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Abstract

Information visualization can be considered a process of transforming similarity relationships between data points
to a geometric representation in order to see unseen information. High-dimensionality data sets are one of the main
problems of information visualization. Dimensionality Reduction (DR) is therefore a useful strategy to project
high-dimensional space onto low-dimensional space, which it can be visualized directly. The application of this
technique has several benefits. First, DR can minimize the amount of storage needed by reducing the size of the
data sets. Second, it helps to understand the data sets by discarding any irrelevant features, and to focus on the
main important features. DR can enable the discovery of rich information, which assists the task of data analysis.
Visualization of high-dimensional data sets is widely used in many fields, such as remote sensing imagery, biology,
computer vision, and computer graphics. The visualization is a simple way to understand the high-dimensional
space because the relationship between original data points is incomprehensible. A large number of DR methods
which attempt to minimize the loss of original information. This paper discuss and analys some DR methods to
support the idea of dimensionality reduction to get trustworthy visualization.

Keywords: Dimensionality Reduction, Information visualization, Information retrieval.

1. Introduction

Visualisation of high-dimensional data sets is widely used to analyse data in many fields of study, including remote
sensing imagery, biology, computer vision, and computer graphics. Its purpose is to provide rich information
to assist with data analysis [1]. Dimensionality reduction (DR) is an important step for data pre-processing in
visualisation and knowledge discovery, and it is used for different purposes, such as information visualisation, noise
reduction, and imaging applications [2] [3]. Formally, for a set of n input points X ⊂ RD, φ(X) is used to project
the D-dimensional data points xi ∈ X to d-dimensional data points yi ∈ Y , where d� D.

φ : RD → Rd (1)

xi 7→ yi ∀ 1 ≤ i ≤ n (2)

In Equation 1, φ attempts to approximate the output pairwise distance d(xi, xj) with their corresponding in input
space r(yi, yj), i.e, r(xi, xj) ≈ d(yi, yj) ∀ 1 ≤ i ≤ n to project X’s data point correctly in Y space.

The high-dimensional data sets have several features; however, some might not be relevant to specific data
analysis. DR is used to discover the main and important features by which to make analysis and visualisation
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Figure 1: Three-dimensional spiral data sets are unfolded to a one-dimensional straight string line. The neighbourhood
relations between points in the unfolding space are preserved with their correspoinding relations in the high-dimensional data
sets.

possible. The fundamental information in the original data sets is reflected in the distances between pairs of data
points, and this information should be preserved by using a gradient step and fitting the input distances rij to
output distances dij . Thus, the goal of preserving the distance is to represent the original data sets in a projectec
space [4]. A simple example of applying DR is shown in Fig.1, where the spiral data sets are unfolded to the straight
string. Each point in the straight string preserves its local neighbourhood relations, and preserving neighbourhood
relations between points indicates the efficiency of the low-dimensional space.

In reality, reducing dimensionality of large data sets to a low-dimensional space without losing information might
be impossible. In general, DR attempts to minimize as in the following equation:

φ =

√√√√ n∑
i,j=1

(rij − dij)2 (3)

where rij = ||xi − xj || and dij = ||yi − yj || for the four points xi, xj , yi and yj . The cost function in Equation 3
measures the difference between the distances in the input space and the corresponding distances in the projected
space, and the final values should be minimized according to the data in a projected space.

Unfolding a complex high-dimensional data sets into low-dimensional representation should focus on preserving
the nearby neighbourhood relationship between points rather than on creating additional points. There are two
ways by which to define neighbouring points for a point. The first supposes that all points are neighbours for a
point, but the nearest k points are strong neighbours [5]. Each point has a fixed number of neighbours and this
number will not change through the projection process. The second method uses a fixed circular radius rc, where
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the neighbouring points are inside this domain for a point [6]. Thus, the number of neighbours is not the same for
all points in the space.

2. Types of Dimensionality Reduction

A variety of strategies has resulted in the development of many different DR methods, which can be classified as
being either linear or nonlinear. Most of the linear methods are non-iterative, which assumes that the data are
distributed close to a hyperplane of original space to reflect their uniqueness [2]; therefore, they are constrained in
many applications. To overcome this problem, most nonlinear methods adopt iterative optimisation to get more
flexibility in searching for a representation of data points in a projected space. Iterative methods start with a
random configuration of low-dimensional space, and iteratively refine it until the error measure of low-dimensional
space is minimised to the defined threshold or the specified number of iterations has been sapped. Local and
trustworthiness methods are two other types of DR.

Preservation of high-dimensional data sets distances depends on the distance similarity measure. Distance, in
nature, is used to measure the dissimilarity between two data points in a space. Euclidean and geodesic distances
are usually used in this matter. The notion of Euclidean distance was originally defined as the distance of a
straight line between two points, but the efficiency of Euclidean distance depends on the type of area. For example,
the distance between two nearby points is computed exactly by Euclidean distance; however, in nonlinear space,
Euclidean distance cannot measure the correct distance. For this, the concept of geodesic distance is suitable for
computing the shortest path between two points that lie on a surface, as in Fig.2. Although both ideas are used for
distance preserving DR, many methods are enhanced when geodesic distance is used because it provides a better
measurement of distance between pairs of data points than Euclidean distance.

Figure 2: Geodesic distance idea. The geodesic distance between the two red points is the length of the geodesic path,
which is the shortest path between the points that lie on the surface.

2.1. Linear Dimension Reduction Methods

Principle component analysis (PCA) is the oldest of the three methods, and has been used in different applications
because of its simplicity. PCA supposes the linear projection between original data and projected space [7], but
this principle does not work well with nonlinear data sets. The neighbourhood relationships between points are lost
in projected space and do not preserve their nonlinear relationships of original data.

Fig.3(b) shows PCA cannot unfold Sphere data sets (in Fig.3(a)). PCA uses orthogonal linear combination to
find linear transformation space of data sets X ⊂ RD. The steps of applying it are:

1. Compute the centroid of original data sets:

µ =
1

n

n∑
i=1

xi (4)

and subtract it from xi to generate new origin

zi = xi − µ (5)
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(a) 3D Sphere data sets (b) PCA

Figure 3: a) Three-dimension Sphere data sets. b) Linear DR method (PCA) cannot unfold the Sphere data sets in two
dimension representation, where overlap in neighbourhood relation is the predominate status of these unfolded representa-
tions.

2. Compute the covariance matrix

cov =
1

n

n∑
i=1

zi z
T
i (6)

where zTi is the transpose of the zi

3. According to the target dimension of low dimension space, PCA computes eigenvectors u1, u2, ..., ud and
eigenvalues λ1, λ2, ..., λd of covariance matrix cov.

4. Compute principal component transformation :

y = PT z (7)

where P = [u1, u2, ..., ud] and its transpose is PT .

2.2. Nonlinear Dimension Reduction Methods

Isometric feature mapping (Isomap) is a well-known global nonlinear DR method. Isomap attempts to preserve
and hold the global structure of the original high-dimensional data sets [8] by computing the geodesic distance
rij = ||xi − xj || between two high-dimensional pairs of data points xi and xj . Geodesic distance is better than
Euclidean distance in recognizing distances between neighbours near and far. Isomap is a continuity method that
attempts to preserve the geodesic distance rij in the original space with its corresponding linear distance dij in the
projected space. The algorithm of Isomap can be summarized in the following steps:

1. If the data sets are very large, select n random data points. Otherwise, all data points are selected.

2. Constructing the neighbourhood graph by connecting each data points to its k nearest neighnours.

3. The shortest paths among data points are computed by using Dijkstra’s algorithm [9] to construct a geodesic
distance matrix.

4. Applying multidimensional scaling (MDS) method to find low-dimensional space by minimizing the following
stress function:

φ(Y ) =

√∑
i<j

(rij − dij)2 (8)

5. If step 1 is applied, the interpolation is applied on the remaining data points to generate final projected space.
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Isomap has been used in different applications by reducing the high-dimensional data sets into two or three
dimensions [10]. It has the ability to deal with nonlinear data sets and can discover the information and details that
were hidden on MDS. However, it cannot unfold the closed data sets, as Sphere; for example, Fig.4(a) shows an
Isomap cannot unfolded Sphere data sets in a two-dimensional space. In addition, an extensive time commitment
and storage requirements make Isomap inappropriate for use on large data sets.

(a) Isomap (b) SPE

(c) SNE

Figure 4: Isomap and SNE cannot unfold the Sphere data sets (in Fig.3(a)). SPE unfolds it, but the visualization are
projected with false neighbourhood points.

Stochastic proximity embedding (SPE) is a nonlinear method that proceeds by calculating Euclidean distance
for global neighbourhood points within a fixed radius [6]. SPE is an enormous step in computational efficiency over
MDS, and is faster than Isomap. SPE is used in different applications and has succeeded in getting satisfactory
results. The objective of SPE is to find representation that has points distances that are identical to their corre-
sponding distances in high-dimensional data sets. The method starts by selecting a random point from original
data, in time t, to be projected in the low-dimensional space.

Projected space starts with initial coordinates, and is updated iteratively by placing yi and yj onto the projected
space in such a way that their Euclidean distance (dij = ||yi − yj ||) is close to the corresponding distance (rij =
||xi − xj ||) in original high-dimensional data sets. Thus, SPE minimizes the following Equation:

Stress =

√∑
i<j(dij − rij)2/rij∑

i<j rij
. (9)
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The points in projected space are updated according to the following constraint:

if (rij ≤ rc) or ((rij > rc) and (dij < rij))

yi ← yi + λ(t)
rij − dij
dij + ε

(yi − yj)

yj ← yj + λ(t)
rij − dij
dij + ε

(yj − yi)

(10)

where λ(t) is learning rate at t time, and rc is a fixed circular radius of neighbourhood points. Fig.4(b) showed how
the SPE unfolds the Sphere data sets, where the distances among projected space points are preserved with their
corresponding distances in the original data sets. However, the visualization contains false neighbourhood points.
The difficulty with using SPE is in determining the value of rc. The results will be torn and very bad if rc is very
small, and SPE will be equivalent to MDS when rc is very large.

The stochastic neighbour embedding (SNE) method is an iterative nonlinear method that attempts to preserve
structural properties between low-dimensional space pairwise data points with their corresponding distance in
high-dimensional data sets. It computes asymmetric probability pij between two neighbour points xi and xj in
high-dimensional data sets.

pij =
e−||xi−xj ||2/2σ2

i∑
k 6=i e

−||xi−xk||2/2σ2
i

(11)

where pii = 0, and σi is variance of Gaussian centered around xi set by user. Asymmetric probability qij of the
corresponding points in low-dimensional space yi and yj of original high-dimensional points xi and xj are computed
by:

qij =
e−||xi−xj ||2∑
k 6=i e

−||xi−xk||2
(12)

where qii = 0. SNE attempts to find low-dimensional space by matching pij and qij as much as possible by
minimizing stress function in Equation 13 instead of using squared differences between pij and qij :

S =
∑
i

∑
j

pij log
pij
qij

(13)

and S can be minimizing by using a gradient descent method. With closed data sets, as Sphere, the SNE cannot
unfold it, as in Fig.4(c). Many of the points are overlapped with others that causes to loss some information.

2.3. Local Nonlinear Methods

Locally linear embedding (LLE) is a nonlinear dimension reduction method that attempts to project the nearby
neighbourhood points to a locally linear projected space. LLE uses three steps to do this task; first, it finds k
nearest neighbourhood points for each point in high-dimensional data sets. Second, it computes a weight matrix
among neighbours W by minimizing Equation 14. Weights among neighbours represent a value of strength relation
among them.

ε(W ) =

n∑
i

‖xi −
∑
j 6=i

wijxj‖2 (14)

where wij = 0, if xj 6= xi. ∀i,
∑
j wij = 1. In the final step, LLE lies the D-dimensions of original data into d-

dimensions space, where d� D. It uses weight matrix W to find the coordinates representation of low-dimensional
space in order to preserve the topology properties of the original data. Based on locally linear reconstruction, LLE
minimizes the following equation to find the projected space

Φ(Y ) =

n∑
i

‖yi −
∑
j 6=i

wijyj‖2 (15)

subject to 1
N

∑
i yi = 0, and 1

N Y
TY = I. In many applications, LLE has poor generalization because it is not

dynamic [11]. As an example, Fig.5 shows that LLE cannot unfold the three dimension of the Sphere data sets. it
forces projected space to have a representation according to the weight matrix of high-dimensional data sets. Thus,
LLE is poor in dealing with more complex data sets.
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Figure 5: LLE method cannot unfold the Sphere data sets, in Fig.3(a), in a satisfactory low-dimensional manifold.

2.4. Trustworthiness Methods

The curvilinear component analysis (CCA) method preserves the pairwise distances in the low-dimensional space
with their corresponding pairwise distance in the original high-dimensional data sets by minimizing the following
cost function:

φ(Y ) =
∑
i<j

(rij − dij)2F (dij , λt) (16)

where rij = ||xi − xj || and dij = ||yi − yj || are the Euclidean distances between data points i and j in original
high-dimensional and low-dimensional spaces, respectively. F is a bounded decreasing function, and allows CCA to
preserve the distances on different scales depending on the time dependent value of λt which is started with large
value to cover all data points, and then gradually decreased throughout processing. It is defined as:

F (dij , λt) =

{
1, if dij ≤ λt
0, Otherwise

(17)

CCA can find the projected space of some nonlinear data sets, as in the unfolding Sphere data sets in Fig.6(a).
However, it fails with many nonlinear data sets. Thus, preserving the neighbours distance is not guaranteed by
CCA.

The curvilinear distance analysis (CDA) method is a version of CCA, and attempts to preserve the pairwise
distances in the low-dimensional space with their corresponding pairwise distance in the original high-dimensional
data sets [12]. Like Isomap, CDA uses geodesic distance to keep the preservation between two distances. CDA uses
the same CCA Equations in 16 and 17, but rij is the geodesic distance between data points i and j in the original
high-dimensional data sets, and dij is the Euclidean distance between data points in the low-dimensional space.
The general steps of applying CDA are:

1. If the data sets are very large, select n random data points. Otherwise, all data points are selected.

2. Constructing the neighbourhood graph by connecting each data-point to its k nearest neighnours.

3. The shortest paths among data points are computed by using Dijkstra’s algorithm [9] to construct geodesic
distance matrix.

4. Applying CCA algorithm using processed geodesic distances.

5. If step 1 is applied, the interpolation is applied on the remaining data points to generate final projected space.

CDA can find unfolded space of traditional nonlinear data sets, such as Sphere in Fig.6(b). The preserving
original information by CDA is better than CCA, especially with complex data sets. It prevents points in the
projected space from overlapping [13]. Thus, geodesic distance with the efficiency of CCA gives the CDA more
performance. However, the low-dimensional manifold might be torn when the neighbourhood relation of the original
high-dimensional data sets are lost.

Trustworthy stochastic proximity embedding (TSPE ) has the ability to visualize difficult data sets, and, in terms
of visualization, it gives satisfactory results [14]. This ability comes from dealing adequately with the projected
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(a) CCA (b) CDA

(c) TSPE

Figure 6: Trustworthiness methods, CCA, CDA and TSPE, can unfold the Sphere data sets. TSPE is better than CCA
and CDA because the original information of the Sphere data sets is preserved in the low-dimensional manifold.

space. In general, a projected space is improved through projection process, consequently, TSPE focus on this
state by using decreasing neighbourhood size in order to continue this improvement. In each step of the projection
process, the neighbourhood size is reduced in order to keep pace with improvements in the projected space. In
addition, the space optimization is reduced gradually, with TSPE focusing, to begin with, on maintaining a distant
relationship between the points and then maintaining the nearby relationships. The points in projected space are
updated depending on their relation, as follows:

yj ← yj + λ(t) T (dij)
rij − dij
dij + ε

(yj − yi) (18)

T (dij) =

{
1 if (dij ≤ dc(t)) ∨ ((dij > dc(t)) ∧ (dij < rij))

0 Otherwise
(19)

where dc(t) is a decreased neighbourhood radius over time. TSPE starts iteratively, on the projected space, with
selecting a random point in time t, which updates all the local neighbourhood points in a sufficient region within
local neighbourhood radius dc(t), so the coherent structure will be constructed by sending false neighbours away;
according to Equation 18. The local neighbourhood radius dc starts with large value at t0 to include all points,
and then gradually this value is decreased through times by dc(t0)/(t + 1) to keep neighbourhood points with the
improvement of projected space. TSPE uses projected space and a decreasing neighbourhood radius dc(t) in the
definition of T (dij), in Equation 18, which makes the proposed method overcomes the DR problems. Fig.7 shows
the general idea of the TSPE. TSPE can find unfolded space of the Sphere data sets, as in Fig.6(c). The manifold
dose not have false neighbourhood, and all the original information is preserved in the unfolding space.
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Figure 7: The main idea of TSPE. At step t of iteration process, the point p1 ∈ Y is selected. The radius of local
neighbourhood of this point at this step is dc(t). p1 preserves its distance with true neighbours, as with p2, when (dij <
dc(t))∧ (dij ≥ rij). It pushes away the false neighbour points, as with p3, when (dij < dc(t))∧ (dij < rij). The points which
are outside the local neighbourhood, which their ((dij > dc(t)) ∧ (dij < rij)), as with p4, are pushed further away.

3. Information Visualization

Information visualization is a way to present the information in a way that allows people to see things that were
unseen before. It makes the information easy to share among the people by asking each other, “Do you see this
thing?” In addition, it leads to more enhancement, such as, “If we made an enhancement to that area, what would
happen?” Recently, information visualization has become the art of science, where there are many methods that
can be used to help the people understand the meaning of the data by observing the proximity relationship among
data points in a projected space. The colour of each pixel in the visualization is a compendium of information in
the original data in which their most salient features are captured [15].

Modern visualization tools have improved our ability to study many things directly from data. While there
are different types of data, the way in which we visualize them are also different [16]. Visualizing scalar data is a
popular way that is used in different sciences, where colours are mapped to the points. The visualization uses the
same geometry as the original scale data, which can be 1D, 2D or 3D. The main advantage of this method is its
simplicity and its ease of understanding. The visualization of vector field data sets has become more interesting
in recent years. Vector data is scalar data with description. For example, to visualize fluid data sets, arrows,
streamlines or animation are used to represent the direction. The visualization of vector field data sets is based
on the dimensionality of the data sets. Three-dimensional vector data sets are a much more challenging problem,
and the challenge increases when adding more descriptions (dimensions). The reconstruction of a three-dimensional
volume model from a sequence of two-dimensional image slices of the human body is an example of volume rendering,
which is helps in planning treatment or surgery.

Information visualization faces many challenge. For example, the visualization of flow data is difficult. Its
visualization requires us to use different things to imitate the fluidity of the flow. In addition, the visualization of a
connected network requires us to represent the relationships between nodes. However, finding a good representation
containing all the information is a challenge. Many visualizations of data sets are pretty, but they do not show
the important information. More powerful tools are required to meet the users needs. For example, the parallel
coordinates method is used to represent high-dimensional data points into 2-dimensional space by using parallel
axes. Although this method allows us to view the useful information, it is limited when it comes to representing
large data sets. Information visualization can be used for different purposes:

1. Explanation: The data sets are visualized to explain something. For example, it is used to convince the viewer
that one solution is better than another.

2. Exploration: The visualization of scientific data sets helps the researcher to explore the relationship between
data sets.

3. Expression: Visualization is a way to represent data sets in a pretty way without giving more detail, in that
we are focusing on the aesthetics.
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The DR method is a strategy used to visualize a high-dimensional data sets by projecting a high-dimensional
data set onto a low-dimensional space where it can be visualized directly [17]. The problem of DR methods arises
in discovering the low-dimensional space in the high-dimensional complex data sets. In general, there are two
types of DR methods: continuity and trustworthiness. Continuity methods, such as Isomap and SPE, attempt to
inherit the relations among global neighbourhood points to local corresponding points in projected space. Although
this procedure has advantages in strengthening the coherence of local corresponding points, continuity errors may
occur in low-dimensional manifold. Continuity errors mean the nearby neighbourhood data points in the original
space can be projected further away in the projected space; they cause projected space to tear. On the other hand,
trustworthiness methods, such as CCA and CDA, depend on the point relations in low-dimensional manifold, rather
than those relations in original space, to find low-dimensional manifold. The points coordinates can be updated
through a projection process in low-dimensional manifold in a flexible way without constraints to preserve the
structure of original space. CCA and CDA might face false neighbourhoods in their low-dimensional manifold [18].

High− dimensional space Low − dimensional manifold

Local neighborhood

False neighbors

xi
yi

Figure 8: DR might cause the points which are outside local neighborhood in high dimension space to be inside local
neighborhood in low dimension manifold. These points are called false neighborhood.

In false neighbourhoods, the farther away data points in original space can be projected nearby in the projected
space; they cause the projected space to be overlapping, as in Fig.8. Some techniques, as in [19] and [20], are used
to overcome the false neighbourhood problems by focusing on the projected space distance to preserve the original
distance. The researchers in [19] fixed the false neighbourhoods by sending some of them away to improve the
trustworthiness of projected space. Although some regions of their projected space are improved by this method,
the final visualization might be tearing because the discarded data points left holes in their location when sending
them away. In visualization, the false neighbourhoods are more dangerous than the continuity errors because of the
points that take the incorrect colours are unrelated to the original information.

4. Quality of Visualization

When measuring the quality of visualization for a given data sets, it is important to know which DR method is
suitable for the task at hand. Furthermore, the user cannot compare the quality of a given visualization with the
original data by visual inspection due to its high-dimensionality. Thus, the formal measurements should evaluate
the amount of the preserving neighbourhood colour distances in the visualization with their corresponding distance
in original data. Correlation (γ), local continuity (LC) and point-wise quality (γ(i)) are the good metrics can be
used in this matter. If we suppose X is a vector of all points of the data sets in original space and Y is a vector
of all the corresponding points in projected space. A and B are the vectors of all pairwise distance of X and Y ,
respectively, then:

Correlation function (γ): this metric computes the linear correlation between original input distances and colour
distances in visualization [21]. The value of correlation is equal to 1 when all distances are perfect preserved,
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where positive slope between two vectors with perfect linear. In the other hand, the value equal to -1 if the two
vectors have prefect linear relationship with negative slope. The correlation metric is defined as the follow:

γ =
AT B/|A| −A B

σA σB
(20)

where |A| is the number of components in A, and A and σA are the mean and standard deviation of A, respectively.

Local Continuity (LC) computes the degree of similarity between two corresponding nearest neighbours sets in
projected and original spaces [22]. The average of all cases represents the efficiency measurement of a projected
space. Formally, let k nearest neighbours set in original space to data point i is NX

k (i) = { j1, j2, ..., jk }, and the k
nearest neighbours set to i in projected space is N Y

k (i) = { l1, l2, ..., lk }. The measurement of overlapping between
two sets is evaluated by

Nk(i) = |NX
k (i) ∩N Y

k (i)| (21)

Nk(i) is normalized to the [0,1] interval in order to compute the faithfulness measure of i:

Faithfulnessk(i) =
1

k
Nk(i) (22)

In this case the faithfulness value of projected space will be :

Faithfulnessk =
1

N

N∑
i=1

Faithfulnessk(i) (23)

where N is total number of data points in data sets.

Point-wise Quality Metric (γ(i)): it computes the correlation for each point through the following equation:

γ(i) =
ATi Ai/|Ai| −Ai Bi

σAi
σBi

(24)

where Ai is a vector of all pairwise distance of the data point i to the all other points in original space and Bi is a
vector of its corresponding pairwise colour distances in the visualization [14]. The result of this point-wise metric, in
Equation 24, is a faithful image, which represents the degree of matching the colour distances in visualization with
their corresponding distances in the bands of a remote sensing imagery data sets. It identifies the weak and strong
faithful pixels, where the very dark pixels have the lowest faithful values, and the white pixels have the highest
faithful values. The number of faithful colours will be very high in faithful images when the colour distances among
pixels in visualization and their corresponding distance in original spaces are preserved. On the other hand, the
faithful image has a lot of points that have low faithful values to indicate when the visualization has false colours,
because their colour distances among pixels are not preserved with their corresponding pixels in the original space.

5. Conclusion

The objective of using DR is to transfer the high-dimensional data sets to the low-dimensional space so that it is
maintaining the essential original information. The simplest approach is to use linear methods, but the complexity
of the recent data sets make these methods useless. Thus, the nonlinear versions of those linear methods were
introduced to overcome their limitations. Nonlinear transformations can be used to project a high-dimensional
data sets in a low-dimensional space. Although this method succeeded in solving some problems, some nonlinear
DR methods perform poorly on complex data sets, such as LLE. Nonlinear DR methods, such as Isomap and CDA,
which are used in geodesic distance have proven their ability to deal with different complex data sets. The consuming
time and storage when using geodesic distance reduces their efficiency. The benefit of visualizing by TSPE is that
it is able to recognize the features by preserving their point distances between the projected space and the original
data sets. TSPE can overcome many of the problems introduced by false neighbourhood by deriving higher quality
point relationships in its low-dimensional representation. The TSPE is better than many DR methods because the
TSPE prevents false neighbourhood errors to occur in the results.
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