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Abstract 
 

The aim of this paper is to present a succinct review on fractional order models of infectious diseases. Fractional order derivative is a 

potential tool which gives a better understanding of the impact of memory on spread of infectious diseases. This paper reviews different 

infectious diseases models with constant, variable or complex fractional order. Fractional order models with time delay are presented in 

this paper as well. We argue that, such models are essential for decision makers in health organizations. 
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1. Introduction 

Infectious diseases and epidemics have become one of the crucial global issues as they cause of death and disability not only in developing 

countries, but also worldwide. Every year, HIV, TB and malaria cause 10% of all deaths [37], [28]. Over the last few decades, the number 

of infectious diseases outbreaks has increased dramatically, resulting in economic crises and millions of disability and deaths [48], [61]. 

For example, West Africa suffered up to $32 billion loss by 2015 and more than 11,000 deaths during Ebola outbreak [60], [66].  

Infectious diseases are spreading around the globe faster than ever before, and new diseases are emerging at a high rate [20]. Speed modern 

transportation has helped spread of some communicable diseases. International travelling and commerce drive the rapid, global distribution 

of microbial pathogens and the organisms that harbor them [45]. Recently, the Zika virus is now spreading explosively in the world through 

modern transportations. There is no, no background immunity in the population, or vaccine currently available [70]. Outbreaks provide an 

opportunity to collect and analyze initial data. These gathered data are essential to predict the behavior of diseases and to adjust control 

strategies. But sometimes data collection is impossible due pathological limitations [37], [40], [54]. Also, testing spread of infectious 

diseases in human societies are unethical or needs big budgets [39], [40], [54]. So, mathematical models of infectious diseases should be 

used to give a better understanding of spread of diseases spread in human communities [36] and to predict crucial data that should be 

collected. It is worth mentioning that, mathematical modeling of diseases extends to ancient history. One of the earliest mathematical 

models in epidemiology was presented by Daniel Bernoulli (1700–1782) [50], [22]. He predicted the impact of immunity with smallpox 

disease that made the idea of eradication feasible [50], [22]. Nowadays, modern mathematical models of infectious diseases play an in-

creasingly significant role to evaluate the potential impact of eradication and control programs in reducing morbidity and mortality [23], 

[25], [62], [46]. Such enormous models are significant to link between clinical data for selected subpopulations and population-level used 

[30]. Mathematical modelling can achieve a better understanding of the indirect protection provided by immunization [29]. For example, 

the spread of influenza virus in USA were simulated in 2009 from gathered data from different areas in [29]. Gathered data from the H1N1 

epidemic have been used to approve SEIR mathematical model. Also, an estimate for the vaccination coverage needed to block the spread 

of infectious diseases can be obtained from such models after estimating its parameters from available medical and epidemiological data 

[29]. 

Mathematical models enable researchers to understand the development of drug resistance throughout therapy [47]. 

Although many of these models have been proposed in literature, it has been restricted to integer order models [17]. However, integer order 

systems do not convey any information about prior states [4-11]. Understanding the concept of memory in biological systems can be very 

essential to predict the future of infectious diseases outbreaks and to control infectious diseases. Studying immunological memory is es-

sential to develop vaccines. Memory and learning process in vector and host are critical in vector-borne disease transmission like Malaria 

and dengue fever [56]. Learning behavior and memory in vectors like mosquitoes are important in vector borne diseases transmission [56]. 

Mosquitoes’ experience is considered as the ability for mosquitoes to accurately identify their hosts. Also memory and learning behavior 

is significant in immunological memory which is defined as the potential of the immune system to respond more effectively to threats that 

have been encountered previously [38]. Fractional order differential equations can be potential flexible tools for modelling epidemiological 

and biological systems related with memory. 

Adding fractional-order parameter enhances the system potential as it adds a new degree of freedom which leads the model to more space 

[17], [19]. So, the fractional order is supposed to be the memory index [21]. However, if the fractional order value tends to unity, the system 
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will have short memory dependence. Otherwise, if the fractional order approaches zero, so the system depends strongly on the previous 

states [28], [38]. So, of fractional-order models are more logical than the integer model [1], [5], [6].  

In this paper, we summarize different recent fractional order models of infectious diseases including constant & variable fractional order 

models, fractional delay models, and fractional complex order models.  

The rest of the paper is organized as follows: In section two, some basic definitions of the fractional calculus are presented. Section three 

introduces discussion about fractional order models of immune system while section four is devoted for the epidemic models with memory. 

Section five displays the role of mathematical models of with memory of Human immunodeficiency virus based on fractional order models. 

Two models are discussed in this section; the first is a constant fractional order model of HIV infection of CD4+ T-cells, while the second 

model is a fractional complex-order model drug-resistance in HIV disease. A study on fractional order models of vector borne diseases is 

presented in section six. Section seven is devoted for Fractional variable-order model of multi-strain tuberculosis (TB). Fractional order 

model with time delay of HIV infection.  

2. Preliminaries 

Firstly, basic definitions of constant & variable fractional-order integration and fractional-order differentiation will be discussed [3], [6], 

[7], [9], [51], [52], [57], [58].  

 

Definition 1: The fractional order integral of order of a function 𝑓: 𝑅+ → 𝑅 is given by 

 

𝐽𝛼𝑓(𝑥) =
1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)

𝑥

0
𝑑𝑡, 𝛼 > 0, 𝑥 > 0,  

 

Where 𝛼 & 𝑥 ∈ (0, ∞] 
This integral is called integral with memory.  

 

Definition 2: The Caputo and Riemann–Liouville fractional order derivatives of order 𝛼 are given respectively as follows [46]:  

 

 𝐷𝛼𝑓(𝑥) = 𝐷𝑚(𝐽𝑚−𝛼𝑓(𝑥)),  

 

 𝐷∗
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼(𝐷𝑚𝑓(𝑥)),  

 

Where 

 

𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁.  
 

Definition 3: Grunwald-Letnikov fractional order derivative of function 𝑓(𝑡) is given as follows [48]: 

 

𝐷𝑎
𝐺𝐿

𝑡
𝛼𝑓(𝑥) = 𝑙𝑖𝑚

ℎ→0
ℎ−𝛼 ∑ (−1)𝑗 (𝛼

𝑘
)𝑓(𝑡 − 𝑘ℎ)𝑛

𝑘=0   

 

Where 𝑛ℎ = 𝑥 −  𝑎 

 

The variable-order fractional derivative, is a powerful tool to characterize memory that may vary from point to point [57], [58]. Some of 

the basic definitions of the variable-order fractional derivative are presented as follows: 

 

Definition 4: (Riemann–Liouville fractional derivatives of order) 

 

Let 𝛼(𝑡) be a continuous and bounded function, then Riemann–Liouville variable-order fractional derivative of 𝑓(𝑡): [𝑎, 𝑏] → ℝ is defined 

as [57]: 

 

Left Riemann–Liouville derivative of order α(t) is defined by 

 

𝐷𝑎
𝑅𝐿

𝑡
𝛼(𝑡)

𝑓(𝑡) =
1

𝛤(1−𝛼(𝑡))

𝑑

𝑑𝑡
∫ (𝑡 − 𝜏)−𝛼(𝑡)𝑡

𝑎
𝑓(𝜏)𝑑𝜏,   

 

Where 0 < 𝛼(𝑡) ≤ 1  
 

Definition 5: (Caputo fractional derivatives of order 𝛼(𝑡)) 

 

Let α(t) be a continuous and bounded function, then the Caputo variable-order fractional derivative of f(t): [𝑎, 𝑏] → ℝ is defined as [57], 

[58]: 

 

Left Caputo derivative of order α(t) is defined by 

 

 𝐷𝑎
𝑐

𝑡
𝛼(𝑡)

𝑓(𝑡) =
1

𝛤(1−𝛼(𝑡))
∫ (𝑡 − 𝜏)−𝛼(𝑡)𝑡

𝑎
𝑓′(𝜏)𝑑𝜏,   

 

Where 0 < 𝛼(𝑡) ≤ 1  
 

Definition 6: (Gr�̈�nwald-Letnikov fractional derivatives of order 𝛼(𝑡)) 

Let α(t) be a continuous and bounded function, then the variable-order fractional derivative of 𝑓(𝑡): [𝑎, 𝑏] → ℝ is defined as [52]: 
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 𝐷0
𝐺𝐿

𝑡
𝛼(𝑡)

𝑓(𝑡) = 𝑙𝑖𝑚
ℎ→0

ℎ−𝛼 ∑ (−1)𝑗  (𝛼(𝑡)
𝑗

) 𝑓(𝑡 − 𝑗ℎ)
[𝑛]
𝑗=0   

 

Where h is the step size, 𝑛 =
𝑡

ℎ
, [𝑛] is the integer part of n and 0 < 𝛼(𝑡) ≤ 1. 

3. Fractional order models with an immune response  

All The immune system plays a vital role in human health as it protects the body from all harmful foreign substances like viruses and 

bacteria [32]. After defeating an infection, B and T cells create memory cells as they hold information about each hazard that attack the 

body. This creates the memory of immune system which makes it easier to identify and eliminate in the future [14]. There is no alternative 

to mathematical modeling to understand the behavior of immune system [39]. Numerous mathematical models have been presented to 

simulate the immune system [32]. The majority of such models proposed in the literature were integer order models. In [2], the authors 

presented a generalization of hepatitis C virus (HCV) model based on HCV basic model of Perelson et al [16] as follows 

 
             𝐷𝛼(𝑇) =  𝑠 − 𝑑 𝑇 − (1 − 𝜂)𝛽𝑉𝑇,

                        𝐷𝛼(𝐼) =  (1 − 𝜂)𝛽𝑉𝑇 − 𝛿 𝐼 (1 − 𝐼/𝑐2) ,

𝐷𝛼(𝑉) =  (1 − 휀𝑝) 𝑝𝐼 − 𝑐𝑉.

                                                                                                                                (1) 

 

Where T, I and V present respectively uninfected hepatocytes, infected hepatocytes and virus density, and 0 < 𝛼 ≤ 1 is the index of 

memory. The rate of production of uninfected hepatocytes is 𝑠, while their rate of death is d per cell and rate of infection is 𝛽. The rate of 

loss of infected hepatocytes is 𝛿 per cell. The rate of production of virions is p per infected hepatocytes and their rate of clearness is c per 

virion. 휀𝑝 and 𝜂 present respectively the efficacy of treatment in blocking virion production and reducing new infections. The authors show 

that “fractional order results show the realistic biphasic decline behavior of HCV but at a slower rate”. 

 In [24], another example to show that fractional order models are more significant to model the immune system than classical integer order 

models. The authors consider two immune effectors 𝑦, 𝑧 attacking an antigen 𝑥. As follows:  

 

       

             𝐷𝛼(𝑥) = 𝑥 − 𝑎𝑥𝑦 − 𝑏𝑥𝑧,

 𝐷𝛼(𝑦) = −𝑐𝑦 + 𝑥𝑦,

𝐷𝛼(𝑧) = −𝑒𝑧 + 𝑥𝑧.

                                                                                                                                                          (2) 

 

Where 𝑎, 𝑏, 𝑐, 𝑒 are positive constants and 0 < 𝛼 ≤ 1. 

 

Equilibrium points of (2) are locally asymptotically stable the condition |𝑎𝑟𝑔 𝜆𝑖| > 𝛼
𝜋

2
 is satisfied, where 𝜆𝑖 is the eigenvalue of the Jaco-

bian matrix of the system at the equilibrium. It has been proved in [24] that, fractional order model is either stable as classical integer order 

model or more stable. 

4. Epidemic models with memory 

An epidemic occurs when an infectious disease transmitted rapidly to many people than what was expected in a region during a given 

period. The Flu of 1918 was known as one of the most deadly outbreaks in recorded world history. This flu killed more people than World 

War I (about 20 million victims) [54]. Recently, World Health Organization (WHO) has declared emergency state for Ebola outbreak in 

West Africa after thousands of deaths because of the virus in 2014. Mathematical models in epidemiology are able to describe and predict 

highly dynamic outbreaks. For example, the following model [12] presents a fractional order model of Ebola infection using SEIR model 

as follows: 

 

  𝐷𝛼(𝑆) = −
𝛽𝑆(𝑡)(𝑞𝐸(𝑡)+𝐼(𝑡))

𝑁
,

                  𝐷𝛼(𝐸) =
𝛽𝑆(𝑡)(𝑞𝐸(𝑡)+𝐼(𝑡))

𝑁
− 𝛿𝐸(𝑡),

 
 

𝐷𝛼(𝐼) = 𝛿𝐸(𝑡) − 𝛾𝐼(𝑡),
 

𝐷𝛼(𝑅) = 𝛾𝐼(𝑡).

                                                                                                                                               (3) 

 

Where 0 < 𝛼 ≤ 1, while S(t), E(t), I(t), and R(t) are the susceptible, exposed, infected, removed populations respectively at time t and the 

number of total population N = S(t) + E(t) + I(t) + R(t). The parameter 𝛽 =  𝑝𝑐 is average number of infected people, 𝑝 is the probability 

of infection, 𝑐 is the per capita contact rate, 𝑞 ∈ [0, 1] and 𝛾 is the per-capita death rate. The authors have analyzed the WHO data in order 

to give an accurate prediction of the outbreak in Liberia, Guinea, and Sierra Leone. They achieved a good approximation to real gathered 

data. 

5. Fractional order models of HIV infection 

HIV is one of the most deadly viruses. It causes AIDS and destroys the immune system, so the body cannot defend itself against any threat. 

There were more than 36 million people living with HIV by the end of 2014 [67]. An estimated 21.8 million people have died of AIDS 

since the start of the epidemic. Mathematical models provide an essential tool to understand the interactions between HIV and the immune 

system. Fractional order models are helpful to provide a better understanding of the dynamics of HIV infection [19]. An impressive example 

has been shown in [19], where the authors have introduced a modified model of fractional order based on the ODE model proposed by 

Culshaw and Ruan [15] into a system of fractional-order as follows: 
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𝐷𝛼(𝑇)  = 𝑠 − 𝜇𝑇𝑇 + 𝑟𝑇 (1 −
𝑇+1

𝑇𝑚𝑎𝑥
) − 𝐾1𝑉𝑇  

 

𝐷𝛼(𝐼) = 𝐾1
′𝑉𝑇 − 𝜇𝐼𝐼,                                                                                                                                                                                     (4) 

 

𝐷𝛼(𝑉) = 𝑁𝜇𝑏𝐼 − 𝐾1𝑉𝑇 − 𝜇𝑉𝑉 

 

Where 𝑇(𝑡) is the concentration of healthy 𝐶𝐷4+𝑇-cells at time 𝑡, 𝐼(𝑡) is the concentration of infected 𝐶𝐷4+𝑇-cells, and 𝑉(𝑡) presents 

the concentration of free HIV at time 𝑡. The parameters 𝑠, 𝜇𝑇 , 𝑟 𝑎𝑛𝑑 𝑇𝑚𝑎𝑥 are the source of 𝐶𝐷4+𝑇-cells, the natural death rate of 𝐶𝐷4+𝑇-

cells, their growth rate and their carrying capacity respectively. 𝐾1 is the infection rate of T-cells with free virus while 𝐾1
′ presents the rate 

at which infected cells become actively infected, 𝜇𝐼 is a blanket death term for infected cells, 𝜇𝑏is the lytic death rate for infected cells, 𝜇𝑉 

is the loss rate of virus and 𝑁 is the number of viral particles. In [19], it is assumed that 0.5 < 𝛼 ≤ 1. The authors think that fractional 

derivatives cannot describe accurately the rate of change in number when 0 < 𝛼 ≤ 0.5. It has been proven that in [19], there is a unique 

solution 𝑥(𝑡) = (𝑇, 𝐼, 𝑉)𝑡 for on 𝑡 ≥ 0 and the solution will remain in 𝑅+
3 . Furthermore, 𝑇(𝑡) and 𝐼(𝑡) are all bounded by 𝑇𝑚𝑎𝑥 . The au-

thors showed that the model established in this paper possesses non negative solutions, as desired in any population dynamics. A restriction 

on the number of viral particles released per infectious has been obtained cell in [19], to sustain the infection. Another interesting study 

about a fractional complex-order model for drug resistance in HIV virus during therapy is presented in [44] as follows: 

 
1

2
( 𝐷𝛼+𝛽𝑗  +  𝐷𝛼−𝛽𝑗) 𝑇(𝑡) = 𝜆 − 𝑑𝑇 − 𝑘𝑠(1 − 𝑛𝑟𝑡

𝑠 )𝑉𝑠(𝑡)𝑇(𝑡) −  𝑘𝑠(1 − 𝑛𝑟𝑡
𝑠 )𝑉𝑟(𝑡)𝑇(𝑡),  

 
1

2
( 𝐷𝛼+𝛽𝑗  +  𝐷𝛼−𝛽𝑗) 𝑇𝑠(𝑡) = (1 − 𝑢)𝑘𝑠(1 − 𝑛𝑟𝑡

𝑠 )𝑉𝑠(𝑡)𝑇(𝑡) −  𝛿𝑇𝑠(𝑡),  

 
1

2
( 𝐷𝛼+𝛽𝑗  +  𝐷𝛼−𝛽𝑗) 𝑉𝑠(𝑡) =  𝑁𝑠𝛿(1 − 𝑛𝑃

𝑠 )𝑇𝑠(𝑡) − 𝑐𝑉𝑠(𝑡)                                                                                                                         (5) 

 
1

2
( 𝐷𝛼+𝛽𝑗  +  𝐷𝛼−𝛽𝑗) 𝑇𝑟(𝑡) = 𝑢𝐾𝑠(1 − 𝑛𝑟𝑡

𝑠 )𝑉𝑠(𝑡)𝑇(𝑡) + 𝐾𝑟(1 − 𝑛𝑟𝑡
𝑟 )𝑉𝑟(𝑡)𝑇(𝑡) − 𝛿𝑇𝑟(𝑡)  

 
1

2
( 𝐷𝛼+𝛽𝑗  +  𝐷𝛼−𝛽𝑗) 𝑉𝑟(𝑡) = 𝑁𝑟  𝛿(1 − 𝑛𝑃

𝑟 )𝑇𝑟(𝑡) − 𝑐𝑉𝑟(𝑡)  

 

Where 𝑇 is the density of uninfected 𝐶𝐷4+𝑇-cells with rate of production 𝜆 and rate of death d. The parameter 𝐾𝑠 is the infection rate of 

the 𝐶𝐷4+𝑇-cells with drug-sensitive HIV viruses 𝑉𝑠. The concentration of drug-sensitive infected 𝐶𝐷4+𝑇 is 𝑇𝑠(𝑡) while the concentration 

of the drug-resistant infected 𝐶𝐷4+𝑇 is 𝑇𝑟. The 𝐶𝐷4+𝑇 -cells may be infected by drug-resistant viruses 𝑉𝑟 at a rate 𝐾𝑟. The efficacy rates 

of RTI for wild type and mutants are 𝑛𝑟𝑡
𝑠  and 𝑛𝑟𝑡

𝑟  respectively (The proportions of eliminated 𝑇𝑠 and 𝑇𝑟 cells by RTI). The parameter 𝑢 is 

the proportion of 𝑇𝑠 cells that can become resistant to the drug. The rate of death of 𝑇𝑟and 𝑇𝑠 is 𝛿 while 𝑐 is the clearness rate of the viruses. 

𝑉𝑠 and 𝑉𝑟 are produced with bursting sizes drug-sensitive strains 𝑁𝑠and 𝑁𝑟 respectively. The efficacy of PI for wild type strain and mutants 

are 𝑛𝑃
𝑠  and 𝑛𝑃

𝑟  respectively. Based on Grunwald-Letnikov formulation, the authors simulated the model for different values of the fractional 

derivative of complex order 𝐷𝛼+𝛽𝑗  where (𝛼 + 𝛽𝑗) 𝜖 𝐶. If 𝛼 = 1 and 𝛽 = 0, the system will be converted to the integer order model. 

Applying fractional derivative complex-order to the system, results in complex valued outcomes. The authors fixed 𝛽 = 0.8 and 0.5 ≤
𝛼 ≤ 1. Faster declines in the density of viruses have been observed for decreasing values of 𝛼 [44]. In other words, increasing memory of 

T-cells leads to faster decreasing in density of HIV. 

6. Fractional order vector borne diseases models 

Vector-borne disease is a commonly used term that describes a disease transmitted to people by vectors like mosquitos and ticks through 

feeding activity [63]. Being a vector means that it carries a disease from one host to another. More than 1 million people die every year 

from mosquito-borne diseases like Malaria and Dengue Fever [65]. An interesting generalization of the basic deterministic ODE Dengue 

Fever disease model has been presented in [49]. The authors have modified the integer order model in [41] to be fractional order model as 

follows 

 

              𝐷𝛼(𝑆𝐻) = 𝜇𝐻(𝐾 − 𝑆𝐻) −
𝑏𝛽1𝑆𝐻𝐼𝑉

𝐾
 ,

            𝐷𝛼(𝐼𝐻) =
𝑏𝛽1𝑆𝐻𝐼𝑉

𝐾
− (𝜇𝐻 + 𝛾𝐻)𝐼𝐻 ,

 
𝐷𝛼(𝑅𝐻) = 𝛾𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻,

𝐷𝛼(𝐼𝑉) =
𝑏𝛽2𝐼𝐻𝑆𝑉

𝐾
− 𝑚𝐼𝑉 ,

                                                                                                                                           (6) 

               𝐷𝛼(𝑆𝑉) = 𝐴 −
𝑏𝛽2𝐼𝐻𝑆𝑉

𝐾
− 𝑚𝑆𝑉 .  

 

Where 0 < 𝛼 ≤ 1, 𝑆𝐻, 𝐼𝐻 and 𝑅𝐻 are the populations of susceptible humans, infected human, and recovered human respectively. 𝑆𝑉 and 

𝐼𝑉 are the populations of susceptible mosquitos, infected mosquitos. The total human population 𝐾 at time t is denoted by 𝑁𝐻 where 𝑁𝐻 =
𝑆𝐻 + 𝐼𝐻 + 𝑅𝐻. The authors considered that 𝑁𝑉 = 𝑆𝑉 + 𝐼𝑉. The parameter 𝜇𝐻 is the per capita mortality rate of the humans and 𝑚 is the 

corresponding value for the mosquitoes. 𝛾𝐻 is the humans recovery rate while 𝑏 is the biting rate. The probabilities of transmission from 

human to mosquito and vice versa are denoted by 𝛽1 and 𝛽2 respectively while 𝐴1 is the recruitment rate of mosquito. Model (6) has some 

drawback, because the left-hand side of the system (6) has dimension (𝑡𝑖𝑚𝑒)−𝛼 while the right-hand has the dimension (𝑡𝑖𝑚𝑒)−1. So it is 

recommended to use the procedure presented in [18,49]. System (6) can be re-written as follows: 
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 𝐷𝛼(𝑆𝐻) = 𝜇𝐻
𝛼(𝐾 − 𝑆𝐻) −

𝑏𝛼𝛽1𝑆𝐻𝐼𝑉

𝐾
,

 𝐷𝛼(𝐼𝐻) =
𝑏𝛼𝛽1𝑆𝐻𝐼𝑉

𝐾
− (𝜇𝐻

𝛼 + 𝛾𝐻
𝛼)𝐼𝐻,

 
 

𝐷𝛼(𝑅𝐻) = 𝛾𝐻
𝛼𝐼𝐻 − 𝜇𝐻

𝛼𝑅𝐻, 
 

 𝐷𝛼(𝑆𝑉) = 𝐴2 −
𝑏𝛼𝛽2𝐼𝐻𝑆𝑉

𝐾
− 𝑚𝛼𝑆𝑉 ,

𝐷𝛼(𝐼𝑉) =
𝑏𝛼𝛽2𝐼𝐻𝑆𝑉

𝐾
− 𝑚𝛼𝐼𝑉 .

                                                                                                                                                             (7) 

 

Where 𝐴2 = 𝜇𝑚
𝛼 × (𝑆𝑉(0) + 𝐼𝑉(0)), and 𝜇𝑚 is the birth rate of mosquito. In [48], two different orders 𝛼 ∈ (0,1] and 𝛽 ∈ (0,1] are intro-

duced to the system (6) to be more sensible, so the new system is as follows: 

 

𝐷𝛼(𝑆𝐻) = 𝜇𝐻
𝛼(𝐾 − 𝑆𝐻) −

𝑏𝛼𝛽1𝑆𝐻𝐼𝑉

𝐾
  

 

𝐷𝛼(𝐼𝐻) =
𝑏𝛼𝛽1𝑆𝐻𝐼𝑉

𝐾
− (𝜇𝐻

𝛼 + 𝛾𝐻
𝛼)𝐼𝐻  

  
𝐷𝛼(𝑅𝐻) = 𝛾𝐻

𝛼𝐼𝐻 − 𝜇𝐻
𝛼𝑅𝐻,                                                                                                                                                                              (8) 

 

𝐷𝛽(𝑆𝑉) = 𝐴2 −
𝑏𝛽𝛽2𝐼𝐻𝑆𝑉

𝐾
− 𝑚𝛽𝑆𝑉  

 

𝐷𝛽(𝐼𝑉) =
𝑏𝛽𝛽2𝐼𝐻𝑆𝑉

𝐾
− 𝑚𝛽𝐼𝑉 .  

 

The basic reproduction number has been derived in [48] for (6) to be 

 

𝑅0 = √
𝑏𝛽1

𝑚
×

𝑏𝛽2𝐴

𝑚𝐾(𝜇𝐻+𝛾𝐻)
                                                                                                                                                                                 (9) 

 

The infection persists if 𝑅0 > 1, and dies out if 𝑅0 < 1. Using the next generation matrix approach, the basic reproduction numbers 𝑅0, 

�̅�0and �̿�0 have been derived for systems (7) and (8) respectively in [49]to be: 

 

�̅�0 = √
𝑏𝛼𝛽1

𝑚𝛼 ×
𝑏𝛼𝛽2𝐴

𝑚𝛼𝐾(𝜇𝐻
𝛼 +𝛾𝐻

𝛼)
                                                                                                                                                                           (10) 

 

And 

 

�̿�0 = √
𝑏𝛼𝛽1

𝑚𝛽 ×
𝑏𝛽𝛽2𝐴

𝑚𝛽𝐾(𝜇𝐻
𝛼 +𝛾𝐻

𝛼)
                                                                                                                                                                           (11) 

 

It is clear that, �̅�0 and �̿�0 carry information about the persistence of the disease. Involvement of the index of human memory (𝛼) and the 

index of mosquitoes memory (𝛽) in (10) and (11) has some effects on the values of the reproduction numbers �̅�0 and �̿�0. The authors in 

[49] observed the relation between the memory of mosquitoes and the dengue transmission. Also they studied the effect of the memory of 

humans on dengue transmission. Increasing human memory (𝛼 → 0) will reduce the disease transmission. The authors in [49] presented a 

strategy for controlling dengue disease through studying the memory effects of the host, and the vector. they believe that, increasing human 

memory and learning behavior through different kinds of media awareness is essential to reduce the disease transmission. Also the memory 

of the mosquito (like detecting host sites and suitable locations for their eggs) plays a significant role in the disease transmission. So, 

Increasing mosquitoes memory and learning behavior (𝛽 → 0), leads to increasing the disease transmission. The authors observed that the 

results of (8) have a better agreement with a real measured data in [64]. Such observations support using the models with memory. 

7. Fractional variable-order model of multi-strain tuberculosis (TB)  

TB is an infectious disease is one of the most dangerous diseases [42], [66]. It is often affect the lungs. According to reports of World 

Health Organization (WHO) in 2014, 9.6 million people have been infected with TB and 1.5 million died from the disease [69]. TB is one 

of the major killers of HIV-positive people. In 2015, 1 in 3 HIV deaths was due to TB [67]. Ending the TB epidemic by 2030 is among the 

World Health Organization (WHO) future plans [69]. Mathematical models help the decision makers to put their plans to control TB 

diseases and to achieve public health and economic benefits [27]. Anti (TB) drug resistance is one of the most dangerous problems that 

delayed progress made in TB care [13]. In [52], multi-strain TB model of variable-order fractional derivatives is presented as follows 

 

𝐷𝛼(𝑡)(𝑆)  = 𝑏 − 𝑑𝑆 − 𝛽𝑠
𝑆𝐼𝑠

𝑁
− 𝛽𝑚

𝑆𝐼𝑚

𝑁
− 𝛽𝑥

𝑆𝐼𝑥

𝑁
,  

 

𝐷𝛼(𝑡)(𝐿𝑠) = 𝜆𝑠𝛽𝑠
𝑆𝐼𝑠

𝑁
+ 𝜎𝑠𝜆𝑠𝛽𝑠

𝑅𝐼𝑠

𝑁
+ 𝛾𝑠𝐼𝑠 − 𝛼𝑠𝑠𝛽𝑠

𝐿𝑠𝐼𝑠

𝑁
− 𝛼𝑠𝑚𝛽𝑚

𝐿𝑠𝐼𝑚

𝑁
− 𝛼𝑠𝑥𝛽𝑥

𝐿𝑠𝐼𝑥

𝑁
− (𝑑 + 휀𝑠 + 𝑡1𝑠)𝐿𝑠 ,  

 

𝐷𝛼(𝑡)(𝐿𝑚) = 𝜆𝑚𝛽𝑚
𝑆𝐼𝑚

𝑁
+ 𝜎𝑚𝜆𝑚𝛽𝑚

𝑅𝐼𝑚

𝑁
+ 𝛾𝑚𝐼𝑚 + 𝛼𝑠𝑚𝛽𝑚𝜆𝑚

𝐿𝑠𝐼𝑚

𝑁
+ (1 − 𝑃1)𝑡1𝑠𝐿𝑠 + (1 − 𝑃2)𝑡2𝑠𝐼𝑠 −𝛼𝑚𝑚𝛽𝑚

𝐿𝑚𝐼𝑚

𝑁
− 𝛼𝑚𝑥𝛽𝑥

𝐿𝑚𝐼𝑥

𝑁
−

                  (𝑑 + 휀𝑚)𝐿𝑚  
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𝐷𝛼(𝑡)(𝐿𝑥) = 𝜆𝑥𝛽𝑥

𝑆𝐼𝑥

𝑁
+ 𝜎𝑥𝜆𝑥𝛽𝑥

𝑅𝐼𝑥

𝑁
+ 𝛾𝑥𝐼𝑥 + 𝛼𝑠𝑥𝛽𝑥𝜆𝑥

𝐿𝑠𝐼𝑥

𝑁
+ 𝛼𝑚𝑥𝜆𝑥𝛽𝑥

𝐿𝑚𝐼𝑥

𝑁
+ (1 − 𝑃3)𝑡2𝑚𝐼𝑚 − 𝛼𝑥𝑥𝛽𝑥

𝐿𝑥𝐼𝑥

𝑁
− (𝑑 + 휀𝑥)𝐿𝑥, 

 

𝐷𝛼(𝑡)(𝐼𝑠) = 𝛼𝑠𝑠𝛽𝑠
𝐿𝑠𝐼𝑠

𝑁
+ (1 − 𝜆𝑠)𝛽𝑠 (

𝑆𝐼𝑠

𝑁
+ 𝜎𝑠

𝑅𝐼𝑠

𝑁
) + 휀𝑠𝐿𝑠 − (𝑑 + 𝛿𝑠 + 𝑡2𝑠 + 𝛾𝑠)𝐼𝑠,  

 

𝐷𝛼(𝑡)(𝐼𝑚) = 𝛼𝑚𝑚𝛽𝑚
𝐿𝑚𝐼𝑚

𝑁
+ (1 − 𝜆𝑚)𝛽𝑚(

𝑆𝐼𝑚

𝑁
+ 𝜎𝑚

𝑅𝐼𝑚

𝑁
 𝛼𝑠𝑚

𝐿𝑠𝐼𝑚

𝑁
)휀𝑚𝐿𝑚 − (𝑑 + 𝛿𝑚 + 𝑡2𝑚 + 𝛾𝑚)𝐼𝑚,  

 

𝐷𝛼(𝑡)(𝐼𝑥) = 𝛼𝑥𝑥𝛽𝑥
𝐿𝑥𝐼𝑥

𝑁
+ (1 − 𝜆𝑥)𝛽𝑥 (

𝑆𝐼𝑥

𝑁
+ 𝜎𝑥

𝑅𝐼𝑥

𝑁
+ 𝛼𝑠𝑥

𝐿𝑠𝐼𝑥

𝑁
+ 𝛼𝑚𝑥

𝐿𝑚𝐼𝑥

𝑁
) + 휀𝑥𝐿𝑥 − (𝑑 + 𝛿𝑥 + 𝑡2𝑥 + 𝛾𝑥)𝐼𝑥  

 

𝐷𝛼(𝑡)(𝑅) = 𝑃1𝑡1𝑠𝐿𝑠 + 𝑃2𝑡2𝑠𝐼𝑠 + 𝑃3𝑡2𝑚𝐼𝑚 + 𝑡2𝑥𝐼𝑥 − 𝜎𝑠𝛽𝑠
𝑅𝐼𝑠

𝑁
− 𝜎𝑚𝛽𝑚

𝑅𝐼𝑚

𝑁
− 𝜎𝑥𝛽𝑥

𝑅𝐼𝑥

𝑁
− 𝑑𝑅                                                                   (12) 

 

Where 0 < 𝛼(𝑡) ≤ 1 is the fractional variable order, 

𝑆(𝑡) is the susceptible individuals, 

𝐿𝑠(𝑡) is the latently infected individuals with the drug-sensitive TB strain, 

𝐿𝑚(𝑡) is the latently infected population with MDR-TB, 

𝐿𝑥(𝑡) is the latently infected population with XDR-TB, 

𝐼𝑠(𝑡) is the infected individuals with the drug-sensitive TB strain who are infectious to others, 

𝐼𝑚(𝑡) presents the infectious individuals with the MDR-TB strain, 

𝐼𝑥(𝑡) presents the individuals who infectious with the XDR-TB strain, 

𝑅(𝑡) is the populations for who have been treated successfully, 

 

𝑁(𝑡) = 𝑆(𝑡) + 𝐿𝑠(𝑡) + 𝐿𝑚(𝑡) +𝐿𝑥(𝑡) + 𝐼𝑠(𝑡) + 𝐼𝑚(𝑡) + 𝐼𝑥(𝑡) + 𝑅(𝑡) is the total population 

 

𝑏 is the rate of birth/recruitment, 

𝑑 is per capita natural death rate, 

𝛽𝑟  is transmission coefficient for strain r, 

𝜆𝑟 is the proportion of newly infected individuals developing LTBI with strain 𝑟, 

1 − 𝜆𝑟 is the proportion of newly infected individuals progressing to active TB with strain r due to fast infection, 

휀𝑟 is per capita rate of endogenous reactivation of 𝐿𝑟, 

𝛼𝑟1, 𝛼𝑟2 are the proportion of exogenous reinfection of 𝐿𝑟2 due to contact with 𝐼𝑟2, 

𝛾𝑟  is per capita rate of natural recovery to the latent stage 𝐿𝑟, 

𝛿𝑟  is per capita rate of death due to TB of strain r, 

𝑡1𝑠 is per capita rate of treatment for 𝐿𝑠, 

𝑡2𝑟 is per capita rate of treatment for 𝐼𝑟, 

1 − 𝜎𝑥 is the efficiency of treatment, 

𝑃1, 𝑃2, and 𝑃3 are the probabilities of treatment success for 𝐿𝑠, 𝐼𝑠, and 𝐼𝑚 respectively,  

The notation 𝑟1, 𝑟2, 𝑟3 ∈ {𝑠, 𝑚, 𝑥} is used. This model presents three strains: drug-sensitive, emerging multi-drug resistant (MDR) and ex-

tensively drug-resistant (XDR), as an extension for multi-strain TB integer order model which was developed in [13]. From the numerical 

results obtained in [52], the integer order model can be used to describe the short memory of the model, and the variable-order fractional 

model can be used to present the variable memory of TB model. The basic reproduction number has been derived in [ ] for (12) to be:  

 

𝑅0𝑠 =
𝛽𝑠( 𝑠+(1−𝜆𝑠)(𝑑+𝑡1𝑠))

( 𝑠+𝑑+𝑡1𝑠)(𝑡2𝑠+𝛿𝑠+𝑑)+𝛾𝑠(𝑡1𝑠+𝑑)
  

 

𝑅0𝑚 =
𝛽𝑚( 𝑚+(1−𝜆𝑚)𝑑)

( 𝑚+𝑑)(𝑡2𝑚+𝛿𝑚+𝑑)+𝛾𝑚𝑑
  

 

𝑅0𝑥 =
𝛽𝑥( 𝑥+(1−𝜆𝑥)𝑑)

( 𝑥+𝑑)(𝑡2𝑥+𝛿𝑥+𝑑)+𝛾𝑥𝑑
  

8. Fractional order models of infectious diseases with time delay 

Many researchers introduce the fractional order derivative into the infectious diseases models for its memory property. Time delay in these 

models plays a significant role in the process of spreading infectious diseases [34,35,59] as it introduces the dependence of the present 

state of the model on the past history. This time delay takes into account certain hidden processes like the viral life cycle and duration of 

immunity to diseases. Time delays increases the risk of epidemics and the difficulty of epidemic control. Fractional order derivative and 

time delays in infectious diseases models give a better understanding of the dynamics of infectious diseases. Several works have been 

proposed to study the fractional order models with  

time delay of infectious diseases. In this section, three examples of such models will be illustrated. 

8.1. Fractional order model of HIV with time delay 

The authors in [59] have introduced the following system to model HIV infection of 𝐶𝐷4+𝑇-cells with time delay:  

 

𝐷𝛼(𝑇) = 𝑠 − 𝜇𝑇𝑇(𝑡) + 𝑟𝑇(𝑡) (1 −
𝑇(𝑡)+𝐼(𝑡)

𝑇𝑚𝑎𝑥
) − 𝑘𝑇(𝑡)𝑉(𝑡)  

 

𝐷𝛼(𝐼) = 𝑘′𝑇(𝑡 − 𝜏)𝑉(𝑡 − 𝜏) − 𝜇𝐼𝐼(𝑡)                                                                                                                                                       (13) 

 

𝐷𝛼(𝑉) = 𝑁𝜇𝑏𝐼(𝑡) − 𝑘𝑇(𝑡)𝑉(𝑡) − 𝜇𝑣𝑉(𝑡)  
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Where 

 

𝑇(𝜃) = 𝑇0, 𝐼(0) = 0, 𝑉(𝜃) = 𝑉0, 𝜃 ∈ [−𝜏, 0], 
 

The authors in [34] presents a new fractional order time-delay model which is as an extension of the work in [59]. This model includes full 

logistic growth terms of both healthy and infected CD4+ T-cells, and cure rate items. The new model is described by the following frac-

tional order differential time-delay model: 

 

𝐷𝛼(𝑇) = 𝑠 − 𝜇𝑇𝑇(𝑡) + 𝑟𝑇(𝑡) (1 −
𝑇(𝑡)+𝐼(𝑡)

𝑇𝑚𝑎𝑥
) − 𝑘𝑇(𝑡)𝑉(𝑡) + 𝜌𝐼(𝑡)  

 

𝐷𝛼(𝐼) = 𝑘′𝑇(𝑡 − 𝜏)𝑉(𝑡 − 𝜏) + 𝑟𝐼(𝑡) (1 −
𝑇(𝑡)+𝐼(𝑡)

𝑇𝑚𝑎𝑥
) −  (𝜇𝐼 + 𝜌)𝐼(𝑡)                 (14)                                                                                                                                                                                         

 

𝐷𝛼(𝑉) = 𝑁𝜇𝑏𝐼(𝑡) − 𝜇𝑣𝑉(𝑡)  

 

Where 𝑇(𝜃) = 𝑇0, 𝐼(0) = 0, 𝑉(𝜃) = 𝑉0, 𝜃 ∈ [−𝜏, 0], 0 < 𝛼 ≤ 1, and 𝜏 ≥ 0 is the length of the delay in days, 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡) represent 

the concentration of healthy 𝐶𝐷4+𝑇 cells, infected 𝐶𝐷4+𝑇-cells, and density of HIV RNA in the blood, respectively. The parameters are 

defined in [1], [2] as follows: 

s is the source term for uninfected 𝐶𝐷4+𝑇 cells, 

𝜇𝑇 is the natural death rate of 𝐶𝐷4+𝑇 cells, 

𝜇𝐼 is the blanket death rate of the infected cells, 

𝜇𝑣 is the death rate of free virus, 

𝜇𝑏 is the rate of lytic death of infected cells, 

𝑘 is the rate of infectious of 𝐶𝐷4+𝑇- cells,  

𝑘′ is the rate of activation of infected cells, 

𝜌 is the rate of reverting from infected cells to the uninfected state, 

𝑟 is the growth rate of 𝐶𝐷4+𝑇 - cells, 

𝑁 is the number of virions produced by infected 𝐶𝐷4+𝑇- cells, 

𝑇𝑚𝑎𝑥 is the maximal population level of 𝐶𝐷4+𝑇- cells, 

𝑇0 is the 𝐶𝐷4+𝑇 - cells population for HIV-negative persons, 

The numerical solutions in [34] indicate that, when α increases, the trajectory of the model is close to the integer-order model and when τ 

increases, the fluctuation of the trajectory of the model is smaller during the previous period of the time. Also numerical solutions in [34] 

show that if the cure rate gets large, the HIV infection efficiently can be controlled.  

8.2. Fractional order TB model with time delay 

In [53], fractional order TB model with time delay is proposed. This model is based on Grünwald–Letnikov fractional order derivative. In 

this work, the fractional order system which has been presented in [53] as follows: 

which has been presented in [53] as follows: 

 

𝐷𝛼(𝑆)  = 𝑏𝛼 − 𝑑𝛼𝑆 − 𝛽𝑠
𝛼 𝑆𝐼𝑠

𝑁
− 𝛽𝑚

𝛼 𝑆𝐼𝑚

𝑁
− 𝛽𝑥

𝛼 𝑆𝐼𝑥

𝑁
,  

 

𝐷𝛼(𝐿𝑠) = 𝜆𝑠
𝛼  𝛽𝑠

𝛼 𝑆𝐼𝑠

𝑁
+ 𝜆𝑠

𝛼  𝜎𝑠
𝛼  𝛽𝑠

𝛼 𝑅𝐼𝑠

𝑁
+ 𝛾𝑠

𝛼𝐼𝑠 − 𝛼𝑠𝑠
𝛼  𝛽𝑠

𝛼 𝐿𝑠𝐼𝑠

𝑁
− 𝛼𝑠𝑚 

𝛼 𝛽𝑚
𝛼 𝐿𝑠𝐼𝑚

𝑁
− 𝛼𝑠𝑥 

𝛼 𝛽𝑥
𝛼 𝐿𝑠𝐼𝑥

𝑁
− (𝑑𝛼 + 휀𝑠

𝛼 + 𝑡1𝑠
𝛼 )𝐿𝑠,  

 

𝐷𝛼(𝐿𝑚) = 𝜆𝑚
𝛼 𝛽𝑚

𝛼 𝑆𝐼𝑚

𝑁
+ 𝜆𝑚

𝛼 𝜎𝑚 
𝛼  𝛽𝑚

𝛼 𝑅𝐼𝑚

𝑁
+ 𝛾𝑚 

𝛼 𝐼𝑚 +  𝛼𝑠𝑚 
𝛼 𝛽𝑚

𝛼 𝜆𝑚
𝛼 𝐿𝑠𝐼𝑚

𝑁
+ (1 − 𝑃1

𝛼) 𝑡1𝑠
𝛼 𝐿𝑠 + (1 − 𝑃2

𝛼)𝑡2𝑠
𝛼 𝐼𝑠 − 𝛼𝑚𝑚 

𝛼 𝛽𝑚
𝛼 𝐿𝑚𝐼𝑚

𝑁
− 𝛼𝑚𝑥 

𝛼 𝛽𝑥
𝛼 𝐿𝑚𝐼𝑥

𝑁
−

(𝑑𝛼 + 휀𝑚
𝛼 )𝐿𝑚, 

 

𝐷𝛼(𝐿𝑥) = 𝜆𝑥
𝛼𝛽𝑥

𝛼 𝑆𝐼𝑥

𝑁
+ 𝜎𝑥 

𝛼  𝜆𝑥 
𝛼 𝛽𝑥

𝛼 𝑅𝐼𝑥

𝑁
+ 𝛾𝑥

𝛼𝐼𝑥 + 𝛼𝑠𝑥 
𝛼 𝛽𝑥

𝛼𝜆𝑥 
𝛼 𝐿𝑠𝐼𝑥

𝑁
+ 𝛼𝑚𝑥 

𝛼 𝜆𝑥
𝛼𝛽𝑥

𝛼 𝐿𝑚𝐼𝑥

𝑁
+ (1 − 𝑃3

𝛼)𝑡2𝑚
𝛼 𝐼𝑚 − 𝛼𝑥𝑥 

𝛼 𝛽𝑥
𝛼 𝐿𝑥𝐼𝑥

𝑁
− (𝑑𝛼 + 휀𝑥

𝛼)𝐿𝑥  

 

𝐷𝛼(𝐼𝑠) = 𝛼𝑠𝑠
𝛼 𝛽𝑠

𝛼 𝐿𝑠𝐼𝑠

𝑁
+ (1 − 𝜆𝑠

𝛼)𝛽𝑠
𝛼 (

𝑆𝐼𝑠

𝑁
+ 𝜎𝑠

𝛼 𝑅𝐼𝑠

𝑁
) + 휀𝑠

𝛼𝐿𝑠 − (𝑑𝛼 + 𝛿𝑠
𝛼 + 𝑡2𝑠

𝛼 + 𝛾𝑠
𝛼)𝐼𝑠 ,  

 

𝐷𝛼(𝐼𝑚) = 𝛼𝑚𝑚
𝛼 𝛽𝑚

𝛼 𝐿𝑚𝐼𝑚

𝑁
+ (1 − 𝜆𝑚

𝛼 )𝛽𝑚
𝛼 (

𝑆𝐼𝑚

𝑁
+ 𝜎𝑚

𝛼 𝑅𝐼𝑚

𝑁
+ 𝛼𝑠𝑚

𝐿𝑠𝐼𝑚

𝑁
) +  휀𝑚

𝛼 𝐿𝑚 − (𝑑𝛼 + 𝛿𝑚
𝛼 + 𝛾𝑚

𝛼 )𝐼𝑚 − 𝑡2𝑚
𝛼 𝐼𝑚(𝑡 − 𝜏), 

 

𝐷𝛼(𝐼𝑥) = 𝛼𝑥𝑥
𝛼 𝛽𝑥

𝛼 𝐿𝑥𝐼𝑥

𝑁
+ (1 − 𝜆𝑥

𝛼)𝛽𝑥
𝛼 (

𝑆𝐼𝑥

𝑁
+ 𝜎𝑥

𝛼 𝑅𝐼𝑥

𝑁
+ 𝛼𝑠𝑥 

𝛼 𝐿𝑠𝐼𝑥

𝑁
+ 𝛼𝑚𝑥 

𝛼 𝐿𝑚𝐼𝑥

𝑁
) +  휀𝑥

𝛼𝐿𝑥 − (𝑑𝛼 + 𝛿𝑥
𝛼 + 𝛾𝑥

𝛼)𝐼𝑥 − 𝑡2𝑥
𝛼 𝐼𝑥(𝑡 − 𝜏), 

 

𝐷𝛼(𝑅) =  𝑃1
𝛼𝑡1𝑠

𝛼 𝐿𝑠 + 𝑃2
𝛼𝑡2𝑠

𝛼 𝐼𝑠 + 𝑃3
𝛼𝑡2𝑚

𝛼 𝐼𝑚 + 𝑡2𝑥
𝛼 𝐼𝑥(𝑡 − 𝜏) − 𝜎𝑠𝛽𝑠

𝛼 𝑅𝐼𝑠

𝑁
− 𝜎𝑚

𝛼 𝛽𝑚
𝛼 𝑅𝐼𝑚

𝑁
− 𝜎𝑥

𝛼𝛽𝑥
𝛼 𝑅𝐼𝑥

𝑁
− 𝑑𝛼𝑅                                                   (15) 

 

The basic reproduction number has been derived in [53] for (15) to be:  

 

𝑅0𝑠 =
𝛽𝑠

𝛼( 𝑠
𝛼+(1−𝜆𝑠

𝛼)(𝑑𝛼+𝑡1𝑠
𝛼 ))

( 𝑠
𝛼+𝑑𝛼+𝑡1𝑠

𝛼 )(𝑡2𝑠
𝛼 +𝛿𝑠

𝛼+𝑑𝛼)+𝛾𝑠
𝛼(𝑡1𝑠

𝛼 +𝑑𝛼)
  

 

𝑅0𝑚 =
𝛽𝑚

𝛼 ( 𝑚
𝛼 +(1−𝜆𝑚

𝛼 )𝑑𝛼)

( 𝑚
𝛼 +𝑑𝛼)(𝑡2𝑚

𝛼 +𝛿𝑚
𝛼 +𝑑𝛼)+𝑑𝛼𝛾𝑚

𝛼   
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𝑅0𝑥 =
𝛽𝑥

𝛼( 𝑥
𝛼+(1−𝜆𝑥

𝛼)𝑑𝛼)

( 𝑥
𝛼+𝑑𝛼)(𝑡2𝑥

𝛼 +𝛿𝑥
𝛼+𝑑𝛼)+𝛾𝑥

𝛼𝑑𝛼  

8.3. Fractional order model for malaria transmission with time delay under impact of vaccination control  

Malaria disease is caused by the bites of infected Anopheles mosquitoes. It is the one of most fatal vector borne diseases. About 216 million 

people have been infected with malaria in 2016 [71]. 91% of such cases were in Africa. 445 000 people died in 2016 because of malaria 

infection [71]. Fractional order models can be used to study the impact of vaccination strategies against malaria transmission. A delayed 

fractional order model of Malaria transmission is proposed in [43]. The effect of impact of vaccination control is implemented in this model. 

 

𝐷𝛼1(𝑁ℎ(𝑡)) = 𝛬ℎ − 𝜉ℎ(𝐼ℎ(𝑡) + (1 − 𝜃2)𝑌ℎ(𝑡) + (1 − 𝜐)𝑇ℎ(𝑡)) − 𝜇ℎ𝑁ℎ(𝑡),  

 

𝐷𝛼2(𝑆ℎ(𝑡)) = (1 − 𝑝)𝛬ℎ − 𝑓ℎ(𝑡)𝑆ℎ(𝑡) + 𝑟ℎ(𝐼ℎ(𝑡) + 𝜃1𝑌ℎ(𝑡) + 𝛿𝑇ℎ(𝑡)) + 𝜎𝑉ℎ(𝑡) − 𝜇ℎ𝑆ℎ(𝑡)  

 

𝐷𝛼3(𝑉ℎ(𝑡)) = 𝑝𝛬ℎ − 𝑓ℎ(𝑡)(1 − 𝛾)𝑉ℎ(𝑡) − (𝜎 + 𝜇ℎ)𝑉ℎ(𝑡)  

 

𝐷𝛼4(𝐼ℎ(𝑡)) = 𝑓ℎ(𝑡 − 𝜏ℎ)𝑆ℎ(𝑡 − 𝜏ℎ)𝑒−𝜇ℎ𝜏ℎ − (𝑘 + 𝑟ℎ + 𝜉ℎ +  𝜇ℎ)𝐼ℎ(𝑡)  

 

𝐷𝛼5(𝑌ℎ(𝑡)) = 𝑓ℎ(𝑡 − 𝜏ℎ)(1 − 𝛾)𝑉ℎ(𝑡 − 𝜏ℎ)𝑒−𝜇ℎ𝜏ℎ − (𝑘 + 𝜃1𝑟ℎ + (1 − 𝜃2)𝜉ℎ + 𝜇ℎ)𝑌ℎ(𝑡)  

 

𝐷𝛼6(𝑇ℎ(𝑡)) = 𝑘(𝐼ℎ(𝑡) + 𝑌ℎ(𝑡)) − (𝛿𝑟ℎ + (1 − 𝜈)𝜉ℎ + 𝜇ℎ)𝑇ℎ(𝑡)  

 

𝐷𝛼7(𝑁𝑚(𝑡)) = 𝛬𝑚 − 𝜉𝑚𝐼𝑚(𝑡) − 𝜇𝑚𝑁𝑚(𝑡)  

 

𝐷𝛼8(𝑆𝑚(𝑡)) = 𝛬𝑚 − 𝑓𝑚(𝑡)𝑆𝑚(𝑡) − 𝜇𝑚𝑆𝑚(𝑡)  

 

𝐷𝛼9(𝐼𝑚(𝑡)) = 𝑓𝑚(𝑡 − 𝜏𝑚)𝑆𝑚(𝑡 − 𝜏𝑚)𝑒−𝜇𝑚𝜏ℎ − (𝜇𝑚 + 𝜉𝑚)𝐼𝑚(𝑡) + 𝛬𝑚             (16) 

 

Given that  

 

𝑓ℎ(𝑡) = 𝛽ℎ𝑐(1 − 𝑏𝑧)
𝐼𝑚(𝑡)

𝑁ℎ(𝑡)
, 

 

𝑓𝑚(𝑡) = 𝛽𝑚𝑐(1 − 𝑏𝑧)
𝐼ℎ(𝑡)+(1−𝜖)𝑌ℎ(𝑡)+(1−𝜂)𝑇ℎ(𝑡)

𝑁ℎ(𝑡)
   

 

Where 

𝛼𝑖 ∈ [0,1]𝑓𝑜𝑟 𝑖 = 1,2,3, … ,9 

𝑁ℎ(𝑡) is the total human population, 

𝑆ℎ(𝑡) is the number of susceptible human individuals, 

𝑉ℎ(𝑡) is the number of vaccinated human individuals, 

𝐼ℎ(𝑡) is the number of infectious human individuals, 

𝑌ℎ(𝑡) is the number of infectious vaccinated human individuals, 

𝑇ℎ(𝑡) is the number of treated human individuals, 

𝑁𝑚(𝑡) is the total number of mosquito population, 

𝑆𝑚(𝑡) is the number of susceptible mosquitos, 

𝐼𝑚(𝑡) is the number of infectious mosquitos, 

𝛬ℎ is the rate of recruitment of human population, 

𝑝 is the proportion of vaccinated individuals, 

𝜎 is the rate of loss of immunity due to vaccination, 

𝑟ℎis the rate of recovery, 

𝐶 is the biting rate, 

𝛽ℎis the probability of transmission, 

𝑏 is the personal protection efficacy, 

𝑧 is the compliance of personal protection, 

𝜉ℎis the death rate due to the disease, 

𝜇ℎ is the human's natural death rate, 

𝛾 is the pre-erythrocytic vaccine efficacy, 

𝜖 is the efficacy of transmission blocking vaccine,  

𝜏ℎ is the latent period of humans,  

𝑘 is the Treatment rate, 

𝜂 is the drug efficacy, 

𝛬𝑚 is the rate of recruitment of human population, 

𝛽𝑚 is the probability of infection transmission to mosquitoes, 

𝜇𝑚 is the natural death rate of mosquitoes, 

𝜏𝑚 is the latent period for mosquitoes, 

𝜉𝑚 is the rate of death due to presence of parasites, 

Infectious vaccinated humans recover at the rate of 𝜃1𝑟ℎ or die at the rate (1 − 𝜃2)𝜉ℎ, while treated humans recover at the rate of 𝛿𝑟ℎ or 

die at the rate of (1 − 𝜈)𝜉ℎ.  
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9. Fractional order SIR model based on stochastic process 

In [5], a new sophisticated approach has been proposed to derive fractional order SIR model. Instead of replacing first order derivatives in 

the classical SIR model by a Caputo fractional order derivatives, the authors in [5] developed a new Fractional order SIR recovery model 

based on physical stochastic process. They follow an interesting technique in their approach by replacing the constant parameters in the 

classical SIR model with time dependent parameters. In addition, they use a Mittag-Leffler waiting time distribution, to derive the following 

generalized master SIR model with fractional recovery:  

 
𝑑𝑠(𝑡)

𝑑𝑡
= 𝜆(𝑡) − 𝜔(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝛾(𝑡)𝑆(𝑡),  

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜔(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝛾(𝑡)𝐼(𝑡) −  𝜃(𝑡, 0) (𝜇𝐷𝑡

1−𝛼 (
𝐼

𝜃(𝑡,0)
−

𝐼0

𝜃(𝑡,0)
) −

𝑑

𝑑𝑡
(

𝐼0

𝜃(𝑡,0)
)),            (17) 

 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜃(𝑡, 0) (𝜇𝐷𝑡

1−𝛼 (
𝐼

𝜃(𝑡,0)
−

𝐼0

𝜃(𝑡,0)
) −

𝑑

𝑑𝑡
(

𝐼0

𝜃(𝑡,0)
)) − 𝛾(𝑡)𝑅(𝑡).  

Where  

S is the susceptible population 

I is the infected populations 

R is the recovered population 

𝜃(𝑡, 𝑡′) is the death surviving probability of from 𝑡′ to time 𝑡  
 

 𝜃(𝑡, 0) = 𝜃(𝑡, 𝑡′)𝜃(𝑡′, 0), 𝑓𝑜𝑟 0 < 𝑡′ < 𝑡.  
 

𝜔(𝑡) is the rate of becoming infected 

If the probability of death happens in the interval 𝑡 to 𝑡 + 𝛿𝑡 is 𝛾(𝑡)𝛿𝑡 + 𝑜(𝛿𝑡), then:  

 

 𝜃(𝑡, 𝑡′) = 𝑒− ∫ 𝛾(𝑡)𝑑𝑠
𝑡

𝑡′   

10. Conclusion 

As the fractional-order dynamical models possess memory, it offers a deep insight into the mathematical modeling of infectious diseases. 

In this paper, we have provided some fractional order models of infectious diseases to show how memory effect changes the dynamics of 

diseases. Fractional order models exhibit much more realistic dynamics than integer order models because such models carry information 

about the memory of living systems and its associative learning mechanisms. The fractional order derivative is the parameter of memory.  
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