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Abstract

Sequential pattern mining is an efficient technique for discovering recurring structures or patterns from very large datasets, with a very
large field of applications. It aims at extracting a set of attributes, shared across time among a large number of objects in a given database.
Previous studies have developed two major classes of sequential pattern mining methods, namely, the candidate generation-and-test
approach based on either vertical or horizontal data formats represented respectively by GSP and SPADE, and the pattern-growth approach
represented by FreeSpan, PrefixSpan and their further extensions. The performances of these algorithms depend on how patterns grow.
Because of this, we introduce a heuristic to predict the optimal pattern-growth direction, i.e. the pattern-growth direction leading to the
best performance in terms of runtime and memory usage. Then, we perform a number of experimentations on both real-life and syn-
thetic datasets to test the heuristic. The performance analysis of these experimentations show that the heuristic prediction is reliable in general.
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1. Introduction

Many real world applications have to deal with sequential data. Dis-
covery of sequential patterns [13, 5] from large dataset was first
introduced by Agrawal and Srikant [3] in 1995 based on their study
of customer purchase sequences, as follows: Given a set of sequences,
where each sequence consists of a list of events (or elements) and
each event consists of a set of items, and given a user-specified
minimum support threshold of min sup, sequential pattern mining
finds all frequent subsequences, that is, the subsequences whose
occurrence frequency in the set of sequences is no less than min sup.
Sequential pattern mining is one of the important fields in data
mining because of its variety of applications in web access pat-
tern analysis, market basket analysis, fault detection in network,
DNA sequences etc. It plays a vital role in different areas. It is
essentially an enumeration problem over the sub-sequence partial
order looking for those sequences that are frequent. The search
can be performed in a breadth-first or depth-first manner, starting
with more general (shorter) sequences and extending them towards
more specific (longer) ones. Many algorithms were proposed for
sequential pattern mining. The existing algorithms essentially differ
in the data structures used to index the database to facilitate fast
enumeration. These mining algorithms are broadly classified into
two approaches known as the Apriori-based candidate generation
approach [3, 4, 8, 9, 10, 14, 18, 3, 20, 22, 23] and the pattern growth
approach [11, 17, 15, 16, 12, 19].

Since the first proposal of this data mining task and its associated
efficient mining algorithms, there has been a growing number of
researchers in the field and tremendous progress [13] has been made,
evidenced by hundreds of follow-up research publications, on various
kinds of extensions and applications, ranging from scalable data
mining methodologies, to handling a wide diversity of data types,
various extended mining tasks, and a variety of new applications.

Improvements in sequential pattern mining algorithms have followed
similar trend in the related area of association rule mining and have
been motivated by the need to process more data at a faster speed
with lower cost. Previous studies have developed two major classes
of sequential pattern mining methods : The Apriori-based approach
[3, 4, 8, 9, 10, 14, 18, 3, 20, 22, 23] and the pattern growth approach
[11, 17, 15, 16, 12, 19].

The Apriori-based approach form the vast majority of algorithms
proposed in the literature for sequential pattern mining. Apriori-like
algorithms depend mainly on the Apriori anti-monotony property,
which states the fact that any super-pattern of an infrequent pattern
cannot be frequent, and are based on a candidate generation-and-test
paradigm proposed in association rule mining [1, 2]. This candidate
generation-and-test paradigm is carried out by GSP [3], SPADE [23],
and SPAM [4]. Mining algorithms derived from this approach are
based on either vertical or horizontal data formats. Algorithms based
on the vertical data format involve AprioriAll, AprioriSome and
DynamicSome [3], GSP [3], PSP [14] and SPIRIT [8], while those
based on the horizontal data format involve SPADE [23], cSPADE
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[22], SPAM [4], LAPIN-SPAM [20], IBM [18] and PRISM [9, 10].
The generation-and-test paradigm has the disadvantage of repeatedly
generating an explosive number of candidate sequences and scanning
the database to maintain the support count information for these
sequences during each iteration of the algorithm, which makes them
computationally expensive. To increase the performance of these
algorithms constraint driven discovery can be carried out. With
constraint driven approach system should concentrate only on user
specific or user interested patterns or user specified constraints such
as minimum support, minimum gap or time interval etc. With regular
expression these constraints are studied in SPIRIT [8].

To alleviate these problems, the pattern-growth approach, repre-
sented by FreeSpan [11], PrefixSpan [15, 16] and their further ex-
tensions, namely FS-Miner [6], LAPIN [12, 21], SLPMiner [19]
and WAP-mine [17], for efficient sequential pattern mining adopts a
divide-and-conquer pattern growth paradigm as follows. Sequence
databases are recursively projected into a set of smaller projected
databases based on the current sequential patterns, and sequential pat-
terns are grown in each projected database by exploring only locally
frequent fragments [11, 16]. The frequent pattern growth paradigm
removes the need for the candidate generation and prune steps that
occur in the Apriori-based algorithms and repeatedly narrows the
search space by dividing a sequence database into a set of smaller
projected databases, which are mined separately. The major advan-
tage of projection-based sequential pattern-growth algorithms is that
they avoid the candidate generation and prune steps that occur in
the Apriori-based algorithms. They grow longer sequential patterns
from the shorter frequent ones. The major cost of these algorithms is
the cost of forming projected databases recursively. To alleviate this
problem, a pseudo-projection method is exploited to reduce this cost.
Instead of performing physical projection, one can register the index
(or identifier) of the corresponding sequence and the starting position
of the projected suffix in the sequence. Then, a physical projection
of a sequence is replaced by registering a sequence identifier and the
projected position index point. Pseudo-projection reduces the cost of
projection substantially when the projected database can fit in main
memory.

PrefixSpan [15, 16] and FreeSpan [11] differ at the criteria of parti-
tionning projected databases and at the criteria of growing patterns.
FreeSpan creates projected databases based on the current set of
frequent patterns without a particular ordering (i.e., pattern-growth
direction), whereas PrefixSpan projects databases by growing fre-
quent prefixes. Thus, PrefixSpan follows the unidirectional growth
whereas FreeSpan follows the bidirectional growth. Another differ-
ence between FreeSpan and PrefixSpan is that the pseudo-projection
works efficiently for PrefixSpan but not so for FreeSpan. This is
because for PrefixSpan, an offset position clearly identifies the suffix
and thus the projected subsequence. However, for FreeSpan, since
the next step pattern-growth can be in both forward and backward
directions from any position, one needs to register more information
on the possible extension positions in order to identify the remainder
of the projected subsequences. Note that the mining can proceed
from the suffix, which is essentially SuffixSpan [15, 16], an algo-
rithm symmetric to PrefixSpan by growing suffixes from the end of
the sequence forward. The main difference between PrefixSpan and
SuffixSpan is that PrefixSpan follows the left-to-right pattern-growth
direction while SuffixSpan follows the right-to-left pattern-growth
direction. PrefixSpan [15, 16] performs much better than GSP[3],
SPADE [23] and FreeSpan[11]. The major cost of PrefixSpan is the
construction of projected databases.

This paper studies the problem of determining the optimal pattern-
growth direction between left-to-right and right-to-left pattern-
growth directions, i.e the pattern-growth direction leading to the
best performance in terms of runtime and memory usage. To this
end, a heuristic is introduced to predict the optimal pattern-growth
direction. Then, a number of experimentations on both real-life and

synthetic datasets are performed to test the heuristic. The perfor-
mance analysis of these experimentations show that the heuristic
prediction is reliable in general.
The rest of the paper is organized as follows. Section 2 states the
problem of mining sequential patterns. Section 3 proposes a heuristic
to predict the optimal pattern-growth direction. Section 4 presents
experimental results and analyses them. Sub-section 4.1 presents
real-life and synthetic datasets used in experimentations. Sub-section
4.2 presents experimental results. Sub-section 4.3 is devoted to
performance analysis. Concluding remarks are given in section 5.

2. Statement of the problem of mining sequen-
tial patterns

The problem of mining sequential patterns, and its associated nota-
tion, can be given as follows:
Let I = {i1, i2, ..., in} be a set of literals, termed items, which com-
prise the alphabet. An itemset is a subset of items. A sequence is an
ordered list of itemsets. A sequence s is denoted by≺ s1, s2, ...sn �,
where s j is an itemset. s j is also called an element of the sequence,
and denoted as (x1,x2, ...,xm), where xk is an item. For brevity, the
brackets are omitted if an element has only one item, i.e. element
(x) is written as x. An item can occur at most once in an element
of a sequence, but can occur multiple times in different elements
of a sequence. The number of instances of items in a sequence
is called the length of the sequence. A sequence with length l is
called an l-sequence. The length of a sequence α is denoted |α|.
A sequence α =≺ a1a2...an � is called subsequence of another
sequence β =≺ b1b2...bm � and β a supersequence of α , denoted
as α ⊆ β , if there exist integers 1≤ j1 < j2 < ... < jn ≤ jm such
that a1 ⊆ b j1, a2 ⊆ b j2, ... , an ⊆ b jn. Symbol ε denotes the empty
sequence.
We are given a database S of input-sequences. A sequence database
is a set of tuples of the form ≺ sid,s� where sid is a sequence id
and s a sequence. A tuple≺ sid,s� is said to contain a sequence α , if
α is a subsequence of s. The support of a sequence α in a sequence
database S is the number of tuples in the database containing α , i.e.

support(S,α) = |{≺ sid,s� | ≺ sid,s�∈ S ∧ α ⊆ s}|.

It can be denoted as support(α) if the sequence database is clear
from the context. Given a user-specified positive integer denoted
min support, termed the minimum support or the support thresh-
old, a sequence α is called a sequential pattern in the sequence
database S if support(S,α) ≥ min support. A sequential pattern
with length l is called an l-pattern. Given a sequence database and
the min support threshold, sequential pattern mining is to find the
complete set of sequential patterns in the database.

3. Right-to-left direction versus left-to-right di-
rection

In this section, we introduce a heuristic which recommends a pattern-
growth direction between left-to-right direction (also called PrefixS-
pan) and right-to-left direction (also called SuffixSpan).
Let consider a dataset S, an item xp, an itemset s j = (x1,x2, ...,xm), a
sequence s =≺ s1, s2, ...sn � and a support threshold st. The weight
Weight(xp,S,st) of item xp in dataset S according to threshold st is
defined as.

Weight(xp,S,st) =

{
Support(S,xp) if Support(S,xp)≥ st

0 if Support(S,xp)< st

The weight Weight(s j,S,st) of itemset s j in dataset S according to
threshold st is defined as follows.

Weight(s j,S,st) =
m

∑
p=1

Weight(xp,S,st),
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The left weight Le f tWeight(S,s) of sequence s in dataset S according
to threshold st is defined as

Le f tWeight(s,S,st) =
size

∑
j=1

(size− j+1)Weight(s j,S,st),

where size = n/2. Similarly, the right weight RightWeight(S,s) of
sequence s in dataset S according to threshold st is defined as

RightWeight(s,S,st)=
n

∑
j=le f tIndex

( j−le f tIndex+1)Weight(s j,S,st),

where le f tIndex = n − size + 1. The cumulative left weight
Le f tWeight(S,st) of all the sequences in dataset S according to
threshold st is defined as

Le f tWeight(S,st) = ∑
s∈S

Le f tWeight(s,S,st).

Similarly, the cumulative right weight RightWeight(S) of all the
sequences in dataset S according to threshold st is defined by

RightWeight(S,st) = ∑
s∈S

RightWeight(s,S,st).

Recommendations are performed as follows. The left-to-right direc-
tion (also called PrefixSpan) is recommended if Le f tWeight(S) <
RightWeight(S). The right-to-left direction (also called SuffixSpan)
is recommended if RightWeight(S)< Le f tWeight(S).

4. Experimental results and performance ana-
lysis

4.1. Presentation of datasets

The datasets used here are collected from the webpage
(http://www.philippe-fournier-viger.com/spmf/index.php) of SPMF
software [7]. This webpage provides large datasets in SPMF format
that are often used in the data mining litterature for evaluating and
comparing algorithm performance.

4.1.1. Real-life datasets

BMSWebView1 (Gazelle) ( KDD CUP 2000) : This dataset
contains 59,601 sequences of clickstream data from an
e-commerce. It contains 497 distinct items. It is called here
BMS1 spmf. The average length of sequences is 2.42 items
with a standard deviation of 3.22. In this dataset, there are
some long sequences. For example, 318 sequences contains
more than 20 items.

BMSWebView2 (Gazelle) ( KDD CUP 2000) : This is a second
dataset (called here BMS2) used in the KDD-CUP 2000
competition. It contains 77,512 sequences of clickstream
data. It contains 3340 distinct items. The average length of
sequences is 4.62 items with a standard deviation of 6.07 items.

Kosarak : This is a very large dataset containing 990 000 sequences
of clickstream data from an hungarian news portal. The dataset
in its original format can be found at http://fimi.ua.ac.be/data/.
The SPMF format is called Kosarak converted. However,
this dataset is very large. Therefore, a subset of only 10 000
sequences (kosarak10k) and a subset of 25 000 sequences
(kosarak25k) are provided in the SPMF format.

SIGN : This is a dataset of sign language utterance containing
approximately 800 sequences. The original dataset file in
another format can be obtained here with more details on this
dataset.

BIBLE : This dataset is a conversion of the Bible into a sequence
database (each word is an item). It contains 36 369 sequences
and 13905 distinct items. The average length of a sequence is
21.6 items. The average number of distinct items per sequence
is 17.84.

LEVIATHAN : This dataset is a conversion of the novel Leviathan
by Thomas Hobbes (1651) as a sequence database (each word
is an item). It contains 5834 sequences and 9025 distinct items.
The average number of items per sequence is : 33.8. The
average number of distinct items per sequence is 26.34.

MSNBC : This is a dataset of clickstream data. The original dataset
contains 989,818 sequences obtained from the UCI repository.
Here the shortest sequences have been removed to keep only
31,790 sequences. The number of distinct items in this dataset
is 17 (an item is a webpage category). The average number of
itemsets per sequence is13.33. The average number of distinct
items per sequence is 5.33.

FIFA : A dataset of 20,450 sequences of clickstream data from
the website of FIFA World Cup 98. It has 2,990 distinct
items. The average sequence length is 34.74 items with a
standard deviation of 24.08 items. This dataset was created by
processing a part of the web logs from the World Cup 98.

4.1.2. Synthetic datasets

The synthetic datasets used here are collected from the webpage of
SPMF software [7]. To generate synthetic sequence databases, you
can use the sequence database generator provided in SPMF, which
is flexible and easy to use. It is also possible to generate sequence
databases by using the IBM Generator. Files generated by the IBM
Generator can be converted in SPMF format by using the conversion
tool provided in SPMF. Another alternative for generating synthetic
sequences databases is to use a Matlab program provided by Ashwin
Balani. Here are some synthetic sequence databases generated with
the IBM Quest Dataset Generator for Sequential Pattern Mining,
converted to the SPMF format:

1: data.slen 10.tlen 1.seq.patlen 2.lit.patlen 8.nitems 5000 spmf
2: data.slen 10.tlen 1.seq.patlen 3.lit.patlen 8.nitems 5000 spmf
3: data.slen 8.tlen 1.seq.patlen 5.lit.patlen 8.nitems 5000 spmf
4: data.slen 8.tlen 1.seq.patlen 6.lit.patlen 8.nitems 5000 spmf

4.2. Experimental results

We exhaustively experimented on both real world and synthetic
datasets presented in section 4.1 in order to assess the performance
of our approach.

All experiments are done on a 4-cores of 2.16GHz Intel(R) Pen-
tium(R) CPU N3530 with 4 gigabytes main memory, running Ubuntu
14.04 LTS. All the algorithms are implemented in Java and grounded
on SPMF software [7].

The experiments consisted of running the pattern-growth algorithms
related to the left-to-right and right-to-left directions on each dataset
while decreasing the support threshold until algorithms became too
long to execute or ran out of memory. For each dataset, we recorded
the number of frequent patterns discorved, the execution time, the
memory usage and the pattern-growth direction recommeded by the
heuristic. The experimental results are presented in tables. The
execution times of the heuristic (without the time of loading data)
are not presented as they are negligible compared to the execution
times of the two mining algorithms, i.e PrefixSpan and SuffixSpan.



Journal of Advanced Computer Science & Technology 23

Table 1: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset BIBLE.

Dataset BIBLE Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.02 5293 553637 930.267 455317 876.033 Right-to-left

0.03 2216 226704 721.167 181669 673.497 Right-to-left

0.04 1185 117672 595.961 92805 572.001 Right-to-left

0.05 774 73706 544.005 57235 517.643 Right-to-left

0.06 507 51357 517.617 39998 486.966 Right-to-left

0.07 371 36581 501.661 29194 454.309 Right-to-left

Table 2: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset LEVIATHAN.

Dataset LEVIATHAN Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.02 33387 378601 682.674 484164 767.991 Left-to-right

0.03 12534 199897 531.461 271939 568.760 Left-to-right

0.04 6286 128508 490.904 178264 516.615 Left-to-right

0.05 3698 91745 477.662 126534 472.160 Left-to-right

0.06 2300 63960 441.430 87292 435.925 Left-to-right

0.07 1577 49631 426.322 69908 409.915 Left-to-right

Table 3: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset MSNBC.

Dataset MSNBC Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.38 13 10677 535.886 10538 467.362 Right-to-left

0.39 13 10699 500.293 10531 499.377 Right-to-left

0.40 13 10712 518.660 10363 496.498 Right-to-left

0.41 12 10493 509.333 10136 498.207 Right-to-left

0.42 11 10067 511.344 10004 464.402 Right-to-left

0.43 11 10099 475.897 9897 508.419 Right-to-left
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Table 4: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset FIFA.

Dataset FIFA Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.20 934 41786 557.274 35459 539.499 Right-to-left

0.21 737 35441 511.141 29795 518.640 Right-to-left

0.22 557 27387 469.111 25036 486.738 Right-to-left

0.23 403 21638 443.496 20000 440.658 Right-to-left

0.24 318 18019 430.906 16885 424.836 Right-to-left

0.25 277 16290 419.911 14934 396.822 Right-to-left

Table 5: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset BMS1 spmf.

Dataset BMS1 spmf Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.01 77 544 101.077 528 101.188 Right-to-left

0.02 22 232 53.360 230 54.084 Right-to-left

0.03 11 169 54.025 169 53.438 Right-to-left

0.04 5 128 45.337 128 45.347 Left-to-right

0.05 4 122 44.098 121 44.522 Left-to-right

0.06 3 112 43.452 116 43.443 Left-to-right

Table 6: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset BMS1 spmf.

Dataset BMS1 spmf Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0010 3991 6803 217.695 6506 222.413 Right-to-left

0.0011 3010 5942 206.596 5536 196.607 Right-to-left

0.0012 2382 5320 194.733 4974 183.731 Right-to-left

0.0013 1961 4935 183.512 4611 184.140 Right-to-left

0.0014 1686 4596 178.610 4350 173.401 Right-to-left

0.0015 1428 4312 171.280 4056 170.134 Right-to-left
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Table 7: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset BMS2.

Dataset BMS2 Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0010 23294 31424 460.304 15792 353.775 Right-to-left

0.0011 17820 27545 439.496 14414 359.994 Right-to-left

0.0012 14029 24160 407.116 13166 342.035 Right-to-left

0.0013 11594 21890 376.972 12195 337.262 Right-to-left

0.0014 9401 19168 359.311 11235 339.543 Right-to-left

0.0015 7840 17361 355.599 10471 330.676 Right-to-left

Table 8: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset SIGN.

Dataset SIGN Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.10 105544 54587 809.646 52698 791.261 Right-to-left

0.11 78002 44124 660.625 43204 677.467 Right-to-left

0.12 59065 35821 577.677 36039 606.811 Right-to-left

0.13 45460 30486 523.951 30928 519.777 Right-to-left

0.14 34365 24706 438.836 25558 464.903 Right-to-left

0.15 27213 20686 435.898 21978 330.676 Right-to-left

Table 9: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset kosarak10k.

Dataset kosarak10k Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0015 88111 28667 407.745 9526 354.966 Right-to-left

0.0017 31060 11560 352.353 5444 341.654 Right-to-left

0.0019 19477 8006 346.310 4012 335.946 Right-to-left

0.0020 16655 7285 346.767 3634 294.289 Right-to-left

0.0022 14670 6669 345.432 3403 291.439 Right-to-left

0.0023 11265 5504 340.230 2942 285.448 Right-to-left
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Table 10: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset kosarak25k.

Dataset kosarak25k Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0015 72778 65839 553.194 14700 406.531 Right-to-left

0.0020 14705 16660 331.601 7399 278.002 Right-to-left

0.0025 8396 11077 298.574 5131 238.042 Right-to-left

0.0030 4957 7711 242.761 4010 210.039 Right-to-left

0.0035 6049 6049 227.242 3297 184.912 Right-to-left

0.0040 2645 4924 195.322 2868 171.507 Right-to-left

Table 11: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the real-life dataset Kosarak converted.

Dataset Kosarak Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.00160 92129 275767 933.843 Right-to-left

0.00163 69537 208065 932.711 36847 766.786 Right-to-left

0.00165 62940 186873 931.178 35762 749.994 Right-to-left

0.00170 47761 143341 837.263 32545 695.050 Right-to-left

0.00180 27250 86661 683.175 27271 544.967 Right-to-left

0.00190 18255 61624 610.035 23422 510.269 Right-to-left

Table 12: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the synthetic dataset data.slen 10.tlen 1.seq.patlen 3.lit.patlen 8.nitems 5000 spmf.

Synthetic dataset Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0010 172897 16127 778.533 18038 780.393 Right-to-left

0.0011 119236 11498 609.879 11444 608.268 Right-to-left

0.0012 93881 9300 527.715 9292 527.741 Right-to-left

0.0013 62149 7698 413.225 7733 411.667 Right-to-left

0.0014 26596 3678 290.741 3648 280.505 Right-to-left

0.0015 23706 3229 261.430 3249 257.898 Right-to-left
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Table 13: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the synthetic dataset data.slen 10.tlen 1.seq.patlen 2.lit.patlen 8.nitems 5000 spmf.

Synthetic dataset Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.00167 97187 11884 614.571 8002 606.597 Right-to-left

0.00170 35174 5931 326.843 4102 322.446 Right-to-left

0.00172 9710 2263 215.494 2070 191.259 Right-to-left

0.00200 2214 1211 126.248 1401 126.246 Right-to-left

0.00220 2146 1197 126.164 1373 126.161 Left-to-right

0.00250 2123 1168 125.961 1471 125.962 Left-to-right

Table 14: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the synthetic dataset data.slen 8.tlen 1.seq.patlen 5.lit.patlen 8.nitems 5000 spmf.

Synthetic dataset Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0010 181353 18257 809.431 17556 795.277 Right-to-left

0.0011 153240 15058 754.734 13744 743.977 Right-to-left

0.0012 88461 9623 534.108 9012 539.216 Right-to-left

0.0013 71833 7619 475.363 7299 486.217 Right-to-left

0.0014 58953 6447 423.811 6206 434.475 Right-to-left

0.0015 48724 5666 383.937 5225 393.443 Right-to-left

Table 15: Execution times (in milliseconds) and memory sizes (in mb) performances following the two pattern-growth directions and heuristic prediction on
the synthetic dataset data.slen 10.tlen 1.seq.patlen 6.lit.patlen 8.nitems 5000 spmf.

Synthetic dataset Left-to-right Right-to-left Heuristic

Threshold Pattern Runtime Memory Runtime Memory Prediction

(in %) count (in ms) (in mb) (in ms) (in mb)

0.0014 140339 10903 768.477 9851 757.935 Right-to-left

0.0015 21536 3512 293.686 3520 294.380 Right-to-left

0.0016 9285 2497 226.348 2641 224.654 Right-to-left

0.0017 4490 2049 193.117 2222 189.378 Right-to-left

0.0018 3284 1865 178.694 2061 182.001 Right-to-left

0.0019 2121 1704 171.187 1788 171.177 Left-to-right

4.3. Performance analysis
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Figure 1: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is 1.21−1.25 times faster and requires almost 1.04−1.10 times less
memory than the other direction.
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Figure 2: The heuristic recommends the left-to-right pattern-growth direc-
tion. It is 1.27− 1.4 times faster, and requires less memory if the support
threshold is less than 0.05 and a little more memory otherwise.
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Figure 3: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is 1.04− 1.05 times faster. It requires almost 1− 1.05 times less
memory than the other direction if the support threshold is greater than 0.001
and a little more memory otherwise.
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Figure 4: The heuristic recommends the right-to-left pattern-growth direction
if the support threshold is within the range 0.01−0.03 and the left-to-right
pattern-growth direction if it is within the range 0.04−0.06. The runtime
(resp. memory usage) performances of the two directions are very close.
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Figure 5: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is 1.5− 2 times faster and requires almost 1.07− 1.3 times less
memory than the other direction.
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Figure 6: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is slightly faster if the support threshold is less than 0.12 and slightly
slower otherwise. The memory requirements are close.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.2  0.205  0.21  0.215  0.22  0.225  0.23  0.235  0.24  0.245  0.25

R
u
n
ti

m
e
 (

in
 m

ill
is

e
co

n
d

s)

Support threshold (in %)

Data set FIFA

"Right-to-left"
"Left-to-right"

 380

 400

 420

 440

 460

 480

 500

 520

 540

 560

 0.2  0.205  0.21  0.215  0.22  0.225  0.23  0.235  0.24  0.245  0.25

M
e
m

o
ry

 u
sa

g
e
 (

in
 M

B
s)

Support threshold (in %)

Data set FIFA

"Right-to-left"
"Left-to-right"

Figure 7: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is 1.096−1.178 times faster. It requires less memory if the support is
between 0.206−0.23 and a little more memory otherwise.
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Figure 8: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is 1.006−1.033 times faster and requires almost 1.06−1.14 times
less memory than the other direction. It is slightly slower if the support
threshold is more than 0.425.
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Figure 9: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is 1.87− 3 times faster and requires almost 1.03− 1.19 times less
memory than the other direction.
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Figure 10: The heuristic recommends the right-to-left direction. It is 1.71−
4.47 times faster and requires almost 1.13−1.36 times less memory than the
other direction.
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Figure 11: The heuristic recommends the right-to-left direction. It is 2.6−
5.6 times faster and requires almost 1.2 times less memory than the other
direction.
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Figure 12: The heuristic recommends the right-to-left direction. It is slightly
slower if the support threshold is less than 0.0011. Otherwise the runtimes
are very close. The memory requirements are very close.
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Figure 13: The heuristic recommends the right-to-left direction if the support
threshold is within the range 0.00167−0.002 and the left-to-right direction
if it is within the range 0.0022−0.0025. This prediction is good for three
reasons: (1) it requires a little less memory, (2) it is slightly faster if the
support threshold is within 0.00167−0.0017 or 0.0022−0.0025, and (3) the
runtime (resp. memory usage) performances of the two directions are very
close.
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Figure 14: The heuristic recommends the right-to-left pattern-growth direc-
tion. It is slightly faster. The memory requirements are very close.
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Figure 15: The heuristic recommends the right-to-left direction if the support
threshold is within the range 0.0014−0.0018 and the left-to-right direction if
it is within the range 0.0019−0.002. This prediction is good: (1) it requires
almost the same memory, (2) it is slightly faster if the support threshold is
less than 0.0015 and (3) the runtime (resp. memory usage) performances of
the two directions are very close.

The performance analysis per dataset shows that our heuristic is
reliable in general. Thus, it can be used to improve the performances
of the pattern growth-based sequential pattern mining approach.
The proposed heuristic is based on two tasks: (1) the mining of
frequent items and (2) the computation of the cumulative left and
right weights of all the sequences in the dataset. Task (1) is included
in PrefixSpan [11, 15, 16] and SuffixSpan [11, 15, 16] algorithms
and task (2) requires only one scan of the dataset. Because of this,
the heuristic runtime is negligible compared to the runtine of the two
sequential-pattern mining algorithms, i.e PrefixSpan and SuffixSpan.

5. Conclusion

In this paper, we have studied the impact of the pattern-growth di-
rection on the performances of the pattern growth-based sequential
pattern mining algorithm. Our study show that the pattern-growth
direction affect both the runtime and memory usage performances.
This has motivated us to introduce a heuristic which recommends a
pattern-growth direction between left-to-right direction (also called
PrefixSpan) and right-to-left-direction (also called SuffixSpan). Per-
formance analysis related to experimental results obtained from
eight real-life datasets and four synthetic datasets, commonly used
for evaluating and comparing sequential pattern algorithms, shows
that the heuristic prediction is reliable in general. Futhermore the
heuristic runtime is negligible compared to the runtine of the two
sequential-pattern mining algorithms, i.e PrefixSpan and SuffixSpan.
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