv u

t z m

 
     
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                     (29) 

 
 

2 2 2
1

2 2
2

1

z
ru

v v M H
E mu v

t z m

 
   
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                     (30) 

2

2
Pr

t z

  


 
                        (31) 

Multiplying equation (30) by i , ( i ) is the complex number given by 1i   ) and adding to (29) we have: 
2

2
2

q q
Gr M q

t z

 
  

 
                       (32) 

Where 
2

1
2 2

1

m
M Eri

mi

 
  

 
 and q u vi  is the complex velocity of the fluid. 

The induction equation in non-dimensional form become 
* * 2 *

*

* * *2

1z z z

m

H H H
u

Rt x x

  
 

  
                      (33) 

Where e o mLU R  , the Magnetic Reynolds number. 

According to Calvert (2002), the electrical conductivity is ‘infinite’ when mR  is large and magnetic effect may be 

expected to be prominent. If mR  is small the magnetic field is not changed appreciably by the flow thus induced 

magnetic field can be taken to be zero 

The boundary conditions (27) in non-dimensional form reduces to 
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   

   

   

0, , 0, , 0

0, 0, 1, 0, 1

0, , 0, , 0

t q z t z t

t q t t

t q t t
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

    


      

                      (34) 

 

3 Method of solution 

To solve equation of motion, energy equation and induction equation for this flow we apply the finite difference 

method. 

Substituting the finite difference form of the partial derivatives (i.e. from equation (31) (32) and (33) respectively) we 

obtain the following system 

         

 
   2

2

', ' 1 ', ' ' 1, ' 2 ', ' ' 1, '
', ' ', '

q i j q i j q i j q i j q i j
Gr i j m q i j

t z

     
   

 
                (35) 

And  

         

 
2

', ' 1 ', ' ' 1, ' 2 ', ' ' 1, '
Pr

i j i j i j i j i j

t z

        


 
                       (36) 

We lastly express the induction equation (26) in implicit finite difference form via time step 1iH  considering that the 

magnetic flux is dependent on x and t yielding  

             

 

1 1 1 1

1

2

, , 1, 1, 1, 2 , 1,1

2

i i i i i i i

z i

m

H i j H i j H i j H i j H i j H i j H i j
u

t x R x

   


       

 
  

            (37) 

Multiplying through by mR we obtain 

             

 

1 1 1 1

1

2

, , 1, 1, 1, 2 , 1,

2

i i i i i i i

y i
m

H i j H i j H i j H i j H i j H i j H i j
u R

t x x

   


        

  
    

         (38) 

 

In equations (35) and (36) the index 'i refers to z and 'j  to time. The mesh system in this case is divided by taking 

0.1z    and 0.00125t  .From equation (34) the initial conditions at 0z  takes the form 

       0,0 1, 0,0 1, ',0 ',0 0q q i i      , For all except ' 0i                                          (39) 

In finite difference the boundary condition (34b) takes the form 

   0, ' 1, 0, ' 1q j j    For all 'j                                                                (40) 

Though the boundary condition (34c) applies at z  , we take 4.1z   as corresponding to 8z  , since both the values 

of q and   tend to zero as 4z  .Therefore in this section we set    41, ' 41, ' 0q j j   for all 'j . From (35) we 

note that the velocity at the end of time step  ', ' 1 , ' 1,2,............,40q i j i   is computed in terms of velocities and 

temperatures at points on earlier time step. Similarly,  ', ' 1i j  is computed from equation (36).The procedure is 

repeated till ' 400j  i.e. up to time 0.5t  .During the computation, to test the convergence and stability of the finite 

difference scheme, computations were made with smaller values of t , viz 0.0009,0.001t  and 0.0002 .In our analysis 

we noted that increasing the number of mesh points by using smaller values of t  does not have a significant effect on 

the result, thus the finite difference scheme used is stable and convergent. 

In order to get the physical understanding of this problem and for the purpose of discussing the results, the numerical 

calculations have been carried out as explained above for both velocity and temperature. In our calculations the Prandtl 

number is taken to be equal to 0 7  which corresponds to air and magnetic parameter 
2

1 5.0M   which signifies strong 

magnetic field. The calculations were carried out for both  0 5.0Gr    in the presence of cooling of the plate by free 

convection currents) and  0 0.5Gr     in the presence of heating of the plate by free-convection currents).Now the 

results obtained for the unsteady flow for various parameters are displayed in Figures (to be sated after the results).In 

the next section, a presentation of the numerical method employed in computing the skin friction and the rate of heat 

transfer at the plate is done. 
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3.1   Calculation of the skin friction and rate of heat transfer 
 

After obtaining the velocity and temperature distributions of the flow as explained in the previous section we now 

compute the skin friction given by  

0z

q

z 


  


                                                   (41) 

Where
2

*

ou


 


.On the other hand the heat flux q at the wall is given by 

0z

q
z 


 


                                                   (42) 

In order to solve equations (41) and (42) we apply a second-order least squares correlation used over the gradients of 

the first ten points. 

 

4 Discussion of results 

We now discuss the behaviour of velocity (both primary u and secondary v), the temperature distribution, the skin 

friction (average shear stress 
uo due to primary velocity as well as the shear stress 

vo due to secondary velocity), for 

different parameters involved in the flow problem solved in this study. 

In order to get physical insight into the problem under study, the velocity field, temperature field, skin-friction and rate 

of heat transfer are discussed by assigning numerical values to the parameters encountered into the corresponding 

equations. To be realistic, the values of Eckert number 0.02Ec  and 0.5Ec  . The value of Prandtl number is chosen 

as Pr 0.71 that corresponds to air. Grashof number for heat transfer is chosen as 0.5 0.5Gr    . The values 0Gr   

correspond to cooling of the plate while the values 0Gr  correspond to heating of the plate. The values of the 

magnetic parameter  1,1.5M   and Rotation parameter  0.05,0.5Er   are chosen arbitrarily. 

A program was written and run for various values of velocities and temperatures for the finite difference equations (40), 

(41) and (43) using different values of Ec, Er, m, t and M. the velocities were classified as Primary velocity (u) and 

Secondary velocity (v) along the x and y axes respectively. The analysis of the data obtained for Pr=0.71 corresponding 

to air was done and the resultant results are represented graphically on figures 2 to 7 and on tables 1 to 4. The graphs 

represent the general trends of the velocities and temperature along the axis of rotation of the flow field. On the other 

hand, the variation in rate of heat transfer and skin friction on the thermal and velocity boundary layers are depicted by 

use these tables. A consideration of two cases of heat changes is done. These two cases are cooling at the plate 

(Gr>0(=0.5)) and heating at the plate (Gr<0(=-0.5)) with constant heat being supplied to or withdrawn from the plate. 

Case 1: Cooling at the Plate  

In this case, the Grashof number Gr>0. Hence the plate is at higher temperature than the surrounding and so Gr=0.5. 

 

(a) Primary Velocity (u) Profiles 

From figure 2, 

(i) An increase in the rotation parameter Er, magnetic parameter M2 and Eckert number Ec leads to a decrease in the 

velocity profiles. This is because the presence of the transverse magnetic field creates a resistive force similar to the 

drag force that acts in the opposite direction of the fluid; thus causing the velocity of the fluid to decrease. 

(ii) An increase in the Hall parameter m leads to an increase in the velocity profiles. 

 

(b) Secondary Velocity Profiles  

From figure 3, if the magnitude of the velocity is considered it is noted that 

(i) An increase in the rotation parameter and magnetic parameter M2 leads to increase in the velocity profiles 

(ii) An increase in the Hall parameter and Eckert number leads to a decrease in the velocity profile. The Hall parameter 

increases with the magnetic field strength. Physically, the trajectories of electrons are curved by the Lorentz force. 

When the Hall parameter is low, their motion between the two encounters with heavy particles (neutral or ion) is almost 

linear. But if it is high, the electron movements are highly curved. 

 

(c) Temperature Profiles 

From figure 4 
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(i) An increase in the magnetic parameter M2 and an increase in the Eckert number Ec lead an increase in the 

temperature profile. Increasing the Eckert number causes the fluid the fluid to become warmer and therefore increase its 

temperature.  This is attributed to the viscous dissipation. 

(ii) An increase in the Hall parameter m leads to a decrease in temperature profiles. However, as the distance from the 

plate increases these profiles remain constant. 

(iii) An increase in the rotation parameter Er results in no significant change in temperature. 

 

(d) Rate of Heat Transfer  

From table 1 

(i) An increase in the rotation parameter Er, Eckert number Ec and magnetic parameter M2 leads to an increase in the 

rate of heat transfer. 

(ii) An increase in the Hall parameter m leads to a decrease in the rate heat transfer. 

 

(e) Skin Friction  x along the x axis and  y along the y-axis 

From table 3 

i. An increase in the rotation parameter Er leads to an increase in  x but a decrease in  y . This reduction is 

due to the increase in the momentum, thermal and magnetic boundary layer thickness which in turn are caused 

by the deceleration of the magnetic field.   

ii. An increase in the Hall parameter m leads to a decrease in both  x and  y . The magnetic field gives rise to 

a resistive force and slows down the movement of the fluid. 

iii. An increase in the Eckert number Ec leads to an increase in  x but a decrease in  y . 

iv. An increase in magnetic parameter M2 leads to a decrease in both  x and  y . 

 

Case 2. Heating at the Plate 

In this case the Grashof number Gr<0. In this case the plate is at a lower temperature than the surrounding and Gr=-0.5. 

 

(a) Primary Velocity (u) Profiles 

From figure 5, 

i. An increase in the Hall parameter m leads to an increase in the velocity profiles. 

ii. An increase in the rotation parameter Er, an increase in the Eckert number Ec and magnetic parameter M2 

leads to a decrease in the velocity profiles. Since the wall moves in opposite direction to that of the free stream, 

it tends to retard the flow. 

 

(b) Secondary Velocity (v) Profiles 

From figure 6, considering the magnitude of the velocity we note that 

i. An increase in the rotation parameter Er and magnetic parameter M2 lead to an increase in the velocity profiles. 

ii. An increase in the Hall parameter m and an increase in the Eckert number Ec leads to a decrease in the velocity 

profiles. Inclusion of Hall parameter decreases the resistive force imposed by the magnetic field due to its 

effect in reducing the effect conductivity. 

 

(c) Temperature Profiles 

From figure 7, 

i. An increase in the magnetic parameter M and an increase in Eckert number Ec lead to an increase in the 

temperature profiles. The increase in the fluid temperature induces more flow in the boundary layer causing the 

velocity of the fluid there to increase. The magnetic field produces a huge increment in the magnitude of the 

temperature. This can be explained physically as follows: it is well known that a magnetic field imparts some 

rigidity to the conducting fluid. Thus, with increase in the magnetic field, greater effort will be necessary to 

maintain the rotation of the plate and this implies an increase in temperature with an increase of the parameter 

M. 

ii. An increase in the Hall parameter m leads to a decrease in the temperature profiles. As the distance from the 

plate increases, these profiles increase. 

iii. An increase in the rotation parameter Er has no effect on the change of temperature profiles. 

 

(d) Rate of Heat Transfer  

From table 3, we note that 
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i. An increase in the rotation parameter Er, Eckert number Ec and magnetic parameter M2 leads to an increase in 

the rate of heat transfer. 

ii. An increase in the Hall parameter m leads to a decrease in the rate of heat transfer. 

 

(e) Skin Friction along x-axis and along the y-axis 

From table 4, we note that 

i. An increase in the rotation parameter Er leads to an increase in  x and a decrease in  y . 

ii. An increase in the Eckert number Ec leads to an increase in both  x  and  y  

iii. An increase in the Hall parameter m leads to a decrease in both  x  and  y . The skin friction in the y-

direction is negative since it is in the opposite direction to that of gravitational force. 

iv. An increase in magnetic parameter M2 leads to a decrease in  x and an increase in  y . 

 

5 Conclusion 

Some or all of the parameters affect the primary velocity, secondary velocity and temperature. Consequently their effect 

alters the rate of heat transfer and skin friction along the x and y axes. Increase in m and Ec leads to an increase in the 

primary velocity profiles for both free convection cooling and heating at the plate while an increase in the same 

parameters leads to a decrease in secondary velocity profiles, which is in agreement with [3] , [10] and [7] 

Increasing Er, Ec and M leads to an increase in the temperature profiles for both free convection cooling and free 

convection heating. Increasing Er and M leads to an increase in the rate of heat transfer while increasing m and Ec 

results to a decrease in the rate of heat transfer for both free convection cooling and free convection heating. The effect 

of a variable magnetic field is to retard the fluid motion by affecting the velocity and temperature profiles. 

 
Cooling at the Plate (Gr=0.5) 

RESULTS m H M2 Ec Er 

TEST 1.0 2 24 0.02 0.05 

1 2.0 2 24 0.02 0.05 

2 1.0 4 96 0.02 0.05 

3 1.0 2 24 0.50 0.05 

4 1.0 2 24 0.02 0.50 

 

 

Fig 2: Primary Velocity Profiles (Free Convectional Cooling at the Plate) 
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Fig 3: Secondary Velocity Profiles (Free Convectional Cooling at the Plate) 

 

Cooling at the plate (Gr=0.5) 

RESULTS m H M2 Ec Er 

TEST 1.0 2 24 0.02 0.05 

1 2.0 2 24 0.02 0.05 

2 1.0 4 96 0.02 0.05 

3 1.0 2 24 0.50 0.05 

4 1.0 2 24 0.02 0.50 

 

 

Fig 4: Temperature Profiles (Free Convectional Cooling at the Plate) 

 
Heating at the plate (Gr=-0.5). 

RESULTS m H M2 Ec Er 

TEST 1.0 2 24 0.02 0.05 

1 1.5 2 24 0.02 0.05 
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3 1.0 2 24 0.20 0.05 
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Fig 5: Primary Velocity Profiles (Free Convectional Heating at the Plate) 

 

Heating at the plate (Gr=-0.5) 

RESULTS m H M2 Ec Er 

TEST 1.0 2 24 0.02 0.05 

1 1.5 2 24 0.02 0.05 

2 1.0 4 96 0.02 0.05 

3 1.0 2 24 0.20 0.05 

4 1.0 2 24 0.02 0.50 

 

 

Fig 6: Secondary Velocity Profiles (Free Convectional Heating at the Plate) 

 

Heating at the plate (Gr=-0.5) 
RESULTS m H M2 Ec Er 

TEST 1.0 2 24 0.02 0.05 

1 1.5 2 24 0.02 0.05 

2 1.0 4 96 0.02 0.05 

3 1.0 2 24 0.20 0.05 

4 1.0 2 24 0.02 0.50 
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Fig 7: Temperature Profiles (Free Convectional Heating at the Plate) 

 

Table 1: Rate of Heat Transfer With Cooling for Pr=0.71 

m M2 Ec Er Nu 

1.0 24 0.02 0.05 1.263899959 

2.0 24 0.02 0.05 1.263461355 

1.0 96 0.02 0.05 1.265935278 

1.0 24 0.5 0.05 1.275017313 

1.0 24 0.02 0.5 1.263900993 

 

Table 2: Skin Friction x  and y  With Cooling for Pr=0.71 

m M2 Ec Er x  y  

1.0 24 0.02 0.05 3.14224995 -0.139999317 

2.0 24 0.02 0.05 3.096609455 -0.169103684 

1.0 96 0.02 0.05 3.013413321 0.00174227625 

1.0 24 0.5 0.05 3.155085951 -0.140024952 

1.0 24 0.02 0.5 3.14696724 -0.151650365 

 

 

Table 3: Rate Of Heat Transfer With Heating for Pr=0.71 

m M2 Ec Er Nu 

1.0 24 0.02 0.05 1.263899959 

2.0 24 0.02 0.05 1.263572678 

1.0 96 0.02 0.05 1.266032283 

1.0 24 0.5 0.05 1.275138535 

1.0 24 0.02 0.5 1.263900825 

 

Table 4: Skin Friction x  and y  With Heating for Pr=0.71 

m M2 Ec Er x  y  

1.0 24 0.02 0.05 3.151748888 -0.13965205 

2.0 24 0.02 0.05 3.093358238 -0.168728416 

1.0 96 0.02 0.05 3.010100625 0.00203710375 

1.0 24 0.5 0.05 3.151910738 -0.139646217 

1.0 24 0.02 0.5 3.143599675 -0.151287697 
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Appendix 

NOMENCLATURE 

ROMAN SYMBOLS   QUANTITY 

E      Electric intensity vector (V/m) 

F      Body force vector (N) 

e      Unit charge (C) 

L      Characteristic length (m) 

J      Current density vector (Am
-2

) 

P      Pressure force vector (Nm
-2

) 

U      Characteristic velocity (ms
-1

) 

t       Dimensional Time (S) 

      Thermal conductivity (Wm
-1

 k
-1

) 

q      Velocity vector (ms
-1

) 

B      Magnetic field vector (Wbm
-2

) 

D      Electric displacement vector (cm
-2

) 

H      Magnetic field intensity vector (Wbm
-2

) 

, ,i j k      Unit vectors in the x, y and z directions  

      Respectively 

, ,u v w      Components of velocity vector q 

eF      Electromagnetic force (kgm
-2

) 

g      Acceleration due to gravity (ms
-2

) 
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D

u v w
Dt t x y z

    
    
    

  Material derivative  

Q      Amount of heat added to the system (Nm) 

h      Dimensional distance between vertical  

      Plates 

T       General fluid temperature 

pC      Specific heat at constant pressure (Jkg
-1

 K
-1

)   

           U       Free stream fluid velocity (ms
-1

) 

          T                        Characteristic free stream temperature (K)   

        m                                                              Hall parameter                                                                                                                                                                               

 

         GREEK SYMBOL     QUANTITY  


     Coefficient of Viscosity, Kg/ms. 

      Kinematic Viscosity m2s-1 


     Fluid density, kg/m3. 

e
     Electrical charge density (cm-2) 

      Electrical conductivity (Ω-1m-1) 

e
     Magnetic permeability (Hm-1) 

, ,t y z  
     Time and distance intervals respectively(s, m)  

T      Temperature change (K)  

      Gradient operator i j k
x y z

   
   

   
  

  

2      Laplacian operator 
2 2 2

2 2 2x y z

   
   
   

 


     Viscous dissipation function (s2) 

      Electrical conductivity  


     Coefficient of thermal expansion, K1

1

p

V

V T

  
  

   

 

                         DIMENSIONLESS QUANTITIES 

      Dimensionless fluid temperature  

, ,U V W      Dimensionless fluid velocity 

, ,x y z
     Dimensionless Cartesian coordinates 

t       Dimensionless time 
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cE      Eckert number 
 

2

p

U

C T T 

  
 

  

 

Pr      Prandtl number 
Cp

k

 
 
 

 

Rm      Magnetic Reynolds number  c Lu   

Nu      Nusselt number
hL 

 
 

           

S      Magnetic force number 
cHo

L

 
 
  

 

M                Magnetic Parameter
2

2

m

Ho

U

 
  
 

 
 

 

Gr      Grash of number
3

2

g Tl 
 

 
 

ABBREVIATIONS 

 

MHD     Magnetohydrodynamics 

FDM     Finite Difference Method 

HOT     Higher Order Terms 


