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Abstract 
 

Fractional differential equations are often seeming perplexing to solve. Therefore, finding comprehensive methods for solving them sounds 

of high importance. In this paper, a general method for solving second order fractional differential equations has been presented based on 

conformable fractional derivative. This method realizes on determining a general solution of homogeneous and a particular solution of a 

second order linear fractional differential equations. Furthermore, a general solution has been developed for fractional Euler’s equation. 

For more explanation of each part, some examples have been solved.  
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1. Introduction 
 

Fractional differential equations are studied in various fields of 

physics and engineering, specifically in signal processing, control 

engineering, electromagnetism, biosciences, fluid mechanics, elec-

trochemistry, diffusion processes, dynamic of viscoelastic material, 

continuum and statistical mechanics and propagation of spherical 

flames. There are many fractional differential equations which can’t 

be solved analytically. Due to this fact, finding an approximate so-

lution of fractional differential equations is clearly an important 

task. In recent years, many effective methods have been proposed 

for the approximate solution fractional differential equations, such 

as Adomian decomposition method [3,4], homotopy perturbation 

method [5-8], homotopy analysis method [9,10], variational itera-

tion method [11], generalized differential transform method [12] 

and other methods [13-29].  

The organization of the paper is as follows: In Section 2, Basic def-

initions, such as conformable fractional derivative, and conforma-

ble fractional integral, will be presented. In Section 3, Basic theo-

retical of the method, will be described. In Section 4, the methods 

such as, use of a known solution to find another one or D’Alambert 

approach, homogeneous equation with constant coefficients, Eu-

ler’s dimensional equation, will be expanded. In Section 5, the 

methods such as, variation of parameters or Lagrange technique, 

undetermined coefficients, will be explained. Finally, conclusion is 

presented in section 6. 

 

 

2. Basic definitions 
 

The purpose of this section is to recall some preliminaries of the 

proposed method. 
 

2.1. Conformable fractional derivative 
 

Given a function 𝑓: [0, ∞) → ℝ. Then the conformable fractional 

derivative of 𝑓 of order 𝛼 is defined by  
 

Τα(f)(x) = lim
ε→0

f(x+εx1-α)-f(x)

ε
                                                    (1) 

 

For all 𝑥 > 0, 𝛼 ∈ (0,1).  If 𝑓 is 𝛼 - differentiable in some 
(0, 𝑎), 𝑎 > 0, and provided that lim

𝑥→0+
Τ𝛼(𝑓)(𝑥) exists, then define 

Τ𝛼(𝑓)(0) = lim
𝑥→0+

Τ𝛼(𝑓)(𝑥). 

If the conformable derivative of 𝑓 of order 𝛼 exists, then we simply 

say that 𝑓 is 𝛼- differentiable (see [1,2]). 

One can easily show that Τ𝛼 satisfies all the properties in the fol-

lowing properties (see [1]): 

Let α ∈ (0,1] and 𝑓, 𝑔 be 𝛼-differentiable at a point  𝑥 >  0, Then 

A. For 𝑎, 𝑏 ∈ ℝ   Τ𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎 Τ𝛼(𝑓) + 𝑏 Τ𝛼(𝑔),  
B. For all  𝑝 ∈ ℝ   Τ𝛼(𝑥𝑝) = 𝑝𝑥𝑝−𝛼 , 
C. For all constant functions 𝑓(𝑥) = 𝜆, Τ𝛼(𝜆) = 0, 
D. Τ𝛼(𝑓. 𝑔) = 𝑔. Τ𝛼(𝑓) + 𝑓 . Τ𝛼(𝑔), 

E. Τ𝛼 (
𝑓

𝑔
) =

𝑔.Τ𝛼(𝑓)−𝑓 .Τ𝛼(𝑔)

𝑔2 , 

F. Τ𝛼(𝑓) = 𝑥1−𝛼 𝑑𝑓

𝑑𝑥
 . 

 

2.2. Conformable fractional integral 
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Given a function 𝑓: [𝑎, ∞) → ℝ,   𝑎 ≥ 0.  Then the conformable 

fractional integral of 𝑓 is defined by 

I𝛼
𝑎(𝑓)(𝑥) = ∫

𝑓(𝑡)

𝑡1−𝛼 𝑑𝑡
𝑥

𝑎
                                                              (2) 

 

Where the integral is the usual Riemann improper integral, and 𝛼 ∈
(0,1) ( see [1,2]). 

For the sake of simplicity, let’s considerI𝛼
0 (𝑓)(𝑥) = Ι𝛼(𝑓)(𝑥). 

One of the most useful results is the following (see [1]): 

For all 𝑥 ≥ 𝑎, and any continuous function in the domain of Ι𝛼
𝑎, we 

have Τ𝛼(Ι𝛼
𝑎𝑓(𝑥)) = 𝑓(𝑥). 

 

3. Basic theoretical of the method 
 

Let’s consider the general second order linear fractional differential 

equation based on conformable fractional derivative as follows 
 

Τ𝛼Τ𝛼(𝑢(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢(𝑥)) + 𝑄(𝑥)𝑢(𝑥) = 𝑅(𝑥),         (3)  
 

Where 𝑃(𝑥), 𝑄(𝑥),  and 𝑅(𝑥)  are  𝛼 − differentiable functions 

and 𝑢(𝑥) is an unknown function. If 𝑅(𝑥) is identically zero, then 

fractional equation (3) reduces to the homogeneous fractional equa-

tion 
 

Τ𝛼Τ𝛼(𝑢(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢(𝑥)) + 𝑄(𝑥)𝑢(𝑥) = 0.               (4) 
 

Theorem 3.1. If 𝑢ℎ(𝑥, 𝐶1, 𝐶2) is the general solution of fractional 

equation (4) and 𝑢𝑝(𝑥) is any particular solution of  fractional equa-

tion (3), then 𝑢ℎ(𝑥, 𝐶1, 𝐶2) + 𝑢𝑝(𝑥) is a general solution of frac-

tional equation (3).   

Proof. Suppose that 𝑢(𝑥) is a solution of (3), since 𝑢𝑝(𝑥) is any 

particular solution of fractional equation (3), then an easy calcula-

tion shows that 𝑢(𝑥)  − 𝑢𝑝(𝑥) is a solution of (4): 

Τ𝛼Τ𝛼(𝑢(𝑥) − 𝑢𝑝(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢(𝑥) − 𝑢𝑝(𝑥)) + 

𝑄(𝑥) (𝑢(𝑥) − 𝑢𝑝(𝑥)) = (Τ𝛼Τ𝛼(𝑢(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢(𝑥))    

−(Τ𝛼Τ𝛼 (𝑢𝑝(𝑥)) + 𝑃(𝑥)Τ𝛼 (𝑢𝑝(𝑥)) + 𝑄(𝑥)𝑢𝑝(𝑥)) =  

𝑅(𝑥) − 𝑅(𝑥) = 0.  
Since 𝑢ℎ(𝑥, 𝐶1, 𝐶2) is a general solution to (4), it results that 𝑢(𝑥) −
𝑢𝑝(𝑥) = 𝑢ℎ(𝑥, 𝐶1, 𝐶2)  or  𝑢(𝑥) = 𝑢ℎ(𝑥, 𝐶1, 𝐶2) + 𝑢𝑝(𝑥) , for a 

suitable choice of the constants 𝐶1 and 𝐶2(see [23]). 
 

Theorem 3.2. If 𝑢1(𝑥) and 𝑢2(𝑥) are any two solutions of frac-

tional equation (4), then 𝐶1𝑢1(𝑥) + 𝐶2𝑢2(𝑥) is also a solution for 

any constants 𝐶1and 𝐶2. 

Proof. The statement follows immediately from the fact that 

Τ𝛼Τ𝛼(𝐶1𝑢1(𝑥) + 𝐶2𝑢2(𝑥) ) + 𝑃(𝑥)Τ𝛼(𝐶1𝑢1(𝑥) +
𝐶2𝑢2(𝑥) ) + 𝑄(𝑥)(𝐶1𝑢1(𝑥) + 𝐶2𝑢2(𝑥) ) =
𝐶1(Τ𝛼Τ𝛼(𝑢1(𝑥) ) + 𝑃(𝑥)Τ𝛼(𝑢1(𝑥) ) + 𝑄(𝑥)𝑢1(𝑥)) +
𝐶2(Τ𝛼Τ𝛼(𝑢2(𝑥) ) + 𝑃(𝑥)Τ𝛼(𝑢2(𝑥) ) + 𝑄(𝑥)𝑢2(𝑥)) = 
𝐶1. 0 + 𝐶2. 0 = 0. 
Since by assumption, 𝑢1(𝑥)  and 𝑢2(𝑥)  are solutions of (4) (see 

[23]). 
 

Definition. The fractional Wronskian of two functions 𝑓(𝑥) and 

𝑔(𝑥), is defined by (see [22,23]), 

𝑊𝛼(𝑓(𝑥), 𝑔(𝑥)) = |
𝑓(𝑥) 𝑔(𝑥)

Τ𝛼(𝑓(𝑥)) Τ𝛼(𝑔(𝑥))
| 

                           = 𝑓(𝑥). Τ𝛼(𝑔(𝑥)) − 𝑔(𝑥). Τ𝛼(𝑓(𝑥)).  
 

Theorem 3.3. If 𝑢1(𝑥) and 𝑢2(𝑥) are any two solutions of frac-

tional equation (4) on an interval [𝑎, 𝑏], then their fractional Wron-

skian 𝑊 = 𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥))  is either identically zero or never 

zero on [𝑎, 𝑏]. 
Proof. We begin by observing that 

Τ𝛼(𝑊) = 𝑢1Τ𝛼Τ𝛼(𝑢2) − 𝑢2Τ𝛼Τ𝛼(𝑢2) 
Next, since 𝑢1(𝑥) and 𝑢2(𝑥) are both solutions of fractional equa-

tion (4), we have 

Τ𝛼Τ𝛼(𝑢1(𝑥) ) + 𝑃(𝑥)Τ𝛼(𝑢1(𝑥) ) + 𝑄(𝑥)𝑢1(𝑥) = 0 
Τ𝛼Τ𝛼(𝑢2(𝑥) ) + 𝑃(𝑥)Τ𝛼(𝑢2(𝑥) ) + 𝑄(𝑥)𝑢2(𝑥) = 0. 
 

First equation multiplying by 𝑢2 subtract to the second equation by 

𝑢1 result in 

(𝑢1Τ𝛼Τ𝛼(𝑢2) − 𝑢2Τ𝛼Τ𝛼(𝑢2)) + 𝑃(𝑥)(𝑢1Τ𝛼(𝑢2) −
                                                                              𝑢2Τ𝛼(𝑢1)) = 0  
or 

Τ𝛼(𝑊) + 𝑃(𝑥)𝑊 = 0. 
The general solution of this first order fractional differential equa-

tion based on conformable fractional derivative is (see [17]) 
𝑊 = 𝑊𝛼(𝑥0)𝑒−Ι𝛼(𝑃(𝑥)), 
and since the exponential factor is never zero, the proof is com-

pleted (see [23]). 
 

Theorem 3.4. If 𝑢1(𝑥) and 𝑢2(𝑥) are any two solutions of frac-

tional equation (4) on an interval [𝑎, 𝑏], then they are linearly de-

pendent on this interval if and only if their fractional Wronskian 

𝑊 = 𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥)), is identically zero. 
 

Proof. We begin by assuming that 𝑢1(𝑥) and 𝑢2(𝑥) are linearly de-

pendent, and we show 

𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥)) = 0. 
First, if either of the functions is identically zero on [𝑎, 𝑏], then the 

conclusion is clear. Therefore, we may therefor assume without loss 

of generality, that neither of them is identically zero, and their linear 

dependence result that each of those is a constant multiple of the 

other one. Accordingly, we have 𝑢2 = 𝐶𝑢1, for some constant, so  

Τ𝛼(𝑢2) = 𝐶Τ𝛼(𝑢1).  

By elimination 𝐶, from this equation, we obtain 

𝑢1Τ𝛼(𝑢2) − 𝑢2Τ𝛼(𝑢1) = 0,  

which proves this half of the theorem. We now assume that the 

𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥)) = 0, and prove linearly dependent. If  𝑢1(𝑥) is 

identically zero on [𝑎, 𝑏], then the functions are linearly dependent. 

We may therefore assume that 𝑢1(𝑥), does not vanish identically 

on [𝑎, 𝑏], from which it follows by continuity that 𝑢1(𝑥) does not 

vanish at all on some subinterval [𝑐, 𝑑] of [𝑎, 𝑏]. Since the Wron-

skian is identically zero on [𝑎, 𝑏], we can divide it by 𝑢1
2 to get 

𝑢1Τ𝛼(𝑢2)−𝑢2Τ𝛼(𝑢1)

𝑢1
2 = 0, on [𝑐, 𝑑]. 

This can be written in the form Τ𝛼 (
𝑢2

𝑢1
) = 0, and by conformable 

fractional integrating we obtain 
𝑢2

𝑢1
= 𝐶,  or 𝑢2 = 𝐶𝑢1,  for some 

constant 𝐶 , and all 𝑥,  in [𝑐, 𝑑] . Finally, since 𝑢2 , and 𝐶𝑢1, have 

equal value in [𝑐, 𝑑], they have equal conformable fractional deriv-

ative, so 𝑢2 = 𝐶𝑢1, all 𝑥, in [𝑎, 𝑏], which concludes the argument 

(see [23]). 
 

Theorem 3.5. Let 𝑢1(𝑥) and 𝑢2(𝑥), be linearly dependent of the 

homogeneous fractional equation (4), on the interval [𝑎, 𝑏]. Then 

 𝐶1𝑢1(𝑥) + 𝐶2𝑢2(𝑥), is the general solution of the fractional equa-

tion (4) on this interval. 
 

Proof. Let 𝑢(𝑥), be any solution of (4) on [𝑎, 𝑏]. We must show 

that constant 𝐶1, 𝐶2 , can be found so that 𝑢(𝑥) = 𝐶1𝑢1(𝑥) +
𝐶2𝑢2(𝑥), for all 𝑥 in [𝑎, 𝑏]. Since 𝐶1𝑢1(𝑥) + 𝐶2𝑢2(𝑥), and 𝑢(𝑥) 

are both solutions of (4) on [𝑎, 𝑏], it suffices to show that for some 

point 𝑥0, in [𝑎, 𝑏], we can find 𝐶1, 𝐶2 so that 

𝐶1𝑢1(𝑥0) + 𝐶2𝑢2(𝑥0) = 𝑢(𝑥0), and  

𝐶1Τ𝛼(𝑢1(𝑥0)) + 𝐶2Τ𝛼(𝑢2(𝑥0)) = Τ𝛼(𝑢(𝑥0)).  

For this system to be solvable for 𝐶1, 𝐶2, it suffices that the follow-

ing determinant be non-zero. 

|
𝑢1(𝑥0) 𝑢2(𝑥0)

Τ𝛼(𝑢1(𝑥0)) Τ𝛼(𝑢2(𝑥0))
|

= 𝑢1(𝑥0). Τ𝛼(𝑢2(𝑥0)) − 𝑢2(𝑥0). Τ𝛼(𝑢1(𝑥0)) 
This leads us to investigate the function Wronskian of 

𝑢1(𝑥), 𝑢2(𝑥) at 𝑥0. According to theorems 3.3 and 3.4 it is clear 
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that  𝑊𝛼(𝑢1(𝑥0), 𝑢2(𝑥0)), have a value different from zero (see 

[23]). 

4. Determining a general solution of a homoge-

neous fractional equation  
This section is motivated to obtain general solution of homogene-

ous fractional differential equations and then to solve Euler’s equa-

tion. 
 
 

4.1. The use of a known solution to find another one or 

D’Alambert approach 
 

We assume that 𝑢1(𝑥), is a known  nonzero solution of Eq. (4), 

𝑢2(𝑥) = 𝑣(𝑥)𝑢1(𝑥), is a solution of (4), where as 𝑣(𝑥) an un-

known function (see [20]). So  

Τ𝛼(𝑢2(𝑥)) = 𝑣(𝑥). Τ𝛼(𝑢1(𝑥)) + 𝑢1(𝑥). Τ𝛼(𝑣(𝑥)) 
Τ𝛼  Τ𝛼(𝑢2(𝑥)) = 𝑣(𝑥). Τ𝛼Τ𝛼(𝑢1(𝑥)) + 
                      2Τ𝛼(𝑢1(𝑥)). Τ𝛼(𝑣(𝑥)) + 𝑢1(𝑥). Τ𝛼Τ𝛼(𝑢1(𝑥)) , 
By substituting the above results into Eq. (4), we get 

𝑣(𝑥) (Τ𝛼Τ𝛼(𝑢1(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢1(𝑥)) + 𝑄(𝑥)𝑢1(𝑥)) 

+𝑢1(𝑥)Τ𝛼Τ𝛼(𝑣(𝑥)) + Τ𝛼(𝑣(𝑥))(𝑃(𝑥)𝑢1(𝑥) + 2Τ𝛼(𝑢1(𝑥)) 

                                                                                         = 0. 
Since u1(x) is a solution of Eq. (4), It reduces  

𝑢1(𝑥)Τ𝛼Τ𝛼(𝑣(𝑥)) + Τ𝛼(𝑣(𝑥))(𝑃(𝑥)𝑢1(𝑥) + 2Τ𝛼(𝑢1(𝑥)) = 0 

or 

Τ𝛼Τ𝛼(𝑣(𝑥))

Τ𝛼(𝑣(𝑥))
= −2

Τ𝛼(𝑢1(𝑥))

𝑢1(𝑥)
− 𝑃(𝑥). 

A fractional integration now gives 

ln( Τ𝛼(𝑣(𝑥))) = −2ln (𝑢1(𝑥)) − Ι𝛼(P(x)),   
so 

Τ𝛼(𝑣(𝑥)) =
1

𝑢1
2(𝑥)

𝑒−Ι𝛼(𝑃(𝑥)) 

and 

𝑣(𝑥) = Ι𝛼 (
1

𝑢1
2(𝑥)

𝑒−Ι𝛼(𝑃(𝑥))). 

Consequently, the general solution of homogeneous fractional 

equation of (4) is as follows (see [23]), 

𝑢ℎ(𝑥) = 𝐶1𝑢1(𝑥) + 𝐶2(Ι𝛼 (
1

𝑢1
2(𝑥)

𝑒−Ι𝛼(𝑃(𝑥))) 𝑢1(𝑥). 

Example 4.1.1. We know that u1(x) = 3 √x
3

 is a solution of the 

following homogeneous equation 

9 √𝑥2 3
Τ2

3
Τ2

3
(𝑢(𝑥)) − 6√𝑥 

3
Τ2

3
(𝑢(𝑥)) + 2 𝑢(𝑥) = 0. 

According to (5), we have 

𝑣(𝑥) = 3 √𝑥
3

  . 
Therefore 

𝑢2(𝑥) = 9√𝑥23
. 

So the general solution is as follows, 

𝑢ℎ(𝑥) = 𝐶1 √𝑥
3

+ 𝐶2 √𝑥23
. 

Example 4.1.2. We know that u1(x) = x  is a solution of  

2𝑥𝛵1

2

Τ1

2

(𝑢(𝑥)) + √𝑥Τ1

2

(𝑢(𝑥)) − 2𝑢(𝑥) = 0. 

According to D’Alambert approach 𝑣(𝑥)  and second solution  

𝑢2(𝑥) are obtained as follows, 

𝑣(𝑥) = −
𝑥−2

2
    ,   𝑢2(𝑥) = −

1

2𝑥
 .  

Therefor a general solution of above equation has the following 

form,  

𝑢ℎ(𝑥) = 𝐶1𝑥 + 𝐶2𝑥−1. 
 

4.2. The homogeneous fractional equation with constant 

coefficients 
 

We are now in a position to give a complete discussion of the ho-

mogeneous equation of Eq. (4) for the special case in which 𝑝 and 

𝑞 are constants (see [23]). 
 

Τ𝛼Τ𝛼(𝑢(𝑥)) + 𝑝 Τ𝛼(𝑢(𝑥)) + 𝑞 𝑢(𝑥) = 0.                    (6) 

Our starting point is the fact that the exponential function em(
1

α
xα)

, 

has the property that its conformable fractional derivative are all 

constant multiples of the function itself. It leads us to consider (see 

[19]) 

𝑢(𝑥) = 𝑒𝑚(
1

𝛼
𝑥𝛼)                                                               (7) 

 

as a possible solution for Eq. (6), we have 

Τ𝛼(𝑢(𝑥)) = 𝑚𝑒𝑚(
1

𝛼
𝑥𝛼),                                             (8) 

 

and 

Τ𝛼Τ𝛼 (𝑢(𝑥)) = 𝑚2𝑒𝑚(
1

𝛼
𝑥𝛼)

.                                               (9) 
 

Substituting Eqs. (7), (8), and (9) into (6) yields to 

(𝑚2 + 𝑝 𝑚 + 𝑞)𝑒𝑚(
1

𝛼
𝑥𝛼) = 0                                                (10) 

 

and since  em(
1

α
xα)

 is never zero, (7) holds if and only if 𝑚 satisfies 

the following auxiliary equation (see [23]), 

𝑚2 + 𝑝 𝑚 + 𝑞 = 0.                                                                 (11) 
 

It is clear that the roots 𝑚1 and  𝑚2  of Eq. (11) are distinct real 

numbers if and only if  𝑝2 − 4𝑞 > 0. 

In this case, we get the two solutions 

𝑢1(𝑥) = 𝑒𝑚1(
1

𝛼
𝑥𝛼)

 and 𝑢2(𝑥) = 𝑒𝑚2(
1

𝛼
𝑥𝛼)

. 

Since the ratio  
e

m1(
1
αxα)

e
m2(

1
αxα)

= e(m1-m2)(
1

α
xα)

 is not constant, 

these solutions are linearly independent and   

𝑢ℎ(𝑥) = 𝐶1𝑒𝑚1(
1

𝛼
𝑥𝛼) + 𝐶2𝑒𝑚2(

1

𝛼
𝑥𝛼), 

is the general solution of Eq. (6). 

If  𝑚1 = 𝑚2, then we obtain only one solution 𝑢1(𝑥) = 𝑒𝑚1(
1

𝛼
𝑥𝛼)

. 

Therefore, we can easily find a second linearly independent solution 

by the D’Alambert method as the following form 

𝑢2(𝑥) = (
1

𝛼
𝑥𝛼)𝑒𝑚1(

1
𝛼

𝑥𝛼) 

and the general solution of Eq. (6) is  

𝑢ℎ(𝑥) = (𝐶1 + 𝐶2 (
1

𝛼
𝑥𝛼)) 𝑒𝑚1(

1
𝛼

𝑥𝛼). 

If the roots 𝑚1 and  𝑚2 are distinct complex numbers, then they 

can be written in the form 𝑎 ± 𝑖𝑏 and our two real solutions of Eq. 

(6) are as follows 

𝑢1(𝑥) = 𝑒𝑎(
1

𝛼
𝑥𝛼)(cos 𝑏(

1

𝛼
𝑥𝛼)) 

𝑢2(𝑥) = 𝑒𝑎(
1
𝛼

𝑥𝛼)(sin 𝑏(
1

𝛼
𝑥𝛼)). 

So the solution of Eq. (6) will be obtained as the following  

𝑢ℎ(𝑥) = 𝑒𝑎(
1
𝛼

𝑥𝛼) (𝐶1 cos 𝑏(
1

𝛼
𝑥𝛼) + 𝐶2 sin 𝑏(

1

𝛼
𝑥𝛼)). 

 

Example.4.2.1. Consider the following homogenous fractional dif-

ferential equation 

Τ𝛼Τ𝛼(𝑢(𝑥)) − 3Τ𝛼(𝑢(𝑥)) + 𝑢(𝑥) = 0. 

The general solution of the above equation is as follow 

𝑢ℎ(𝑥) = 𝐶1𝑒(
1

𝛼
𝑥𝛼) + 𝐶2𝑒2(

1

𝛼
𝑥𝛼). 

 

Example.4.2.2. The general solution of homogeneous equation of 

Τ𝛼Τ𝛼(𝑢(𝑥)) + 4Τ𝛼(𝑢(𝑥)) + 4𝑢(𝑥) = 0.    
Will be obtained as follows 

𝑢ℎ(𝑥) = (𝐶1 + 𝐶2 (
1

𝛼
𝑥𝛼)) 𝑒−2(

1
𝛼

𝑥𝛼). 
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Example.4.2.3. Let’s consider following homogeneous fractional 

differential equation 

Τ𝛼Τ𝛼(𝑢(𝑥)) − 2Τ𝛼(𝑢(𝑥)) + 3𝑢(𝑥) = 0.     

Using signature approach result in 

𝑢ℎ(𝑥) = 𝑒
(

1

𝛼
𝑥𝛼)

(𝐶1 cos √2(
1

𝛼
𝑥𝛼) + 𝐶2 sin √2(

1

𝛼
𝑥𝛼)). 

 

4.3. Euler’s equidimensional fractional equation 
 

The homogeneous fractional differential equation,  

(
1

𝛼
𝑥𝛼)2 Τ𝛼Τ𝛼(𝑢(𝑥)) + 𝑝 (

1

𝛼
𝑥𝛼) Τ𝛼(𝑢(𝑥)) + 𝑞𝑢(𝑥) = 0,      𝑥 > 0       (12)  

where  p, q are constant, is called Euler’s fractional equation (see 

[23]). By using the change independent variable (see [19])  

𝑧 = ln(
1

𝛼
𝑥𝛼),                                                                     (13) 

we have 

Τ𝛼(𝑢(𝑧)) = (
1

𝛼
𝑥𝛼)−1 𝑑𝑢

𝑑𝑧
, 

Τ𝛼Τ𝛼(𝑢(𝑧)) = − (
1

𝛼
𝑥𝛼)

−2 𝑑𝑢

𝑑𝑧
+ (

1

𝛼
𝑥𝛼)

−2 𝑑2𝑢

𝑑𝑧2.                 (14) 

Substituting Eqs. (13) and (14) into Eq. (12), leads to 
𝑑2𝑢

𝑑𝑧2 + (𝑝 − 1)
𝑑𝑢

𝑑𝑧
+ 𝑞𝑢 = 0.                                                 (15) 

 

 

That equation (15) is an ordinary differential equation with constant 

coefficient, and according to this approach the auxiliary equation 

has the following form 

𝑚2 + (𝑝 − 1)𝑚 + 𝑞 = 0                                                       (16) 

Suppose 𝑚1 and 𝑚2 are roots of Eq.’s (16) (see [23]). If they are 

distinct real numbers, then the following solution 0f (12) can be ob-

tained, 

𝑢ℎ(𝑥) = 𝐶1(
1

𝛼
𝑥𝛼)𝑚1 + 𝐶2(

1

𝛼
𝑥𝛼)𝑚2  . 

If 𝑚1 = 𝑚2, we derive 

𝑢ℎ(𝑥) = (𝐶1 + 𝐶2 ln (
1

𝛼
𝑥𝛼)) (

1

𝛼
𝑥𝛼)𝑚1 . 

And if 𝑚1 and  𝑚2 are distinct complex numbers then the general 

solution of Eq. (12) will be derive as follows 

𝑢ℎ(𝑥) = (
1

𝛼
𝑥𝛼)𝑎[𝐶1 cos 𝑏 ln (

1

𝛼
𝑥𝛼) + 𝐶2 sin 𝑏 ln (

1

𝛼
𝑥𝛼)]. 

 

Example.4.3.1. Let’s consider the following homogeneous frac-

tional differential equation 

(
1

𝛼
𝑥𝛼)2Τ𝛼Τ𝛼(𝑢(𝑥)) − 2(

1

𝛼
𝑥𝛼)Τ𝛼(𝑢(𝑥)) + 2𝑢(𝑥) = 0. 

The auxiliary equation is as follows 

𝑚2 − 3 𝑚 + 2 = 0,   
with the roots are  𝑚1 = 1, and 𝑚2 = 2 .  
So the general solution is  

𝑢ℎ(𝑥) = 𝐶1(
1

𝛼
𝑥𝛼) + 𝐶2(

1

𝛼
𝑥𝛼)2.  

 

Example.4.3.2. consider following homogeneous equation 

(
1

𝛼
𝑥𝛼)2Τ𝛼Τ𝛼(𝑢(𝑥)) − 3(

1

𝛼
𝑥𝛼)Τ𝛼(𝑢(𝑥)) + 4𝑢(𝑥) = 0.    

The root of auxiliary are  

𝑚1 = 𝑚2 = 2. 
Thus the general solution is as follows, 

𝑢ℎ(𝑥) = (𝐶1 + 𝐶2 ln (
1

𝛼
𝑥𝛼)) (

1

𝛼
𝑥𝛼)2. 

 

Example.4.3.3. Let’s consider Euler’s fractional equation as fol-

lows 

(
1

𝛼
𝑥𝛼)2Τ𝛼Τ𝛼(𝑢(𝑥)) + 3(

1

𝛼
𝑥𝛼)Τ𝛼(𝑢(𝑥)) + 2𝑢(𝑥) = 0.    

The root of auxiliary equation are 

𝑚1 = −1 + 𝑖, 𝑚2 = −1 − 𝑖.     
Consequently, we have, 

𝑢ℎ(𝑥) = (
1

𝛼
𝑥𝛼)−1 [𝐶1 cos(ln (

1

𝛼
𝑥𝛼)) +𝐶2 sin(ln (

1

𝛼
𝑥𝛼))]. 

 

 

5. Determining a particular solution of nonho-

mogeneous fractional equation  
 

In this section, we have introduced variation of parameters and un-

determined coefficients methods for determining a particular solu-

tion of nonhomogeneous fractional equations.  

   

5.1. Variation of parameters or Lagrange approach 
 

Assume that 𝑢1(𝑥) , 𝑢2(𝑥) are two linearly independent solution 

homogeneous fractional differential equation of the second order 

fractional differential equation (3), we suppose that  the particular 

solution  𝑢𝑝(𝑥), is 

𝑢𝑝(𝑥) = 𝜗1(𝑥)𝑢1(𝑥) + 𝜗2(𝑥)𝑢2(𝑥),                                         (19) 

where  𝜗1(𝑥) , 𝜗2(𝑥)  are two unknown functions (see [23]). By 

computing the conformable fractional derivative of (19), we derive 

Τ𝛼 (𝑢𝑝(𝑥)) = (𝑢1Τ𝛼(𝜗1(𝑥)) + 𝑢2Τ𝛼(𝜗2(𝑥))) 

                          +(𝜗1Τ𝛼(𝑢1(𝑥)) + 𝜗2Τ𝛼(𝑢2(𝑥)).                 (20) 

To avoid using second conformable fractional derivative, we sup-

pose that 

𝑢1Τ𝛼(𝜗1(𝑥)) + 𝑢2Τ𝛼(𝜗2(𝑥)) = 0.                                            (21)    

So  

Τ𝛼 (𝑢𝑝(𝑥)) = 𝜗1Τ𝛼(𝑢1(𝑥)) + 𝜗2Τ𝛼(𝑢2(𝑥),                              (22) 

Therefore,  

Τ𝛼Τ𝛼 (𝑢𝑝(𝑥)) = 𝜗1Τ𝛼Τ𝛼(𝑢1(𝑥)) + Τ𝛼(𝜗1(x))Τ𝛼(𝑢1(𝑥)) 

+Τ𝛼(𝜗2(𝑥))Τ𝛼(𝑢2(𝑥)) + 𝜗2Τ𝛼Τ𝛼(𝑢2(𝑥)).                         (23) 

By substituting (19) , (22) and (23) into equation (3), and some ma-

nipulation, we get 

𝜗1 (Τ𝛼Τ𝛼(𝑢1(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢1(𝑥)) + 𝑄(𝑥)𝑢1(𝑥)) 

+𝜗2(Τ𝛼Τ𝛼(𝑢2(𝑥)) + 𝑃(𝑥)Τ𝛼(𝑢2(𝑥)) + 𝑄(𝑥)𝑢2(𝑥)) 
+Τ𝛼(𝜗1(x))Τ𝛼(𝑢1(𝑥)) + Τ𝛼(𝜗2(𝑥))Τ𝛼(𝑢2(𝑥)) = 𝑅(𝑥). (24) 
 

Since 𝑢1(𝑥) , 𝑎𝑛𝑑  𝑢2(𝑥) are solutions of (4), the two expressions 

in parentheses are equal to zero, and (24) reduces to  

Τ𝛼(𝜗1(x))Τ𝛼(𝑢1(𝑥)) + Τ𝛼(𝜗2(𝑥))Τ𝛼(𝑢2(𝑥)) = 𝑅(𝑥).  (25) 

By considering (21) and (25) together, we obtain the following re-

sults 

𝜗1(𝑥) = Ι𝛼 (
−𝑢2(𝑥)𝑅(𝑥)

𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥))
) , 

𝜗2(𝑥) = Ι𝛼 (
𝑢1(𝑥)𝑅(𝑥)

𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥))
) 

so 

𝑢𝑝(𝑥) = 𝑢1(𝑥). Ι𝛼 (
−𝑢2(𝑥)𝑅(𝑥)

𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥))
) + 𝑢2(𝑥). Ι𝛼 (

𝑢1(𝑥)𝑅(𝑥)

𝑊𝛼(𝑢1(𝑥), 𝑢2(𝑥))
). 

 

Example.5.1.1. Let’s consider the following fractional equation 
 

9√𝑥23
Τ2

3

Τ2

3

(𝑢(𝑥)) − 6√𝑥 
3

Τ2

3

(𝑢(𝑥)) + 2 𝑢(𝑥) = 9𝑥2 √𝑥23
.         (26) 

By using example.4.1.1. the homogeneous solutions of (26) are as 

follows, 

𝑢1(𝑥) = 3√𝑥
3

 , 𝑢2(𝑥) = 9√𝑥23
, 

and 𝑢𝑝(𝑥) = −
39

56
𝑥3 a particular solution of (26). 

So the equation (26) has a general solution such as  

𝑢(𝑥) = 𝐶1 √𝑥
3

+ 𝐶2 √𝑥23
−

39

56
𝑥3.  

 

Example.5.1.2. we want to find the general solution of 

2𝑥 Τ1
2

Τ1
2

(𝑢(𝑥)) + √𝑥Τ1
2

(𝑢(𝑥)) − 2𝑢(𝑥) = 4𝑥3. 

By example.4.1.2. the homogeneous solutions are 
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𝑢1(𝑥) = 𝑥,  𝑎𝑛𝑑 𝑢2(𝑥) = −

1

2𝑥
 ,  and 𝑢𝑝(𝑥) =

1

4
𝑥3, Is a particular 

solution of it. So the general solution of equation can be presented 

as the following form 

𝑢(𝑥) = 𝐶1𝑥 + 𝐶2𝑥−1 + 0.25𝑥3. 
5.2. Undetermined coefficients 
 

Undetermined coefficients is a procedure for finding  𝑢𝑝(𝑥) when 

(3) has the form  

 

Τ𝛼Τ𝛼(𝑢(𝑥)) + 𝑝 Τ𝛼(𝑢(𝑥)) + 𝑞 𝑢(𝑥) = 𝑅(𝑥),                          (27) 

 

where 𝑝 , 𝑞 are constant and  

𝑅(𝑥) = (𝑎0 + 𝑎1 (
1

𝛼
𝑥𝛼) + 𝑎2 (

1

𝛼
𝑥𝛼)

2

+ ⋯ + 𝑎𝑛 (
1

𝛼
𝑥𝛼)

𝑛

) 

             𝑒𝛽(
1

𝛼
𝑥𝛼) sin 𝛾 (

1

𝛼
𝑥𝛼) 

or 

R(x) = (𝑎0 + 𝑎1 (
1

𝛼
𝑥𝛼) + 𝑎2 (

1

𝛼
𝑥𝛼)

2

+ ⋯ + 𝑎𝑛 (
1

𝛼
𝑥𝛼)

𝑛

) 

             𝑒𝛽(
1

𝛼
𝑥𝛼) cos 𝛾 (

1

𝛼
𝑥𝛼) . 

 

 

We choose a particular solution in the following form 
 

𝑢𝑝(𝑥) = [ (𝐴0 + 𝐴1 (
1

𝛼
𝑥𝛼) + 𝐴2 (

1

𝛼
𝑥𝛼)

2

+ ⋯ + 𝐴𝑛 (
1

𝛼
𝑥𝛼)

𝑛

) 

𝑒𝛽(
1
𝛼

𝑥𝛼) sin 𝛾 (
1

𝛼
𝑥𝛼) + 

(𝐵0 + 𝐵1 (
1

𝛼
𝑥𝛼) + 𝐵2 (

1

𝛼
𝑥𝛼)

2

+ ⋯ + 𝐵𝑛 (
1

𝛼
𝑥𝛼)

𝑛

) 

𝑒𝛽(
1

𝛼
𝑥𝛼) sin 𝛾 (

1

𝛼
𝑥𝛼)] (

1

𝛼
𝑥𝛼)

𝑚

                                             (28) 

that  𝐴0, 𝐴1, … , 𝐴𝑛, 𝐵0, 𝐵1, … , 𝐵𝑛 , unknown coefficients and 𝑚 

is the lowest non-negative integer number, that removes homoge-

neous solutions, in choosing 𝑢𝑝(𝑥). By substituting (28) into (27) 

unknown coefficients will be obtained. 
 

Example.5.2.1. let’s consider the following nonhomogeneous frac-

tional equation 

Τ2

3

Τ2

3

(𝑢(𝑥)) − 2Τ2

3

(𝑢(𝑥)) = 18√𝑥23
− 10 .                                (29) 

Homogenous solutions of (29) are as follows 

𝑢1(𝑥) = 1 , 𝑢2(𝑥) = 𝑒
4

3
√𝑥23

 ,  

And a particular solution of it has the following form,  

𝑢𝑝(𝑥) = 3√𝑥23
−

27

4
 (√𝑥23

)
2

.  

So the general solution of (29) is 

𝑢(𝑥) = 𝐶1 + 𝐶2𝑒
4

3
√𝑥23

 + 3√𝑥23
−

27

4
 (√𝑥23

)
2

.      
 

Example.5.2.2.   The general solution of 

Τ1
2

Τ1
2

(𝑢(𝑥)) − 2Τ1
2

(𝑢(𝑥)) + 𝑢(𝑥) = 2√𝑥 𝑒2√𝑥  , 

can be presented as the following form 

𝑢(𝑥) = 𝐶1𝑒2√𝑥 + 𝐶2√𝑥 𝑒2√𝑥 +
4

3
 𝑥√𝑥 𝑒2√𝑥.       

       

Example.5.2.3.  Consider nonhomogeneous fractional equation as 

follows 

Τ1

2

Τ1

2

(𝑢(𝑥)) + 4 𝑢(𝑥) = 4 cos 4√𝑥 + 32𝑥 − 8√𝑥 ,                          

This equation has a general solution such as, 

𝑢(𝑥) = 𝐶1 cos 4√𝑥 + 𝐶2 sin 4√𝑥 + 2√𝑥 sin 4√𝑥 + 8𝑥 − 2√𝑥 − 2 . 
 

 

 

 

 

 

6. Conclusion 
 

 

In this article, some methods such as, the use of a known solution 

to find another one, homogenous equation with constant coeffi-

cients and Euler’s equidimensional equation have been introduced 

for determining a general solution of homogenous fractional equa-

tions. The variation of parameters or Lagrange method, undeter-

mined coefficients approach, for specifying a particular solution of 

second order linear fractional differential equations, are presented. 

This approach leads to an exact solution, thus there is no need of 

using any numerical approach. 
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