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Abstract 
 

Multiple Sequence Alignment (MSA) is used in genomic analysis, such as the identification of conserved sequence motifs, the estimation 

of evolutionary divergence between sequences, and the genes’ historical relationships inference. Several researches were conducted to 

determine the level of similarity of a set of sequences. Due to the problem of the NP-complete class property, a number of researches use 

genetic algorithms (GA) to find a solution to the multiple sequence alignment. However, the nature of genetic algorithms makes the 

complexity extremely high due to the redundancy provided by the different operators. The aim of this paper is to study some proposed 

GA solutions provided for MSA and to compare them using some criteria which we believe any solution should comply with in matters 

of representativeness, closeness and original sequence invariance. 

 
Keywords: Genetic Algorithms; Multiple Sequence Alignment; Representation Closeness; Representativeness; Sequence Invariance. 

 

1. Introduction 

Genetic algorithms are search heuristics which mimic the natural 

selection process. They are used to generate good solutions 

to optimization and search problems. Genetic algorithms belong to 

the larger class of evolutionary algorithms (EA). They generate 

solutions to the optimization problems using techniques inspired 

from natural evolution, such as inheritance, mutation, selection, 

and crossover. The general GA algorithm is described in Fig. 1: 

 
1) Randomly generate the first population of n chromosomes 
2) Evaluate the fitness function for each chromosome 

3) Repeat the following steps to create new population 

4) Select two parent chromosomes to crossover (with the crossover 
rate) and generate offspring(s) 

5) offspring(s) mutation (with the mutation rate) 

6) Evaluate the fitness of the offspring(s) 
7) Select chromosomes for discard (this can be done at the each new-

born level, (offspring(s) inside the loop within a population or at the 

population level outside the loop) 

Fig. 1: Generic Genetic Algorithm. 

 

The algorithm generally terminates either by reaching a chosen 

number of generations or by attaining the stability of the best-found 

fitness. The fitness stability can be caused by a local optimum.  

There are several parameters that should be chosen before starting 

this algorithm: beginning with the chromosome representation, 

then going through the process of choosing the number of chromo-

somes in the first population, completing a fitness calculation, initi-

ating a parent selection, defining the crossover operator and rate, 

the mutation operator and rate, and the number of offspring(s), 

activating the discard technique and ending with deciding the way 

of the algorithm termination. 

The aim of this paper is to focus on these different GA parameters 

used in MSA through a set of researchers. We will use the same 

randomly generated DNA sequences given in Fig. 2 throughout this 

paper: 

 
S1 
S2 

S3 

S4 

TTATGACGTT 
ATTCTACTTT 

GATTGTGCGA 

GACAATGCTA 

Fig. 2: Used Set of Sequences. 

 

2. Chromosome representation 

The chromosome representation is mainly chosen to: 

a) Adapt to the optimization problem (here MSA) to GA oper-

ators 

b) Simplify the alignment so that most of the operations will 

be done on the representation and not on the aligned se-

quences. 

c) Optimize the processing and reduce the complexity 

To be able to achieve these objectives, we believe that the pro-

posed solution should comply with the following rules: 

a) Closeness: Any operation should be close to the representa-

tion space in a way that after the operation is performed on 

a chromosome, the result should remain within the criteria 

set for the representation. Otherwise, the process may be left 

with some chromosomes that can be either truncated or not 

be represented at all, which drifts away from the process’ 

goal.  

b) Representativeness: A representation should be able to rep-

resent any possible alignment even in a reduced space (i.e. 

by fixing the maximum number of gaps). 

c) Sequence Invariance: An operation on a representation 

should not damage any original sequence. Otherwise, the 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/JACST
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alignment solution may not be a solution of the original se-

quences. 

Besides these rules, the main issue in genetic algorithms is the 

considerable time of execution. The condition to reduce the execu-

tion time is to have genetic algorithm operators that lead to con-

vergence, which is difficult to achieve considering the nature of 

these kind of functions. Researchers are attempting to have this 

convergence by selecting the best fitness; and the trigger to stop 

the execution is either a maximum number of populations or a 

threshold level of fitness value set as parameters. Both of these 

choices may not lead to an accepted solution.  

There are several chromosome representations used in different 

research papers among which hose discussed below. 

2.1. Bit matrix and quantum representation 

A chromosome is a NxM bit matrix [3] or Quantum Representa-

tion [4]. As showed in Fig. 3, a sequence, including gaps, in an 

alignment is represented as a bit string. In this bit string, `1' (or '0') 

corresponds to a gap, and the total number of `0's (or '1's) repre-

sents the length of the sequence. The alignment is expressed as a 

matrix, which is a vertical arrangement of the bit strings. 

 
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 
0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 

TT-A--T--GACGTT 
A--T-T-C-TACTTT 

-GATT-G-TGCGA 

GACAATGC-TA 
Chromosome  Correspondent Alignement 

Fig. 3: Bit String Representation. 

 

This representation can be used to implement the alignment algo-

rithm using hardware to reduce the execution time, but it does not 

take into account the different nucleotides which must be managed 

in parallel, and thus contrary to the chromosome representation 

goal. 

2.2. Steady GA 

A steady GA is used in [7] that represents a chromosome with an 

N*M matrix (N is the number of sequences and M is the size of 

the longest sequence extended by 30% of gaps). Each row i de-

scribes the gap positions in ith sequence as presented in Fig. 4. 

 
3 5 6 8 9 0 0 0 0 0 0 0 0 0 0 

2 3 5 7 9 0 0 0 0 0 0 0 0 0 0 

1 6 8 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

TT-A--T--GACGTT 

A--T-T-C-TACTTT 

-GATT-G-TGCGA 
GACAATGC-TA 

Chromosome  Correspondent Alignement 

Fig. 4: Gaps Indexes Representation. 

2.3. Permutation representation 

A permutation solution PS in [13] is associated with each align-

ment solution. PS is a matrix MxN for M sequence with the total 

size, including gaps, represented by N. Each row represents the 

indexes of their elements in the alignment. If the original sequence 

size is n, then the first n elements of the row are the new indexes 

of the original sequence elements and the remaining represent the 

gaps positions. Fig. 5 provides an example: 

 
1 2 4 7 10 11 12 13 14 15 3 5 6 8 9 

1 4 6 8 10 11 12 13 14 15 2 3 5 7 9 

2 3 4 5 7 9 10 11 12 13 14 15 1 6 8 

1 2 3 4 5 6 7 8 10 11 12 13 14 15 9 

 

TT-A--T--GACGTT 

A--T-T-C-TACTTT 

-GATT-G-TGCGA 

GACAATGC-TA 

Chromosome  Correspondent Alignment 

Fig. 5: Permutation Representation. 

 

Both representations in 2.2 and 2.3 use the sequences indexing. In 

the first, the focus is in only the gaps indexes, whereas in the sec-

ond, all sequences including gaps indexes are used. For the same 

chromosome, the first representation is included at the end of the 

second representation. Although the 2-2 representation is more 

concise and any different permutation of the gaps’ indexes in the 

2-3 is representing the same sequence, the GA functions over a 

permutation is easier. 

2.4. Adaptive genetic algorithm 

In [8] there is no particular representation of the chromosome as 

the sequences themselves are used directly which does not reduce 

the complexity of sequences management. 

2.5. Divide and conquer 

This method is used in [10] wherein each DNA gene is represent-

ed by two bits as shown in Table 1: 

 
Table 1: DNA Coding 

DNA Data DNA Symbol New Format 

Adenine A 00 

Cytosine C 01 

Guanine G 10 

Thymine T 11 

 

The chromosome is then a set of binary strings. Fig. 6 shows an 

example of using this representation: 

 
S1 
S2 

S3 

S4 

TTATGACGTT 
ATTCTACTTT 

GATTGTGCGA 

GACAATGCTA 

11110011100001101111 
00111101110001111111 

10001111101110011000 

10000100001110011100 

Fig. 6: Bit Coding Representation. 

 

The chromosome representation is mainly used to ease the GA 

operators by reducing the overall complexity of this algorithm. 

What distinguishes this technique is that all GA operations should 

be done at the gene level and not at bit level as it is done in [10]. 

Crossover and mutation that were presented in the paper are exe-

cuted in bit level which may modify the main DNA original se-

quences. Moreover, there is no gap representation. Table 2 gives a 

comparison between all studied representation techniques vs. the 

performance criteria set described at the beginning of this paper. 

 
Table 2: Representations vs. Performance Criteria 

Repre-

senta-

tion 

Performance Criteria 

Closeness 
Representative-

ness 
Invariance 

Q
u

an
tu

m
 R

ep
re

se
n
ta

ti
o

n
 

This Representation 

Aims To Simplify 

The Processing 
Through Parallelism 

And/Or By Building 

A Hardware Solu-
tion. Certainly, If 

The Operations Are 

Respecting Even Bit 
Boundary, The 

Result Of Falls Into 

The Representation 
Space. 

The Gap Is Not 

And Cannot Be 
Represented As 

Only Two Bits 

Are Used. 

Some Proposed 

Solutions While 
Processing At A 

Bit Level Do Not 

Specify How To 
Keep The Origi-

nal Sequences 
Invariant. If The 

Operations Are 

Completed At 
The Bit Level It 

Certainly Impacts 

The Invariance. 
For Example In 

[10] The Differ-

ent Genes Are 
Represented With 

Two Bits, If An 

Operation Is 
Done At The Bit 

Level A Gene 'A' 

May Change To 
'C' By Changing 

The First Bit. 

D
iv

id
e 

A
n
d

 C
o

n
q
u

er
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B
it

 M
at

ri
x
 

In The Proposed 

Representation In 

[3] A Bit Is A Gap 
Or A Gene. The 

Major Problem In 

This Solution Is A 
Ga Operator (I.E. 

Crossover) May 

Include More Gaps 
Than Supported And 

Then Part Of The 

Sequence Will Not 
Be Represented.  

This Solution Is 

Generally Not 

Representative 
As A Static 

Matrix Cannot 

Hold All Chro-
mosomes Un-

less A Maxi-

mum Number 
Of Gaps Is 

Allowed, 

Which Will 
Add More 

Complexity In 

Tracking The 
Number.  

The Representa-

tion, While It Is 

Respecting The 
Rules 1 And 2, 

Does Not Impact 

The Original 
Sequences. 

S
te

ad
y

 G
a 

Although, It May Be 

Easily Managed, 

The Number Of 

Gaps Are Either 

Maximized, Which 
Complicates Its 

Management, Or - 

For More Flexibility 
- It Is Not And An 

Operation Adding 

Gaps May Conclude 
With The Total 

Matrix Not Close To 

The Predefined 
Space. Also, All 

Numbers Represent-

ing The Gaps Index-
es Should Be Main-

tained Distinct. 

Both Solutions 

Are Representa-
tive If The 

Number Of 

Gaps Is Delim-
ited. While 

There Is More 

Flexibility In 
The First Solu-

tion, There Is 

No Need For 
Tracking In The 

Second, Which 
Reduces The 

Complexity. 

With The Need 
For Extra-

Management In 

The Steady Solu-
tion When Gaps 

Flexibility Is 

Used, Both Solu-
tions Do Not 

Impact The Orig-

inal Sequences. 

P
er

m
u

ta
ti

o
n

 R
ep

re
se

n
ta

ti
o
n
  

 

Although Different 
Permutations May 

Represent The Same 

Chromosome, With-
out Any Complexity 

Increase, All Ga 

Operation Is Close 
To This Representa-

tion. 

A
d

ap
ti

v
e 

G
e-

n
et

ic
 A

lg
o

-

ri
th

m
 As seen in [8], the authors are using the sequences themselves 

and not a transformation. All rules are respected at the cost of 
the processing complexity. 

3. Gap insertion 

Symbolized by the ‘-’ character in alignments, gaps are used to 

align the sequences. They represent the insertion or deletion of a 

gene, or genes, in one of the genetic sequences. They give the 

ability to account the addition or missing information between 

aligned sequences. It is comparable to the problem of missing 

information in deteriorated or damaged papyrus fragments [9]. 

Gaps are inserted in sequences so that the same genes in different 

sequences will be on top of each other as frequently as possible. 

Each gap introduces a penalty. Some papers [1] use different 

methods of scoring gaps:  opening, extending and terminal gaps, 

which may have different penalties. 

3.1. First generation 

Most of the research papers create the first generation randomly, 

depending on the chromosome representation. Random means that 

the gaps are randomly inserted in the different sequences. The 

papers that penalize differently gaps generally give the lowest 

penalty for the first population inserted gaps. 

 

3.2. Fitness function 

Most of the papers use the Sum of Pair Method, which is the sum 

of fitness values between all pairs of sequences. The main differ-

ence is how to calculate the similarity (fitness) of two sequences. 

3.3. Weighted sum of pair method (WSPM) 

Alignment cost(A) =  ∑ ∑ Wi,j
i−1
j=1

N
i=2 cost(Ai, Aj)                      (1) 

 

Where cost is the score of the similarity between two sequences 

(Ai and Aj) and Wi,j is their weight. 

3.4. Score coffee 

The score COFFEE described in the equation 2 is used in [4]. 

 

Alignment cost(A) =  
∑ ∑ Wi,j

N
j=i+1

N−1
i=1 cost(Ai,Aj)

∑ ∑ Wi,j∗LenN
j=i+1

N−1
i=1

                             (2) 

3.5. Gap penalty distinction 

To impose a start-up penalty for new gaps a distinction between 

“gap groups” and “individual gaps” is introduced in [2]. The fit-

ness in this work is calculated by adding 1 for each matching pair 

of symbols, and subtracting 4 for every group of consecutive gaps, 

and 0.4 for each individual gap. 

 

fitness = (total matches) * 1.0 - (gap penalties)                           (3) 

 

gap penalties = (gap groups) * 4.0 + (total number of gaps) * 0.4 

 

In [13] there is no difference between the different gaps, but there 

is a penalty of -1 if there is no match between genes and of -2 if 

there are a gene and a gap. The gain of a match is 2. 

3.6. Score matrix 

Most algorithms define a score matrix to define the cost (Ai, Aj) 

for all Ai, Aj  {A, C, G, T, -}: 

 
Table 3: Score Matrix Used in [8] 

 A C T G - 

A 0 5 2 5 10 

C 5 0 5 2 10 
T 2 5 0 5 10 

G 5 2 5 0 10 

- 10 10 10 10 0 

 
Table 4: Score Matrix Used in [12] 

 A C T G - 

A 1 -1 -1 -1 -2 

C -1 1 -1 -1 -2 

T -1 -1 1 -1 -2 
G -1 -1 -1 1 -2 

- -2 -2 -2 -2 0 

 

The values in the score matrix do not change for all the processing 

time except for those penalizing the gaps differently. Also, most 

papers do not give biological reasons behind the values they pro-

pose, as seen in Table 3 and Table 4, barring those using the Point 

Accepted Mutation, also known as PAM [11] or the Blocks Sub-

stitution Matrix (also called BLOSUM matrix) [9]. PAM describes 

the replacement of an amino acid in the primary structure of 

a protein with another amino acid. There are several PAM ver-

sions. The most used is pam250. The score matrix is used to cal-

culate the fitness, which has to be either minimized when it de-

scribes the penalty, as shown in table 1, or maximized when it 

describes the similarity as demonstrated in table 2.  The Blocks 

Substitution Matrix (also called BLOSUM matrix) [9] - based on 

conserved blocks bounded in similarity - was calculated by ex-

tracting sections of alignment from a database of observed genetic 

https://en.wikipedia.org/wiki/Protein
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sequence alignments. Once the relative frequencies for each amino 

acid were calculated, a log-odds ratio was recorded for every pos-

sible amino acid substitution pair. The formula for constructing 

the BLOSUM matrix is: 

 

Sij =
1


log (

pij

qiqj
)                                                                           (4) 

 

Where pij is the probability of two amino acids i and j replacing 

one another in any sequence and qi is the background frequency of 

finding amino acid i in any sequence. λ is a scaling factor. 

4. Selection technique 

In Genetic Algorithm, the selection mechanism is a process that 

aims to recruit the better individuals for the next generation. The 

selection technique provides a way to selectively favor the better 

individuals. The selection technique is used to select the parent 

chromosomes for crossover and mutation, which produces off-

spring children. Several selection techniques are used: 

4.1. Random 

Two parents are randomly selected each time for crossover. This 

technique is simple, but cannot always lead to the most beneficial 

results.  

4.2. Best fitness 

This technique needs a sorted population, which adds complexity, 

believing that "the best parents potentially give better offspring," 

which is not always true. 

4.3. Tournament selection 

Each time a number of individuals (called the tournament size) is 

chosen from the population at random. For the crossover, from the 

pool/tournament choose the best individual as the first parent with 

probability p and choose the second best individual as the second 

parent with probability p*(1-p). If p=1, the best fitness individual 

will be chosen.  

4.4. Proportional selection 

There are different algorithms for proportional selection. The most 

popular are: 

 Roulette Wheel Selection (RWS), 

 Stochastic Reminder Roulette Wheel Selection (SRRWS), 

and 

 Stochastic Universal Sampling (SUS). 

In this technique, a probability of selection is associated with each 

chromosome. The probability of a chromosome i with a fitness fi 

is calculated using the equation: 

 

pi =
fi

∑ fj
N
j=1

, where N is the total number of chromosomes      (5) 

4.5. Ranking selection 

The Ranking selection is identical to the proportional selection; 

however, it commences by ranking the chromosomes using their 

fitness, which helps to avoid premature convergence. 

5. Crossover operation 

Several types of crossover operators are proposed in the research 

field. This operator is based on an analogy with biological crosso-

ver: 

 

5.1. One-point crossover 

The first parent is cut straight at some randomly chosen position 

and the second one is tailored so that both right and left pieces of 

each parent can be joined while respecting the invariance rule of 

the original sequences. Any void space that appears at the junction 

point is filled with gaps. This technique is used in [1]. An example 

is given in Fig. 7: 

 
-TTATGA---CGTT 

AT-TCT-ACTT--T 

--GAT-TGTGCG-A 
G-AC-A-ATGC-TA 

TTATGA---CGTT 

ATTCT-ACTT--T 

GAT-TGTGCG-A 
GAC-A-ATGC-TA 

Alignment Parent 1 

 

Alignment Offspring 1 
 

TTATG-ACG---TT 

ATT-CTA-C--TTT 

GATTG-TGCG--A- 
GACAA-T-GCTA-- 

-TTATG-ACG---TT 

AT-T-CTA-C--TTT 
--GATTG-TGCG--A- 

G-ACAA-T-GCTA-- 

 
Alignment Parent 2 Alignment Offspring 1 

Fig. 7: One-Point Crossover. 

5.2. Uniform crossover 

Promotes multiple exchanges between two parents at gene level 

rather than the segment level. The algorithm consists of two main 

steps. Step 1 seeks to find the consistent positions in the parents’ 

alignments. Step 2 exchanges the subsequences between two posi-

tions with a probability typically equal to 0.5. Two positions are 

considered consistent between two alignments if, in each row, 

they contain the same residue or a gap. The main flaw of this 

technique is that it fails in most cases to satisfy the invariance rule. 

In [1], a position is a column of residues or gaps in an alignment. 

This technique may work mainly for sequences with high similari-

ty. To preserve the sequence invariance, the definition of con-

sistency given in [1] should be extended to the fact that all genes 

before the position should be the same in the same rows in the 

parent alignments. On the other hand, forcing column (same posi-

tion in all sequences) reduces the number of possibilities failing 

the invariance rule. 

5.3. Window-frame crossover 

The window-frame crossover is used in [3]. Some windows are 

selected in each parent, and they are copied in the same sequences 

in a copy of the second parent. The main setback of this technique 

is that it fails the representativeness rule when the number of gaps 

exceeds a certain threshold. Fig. 8 presents an example of a win-

dow-frame crossover: 

 

As demonstrated, it cannot preserve the maximum number of gaps 

that are used in a sequence, which may lead to the lack of repre-

sentation of some gaps or genes in the chromosome; or they can 

be simply considered dummies (they exist but with no effect). The 

result of such alignment cannot be considered as nearly optimal as 

not all possible alignments can be represented. 

5.4. Partially matched crossover (PMX) 

Let p1 and p2 represent parent chromosomes in permutations 

space. Two random numbers between 1 and the length n are gen-

erated and set as Lower-Level (LL) and Upper-Level (UL) as 

showed in Fig. 9. The segment of p1 between LL and UL is copied 

to form a partial list of offspring po in the same position as it ap-

pears in p1. All the remaining positions in po are copied in order 

from p2. This technique is used in [13]. 

 

 

 

 

https://en.wikipedia.org/wiki/Probability
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10000001110000 

00101000000110 

11000000100010 

01001010000100 

 

10000010000000 

00101000000110 

11000000100010 

01000010100000 

Parent 1 
Crossover 

 
Offspring 1 

00000100011100 

00010001011000 

00000100001101 

00000101000011 

 

00000011100000 

00010001011000 

00000100001101 

00001010000101 

Parent 2 

 
 Offspring 2 

-TTATGA---CGTT 
AT-TCT-ACTT--T 

--GAT-TGTGCG-A 

G-AC-A-ATGC-TA 

 

-TTATG-ACGTT 
AT-TCT-ACTT--T 

--GAT-TGTGCG-A 

G-ACAA-T-GCTA 
Alignment Parent 1 

 
 

Alignment Offspring 1 

 

TTATG-ACG---TT 
ATT-CTA-C--TTT 

GATTG-TGCG--A- 

GACAA-T-GCTA-- 

 

TTATGA---CGTT 
ATT-CTA-C--TTT 

GATTG-TGCG--A- 

GACA-A-TGCT-A- 
Alignment Parent 2  Alignment Offspring 1 

Fig. 8: The Window-Frame Crossover. 

 
P1 3 9 5 4 6 10 7 8 1 2 

P2 10 4 5 2 9 7 3 6 1 8 
 LL=3, UL=7 

P3 2 9 5 4 6 10 7 3 1 8 

Fig. 9: Crossover Illustration. 

5.5. Position based crossover (PBX) 

The algorithm of the PBX [13] can be summarized as follows: 

 Select randomly a set of position from one permutation.  

 Produce a proto-permutation child by copying genes (ele-

ments) on these positions into the corresponding position of 

the proto-permutation child.  

 Delete genes, which are already selected from the second 

permutation. The resulting sequence of permutations ele-

ments contains the elements of the proto-permutation 

child’s needs.  

 Place the chromosomes (permutations) into the unfixed po-

sition of the proto child from left to right according to the 

order of the sequence to produce one offspring (permuta-

tion). Fig. 10 gives an illustration of PBX crossover: 

 
Selected Points 

            

1  
7 8 1 4 2 6 5 3 9 

          
*
 

4 8 3 1 2 6 7 5 9 

 

2  
6 4 8 3 1 9 2 7 5 

Fig. 10: Crossover PBX Illustration. 

 

5.6. Cycle crossover (CX) 

Fig. 11 presents an illustration of CX crossover [13]. Starting from 

a position in the permutation of one sequence and copying the 

index at the same position in the offspring, the next element from 

the same sequence has the index with the value having the same 

position as the first in the second sequence. This process is repeat-

ed until a cycle is found (return to the starting point). All remain-

ing values are copied from the permutation of the second se-

quence.  

 

 

 

 

 

 

Selected Points 

          

P1 7 1 8 4 6 2 5 9 3 

          

P2 6 4 7 3 9 1 2 8 5 

          
po 7 4 8 3 6 1 2 9 5 

Fig. 11: Crossover CX Illustration. 

5.7. Hybrid crossover (HX) 

The Hybrid Crossover aims to randomly use one of the sets of 

different crossovers operators [13]. 

6. Mutation operation 

6.1. Delimited position mutation 

In this mutation, a delimited position (dp) is selected for the per-

mutation [13], as shown in Fig. 12. This position divides the per-

mutation into two parts from which two alleles are randomly se-

lected and exchanged. 

 
P 2 4 5 8 6 10 7 3 9 1 

 dp=4 

Pm 2 4 7 8 6 10 5 3 9 1 

Fig. 12: Delimited Position Mutation. 

6.2. Island shift mutation 

The island shift mutation is used in [3]. Some windows, called 

islands, are selected in some sequences as presented in Fig. 13. 

The mutation point is selected either at the beginning or at the end 

of the island and the mutation is done by a shift between this point 

and the opposite. 

 

10000001110000 

00001000000110 

11000111100010 

00001010000100 

 

Mutation 
 

10010000110000 

00000000001110 

11100011010010 

00001010000100 

a- Offspring before  b- Offspring after 

 
-TTATGA---CGTT 

ATTC-TACTT--T 

--GAT----TGT-GCGA 
GACA-A-TGCT-A 

 

 
-TT-ATGA--CGTT 

ATTCTACTTT--- 

---GAT--T-GT-GCGA 
GACA-A-TGCT-A 

c- Alignment before  d- Alignment After 

Fig. 13: The Island-Shift Mutation. 

6.3. Mutation operations discussion 

We start with the last kind of mutation operation namely "Island 

shift mutation" on a binary chromosome representation, where '1' 

represents a gap. As aforementioned in the crossover using this 

kind of chromosome representation, the mutation may lead to 

inconsistency and the failing representativeness rule (as we can 

see in the alignment in Fig. 13-d compared to the alignment repre-

sentation in Fig. 13-b). The size of the array is static, and then 

when doing the mutation operation, we may insert more gaps than 

authorized or replace some 0's with 1's, which may lead to some 

genes or gaps not being represented on the chromosome represen-

tation. An example is given in the sequence 2, where the last zero 

in the offspring after the mutation holds no significance. Also in 

sequence 3, the last three genes are not represented in the matrix 

and no possibility is given to insert a gap in them, which means 

that the proposed solution may not lead to a good result and it 

cannot cover all of them. 
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7. Cross-over and mutation probabilities 

Although most of the research papers use a probability of one (1) 

for crossover and mutation operations, some include probabilities 

such as: 

 

Pm =
−1

1+e−k2∗∆
+ 1.0,   ∆= favg − fmax                                        (6) 

 
(favg, (resp fmax)is the average (resp max)fitness value of a population)  

8. Discard techniques 

Most of the papers use the same population size over the time of 

the execution. To maintain this size, a discard technique should be 

periodically executed. This period can be between every two pop-

ulations or after the arrival of each new offspring resulting from a 

crossover and mutation operations. There are several techniques 

among which a) discarding those having poor fitness, b) discard-

ing randomly, are options. In some papers, a hybrid solution is 

used where only the better of the two children is kept [1] and be-

tween two populations a global discard is done. The latter has an 

effect only if the new offspring is active in its birth population, 

which generally is not the case unless the selection technique is 

random. 

9. Conclusion 

The aim of this study is to validate different genetic algorithm 

operators used for multiple sequence alignment against the rules 

of representativeness, closeness, and invariance. Although, Bit 

matrix, Adaptive Genetic Algorithm, and Permutation representa-

tion have full representativeness, only the latter two meet the 

closeness and original sequence invariance. The difference of 

complexity of the execution depends mainly on the way the fitness 

is calculated. More precisely, it depends on the reduction of the 

number of original sequences comparisons. This is more thor-

oughly dissected in [13, 17] using the Permutation representation. 

The main common setback for all mentioned solutions, to the 

exception of those using hardware, is how to ensure the conver-

gence by reducing the work space each time. This can be achieved 

by reducing the redundancy provided by the nature of genetic 

algorithms, which will be focused on in the future work. 
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