

Journal of Advanced Computer Science and Technology, 2 (1) (2013) 28-37

©Science Publishing Corporation

www.sciencepubco.com/index.php/JACST

Digital Hardware Pulse-Mode RBFNN with Hybrid On-chip Learning

Algorithm Based Edge Detection

Amir Gargouri*, Dorra Sellami Masmoudi

Computer Imaging and Electronics Systems group from research unit on Intelligent Control, design & Optimization of complex

Systems, University of Sfax, Tunisia

*Corresponding author E-mail: gargouriamir@yahoo.fr

Abstract

A hardware implementation of pulse mode Radial Basis Function Neural Network (RBFNN) with on-chip learning

ability is proposed in this paper. Pulse mode presents an emerging technology in digital implementation of neural

networks thanks to its higher density of integration. However, hardware on-chip learning is a difficult issue, since the

back-propagation algorithm is the most used, which requires a large number of logic gates in the hardware. To

overcome this problem, we apply a hybrid process, which is split into two stages. In the first one, the K-means

algorithm is used to update the centers of gaussian activation functions. Thereafter, the connection weights are adjusted

using the back-propagation algorithm. Details of important aspects concerning the hardware implementation are given.

As illustration of the efficiency and scalability of the proposed design, we consider edge detection operation which is a

very important step in image processing. In the learning step, the RBFNN was taught the Canny operator behavior.

Experiential results show good approximation features. The proposed design was implemented on a virtex II PRO

FPGA platform and synthesis results showed higher performances when benchmarked against conventional techniques

and neural ones.

Keywords: Pulse mode, RBFNN, On-chip learning, K-means, Back-propagation, Edge detector.

1 Introduction

Recently advances in artificial neural networks (ANNs) have led to several applications such as signal processing, face

recognition, transfer function simulation and person biometric based identification. Radial basis function neural

networks (RBFNN) constitute a particular class of neural networks widely used for regression and discrimination. Their

theoretical and practical properties have been thoroughly studied since the late 80s. They are originally designed to

implement some interpolation techniques of a set of points in a multidimensional space [1]. Moreover, RBF networks

have the best approximation property, i.e. it can accurately approximate a nonlinear function [2], provided that the

number of neurons is sufficient and the training algorithm is adequate. Furthermore, RBF network training is faster and

easier thanks to hybrid learning algorithms, and requires fewer neurons compared to multilayer networks. In recent

years, RBF networks have found a renewed interest in various applications notably in nonlinear function approximation,

classification problems and image processing [3,4].

Although ANNs are usually implemented in software, many applications require implementation of fast and large

neural networks on efficient custom device. Accordingly, VLSI (Very Large Scale Integration) implementation is

crucial for building fast artificial neural networks, by incorporating various applications in artificial intelligence. Two

main approaches to VLSI implementation of neural networks are applied. The first is the implementation that integrates

in the same circuit the training and the generalization phases (on-chip learning); this hardware implementation is not

easy, however, it is characterized by flexibility and adaptability to realise multiple applications. Whereas, the second

implementation (off-chip learning) includes only the generalization phase, in such case, the network parameters are

updated by training using software technology. Hardware implementation is accordingly devoted to the generalization

phase using the network parameters set. However, the speed of software-based implementation is low, and it is not

suitable for using in some environments where high performance is needed [5]. Size and real-time operations show that

on-chip learning is necessary for a large range of applications.

In recent years, pulse mode architectures are gaining support in the field of hardware neural networks with on-chip

learning ability, thinks to these outstanding features. In fact, pulse mode affords a good capacity to incorporate on-chip

mailto:gargouriamir@yahoo.fr

Journal of Advanced Computer Science and Technology 29

applications in artificial intelligence and to reduce significantly hardware resources, by integrating a simple frequency

multiplier [6-9]. In this paper, we propose a hybrid learning process for effective hardware implementation of RBFNN,

consisting of the K-means algorithm to adjust the center positions of the gaussian functions, and the back propagation

algorithm to estimate the connection weights. The proposed network can be used to approximate several image

processing tasks. As an illustration example, we consider edge detection application.

The remainder of this paper is organized as follows, firstly in section 2, the RBF neural network characteristics are

presented. Secondly, in section 3, we describe the pulse mode RBFNN with hybrid on-chip learning ability. In Section 4,

we apply this network as illustration in edge detection. In Section5, simulation results of the whole network are

presented and discussed. Finally, conclusions are drawn in Section 6.

2 Theoretical background

 2.1 RBFNN architecture

The RBFNN architecture is shown in Fig.1. It involves one input layer, one hidden layer and one output layer. The

neurons of the input layer are not connected to each other; meanwhile, they are directly connected to all the neurons of

the hidden layer. The output neurons perform a linear combination of the nonlinear basic functions provided by the

neurons of the hidden layer. There may be one or more output neurons, the number of hidden layer units is determined

experimentally, because there is no analytical method giving its required number [10]. Thanks to these basic functions,

RBFNN are able to provide a local spherical geometric representation of space and interpolate a set of points in a

multidimensional space. Generally, the used activation functions are defined in the real interval [0,1], radially

symmetrical around a center and characterized by an adjustable width. The response of the radial function decreases

monotonically, following the removal of the input from its center [11].

The output is then taken as a linear combination of basis function outputs as follows.

k

1

y ()
m

jk j

j

w R x

 (1)

Where Wjk (j=1...m and k=1...z) is the weight applied to the jth hidden layer unit to get the kth neuron of the output layer.

1

Fig.1: RBF neural network architecture

2.2. Training of RBFNN

Learning by training is probably the most important feature of neural networks, in which the network is updated to

obtain the required behavior; such feature depends closely on the network architecture. In this work, for reducing the

design consumed resources, the training procedure consists on a hybrid process: firstly, the K-means algorithm is

implemented to update the network center values. Thereafter, the connection weights are adjusted using the back

propagation algorithm.

30 Journal of Advanced Computer Science and Technology

3 Hardware implementation

In this section, the study will introduce the hardware implementation of the whole pulse mode RBFNN structure with

hybrid on-chip learning ability. The overall component of the network is shown in Fig.2. The hardware implementation

includes two parts: a feed forward path and a learning one.

Fig.2: Pulse mode RBFNN architecture with hybrid on-chip learning.

3.1 Feed Forward Neural Network architecture

This work is drawn from a previous study of ours [12], where the feed forward RBFNN architecture was successfully

implemented by integrating of three computational elements: a neuron unit which uses the gaussian function as

activation function, a pulse multiplier which performs the weight multiplication and an output neuron which calculates

the sum of synapse unit outputs. A more detailed discussion may be found in [12].

3.2 On-chip learning architecture

3.2.1 Implementation of the K-means algorithm

The K-means algorithm [13] is an unsupervised method, in which input data are divided into clusters. Then, each clock

period, so-that each set of samples is updated to its nearest center, the number of centers which is equal to the number

of hidden neurons is is empirically fixed. Thus, we undertake the following steps:

1. Randomly chose the initial centers of clusters among the data to classify. Let c1,...,cj,...,cn the different network

centers

2. Each input is set to the cluster whose center is the nearest. Thus the distribution of inputs in each cluster is

defined as follows:

 The cluster that has a center of gravity c1, contains all points equal or lower than
1 2c +c

2
.

Journal of Advanced Computer Science and Technology 31

 The cluster that has a center of gravity cj, integrates all points ranging in
j-1 j j j+1c + c c + c

] ,]
2 2

.

 The cluster that has a center of gravity cn, includes all points higher than
n-1c + c

2

n

3. At the end of each iteration, update the new center of each cluster according to equation (2), where Xj is the

sum of the different samples belonging to the jth cluster and Nj is the number of the samples.

1

j

j n

n Sj

c X
N

 (2)

4. Repeat steps 2 and 3 until convergence is reached (updated centers of clusters do not change over iterations).

The proposed architecture of the K-means algorithm is depicted in Fig.3. After initialization of the different centers, we

focus on the implementation of steps 2. Each clock sample, an input is introduced to the circuit to determine its cluster,

thereafter, the content Xj of the jth cluster is added with the input value, whereas the number Nj of samples is

incremented. Subsequently, we proceed to step 3, which computes the new center of each cluster by applying equation

(2). In order to enhance the hardware implementation, we select a power of two samples among Nj. This enables

replacing dividers with shifters. Fig.4 describes the different waveforms in the K-means bloc. Its operation is as

follows: if Nj
 is a power of two (let it be 2sj), the content of the register R1j inherited the value of Nj, while the content of

the register R2j takes the value of Xj. At the end of distribution of all inputs, we proceed to compute the new centers by

dividing R2j by R1j, thus the divider is implemented using a right shift register.

An activation function is then defined by cluster, which corresponds to the center of gravity of each cluster. In this

proposed work, to reduce complexity, the widths are determined so that we get a small overlap between the activation

functions and do not proceed in their update. In the learning step, we obtained satisfactory results, as well as in the

generalization test step.

Fig.3: Architecture of the K-means algorithm.

32 Journal of Advanced Computer Science and Technology

Fig.4: Different waveforms in the K-means bloc

3.2.2 Implementation of the back-propagation algorithm

The back propagation algorithm is a supervised method computed in the backward computation. Criterion for the

learning algorithm is to minimize the error given by equation (3), where yk is the output vector and ytk is the output

target.

2

1

1
E ()

2

m

k tk

k

y y

 (3)

This error is closely related to the network parameters according to the following equations:

jk w w k tk j

jk

δE
ΔW =-ρ =-ρ (y -y)R (x)

δW
 (4)

m
j j

j c c j k tk jk2
k=1j j

x -cδE
Δc =-ρ =-ρ R (x) (y -y)W

δc σ
 (5)

2 m
j j

j σ σ j k tk jk3
k=1j j

(x -c)δE
Δσ =-ρ =-ρ R (x) (y -y)W

δσ σ
 (6)

Finally, an update all RBF network parameters using the equations below:

jk jk jkΔW =W (t+1)-W (t) (7)

j j jΔc =c (t+1)-c (t) (8)

j j jΔσ =σ (t+1)-σ (t) (9)

The optimization problem is nonlinear and iterative; the stopping criterion can be a maximum number of iterations or a

predefined minimum error. In our case, we apply the first solution.

For the implementation, we deduce from equation (7), a whole scheme making use of different basic blocks depicted in

Fig.5. The learning process begins by calculating the error once the network output is generated. Then, it is multiplied

by wρ using a constant multiplier which is implemented using a left shift register. Afterwards, the quantity

w k tkρ (y -y) is multiplied by the hidden neuron output Rj using a pulse multiplier, this multiplication is performed

during a period Tf. Finally, we define an enable signal Tw, and at its rising edge we actualize the weight values to be

used in the next iteration. Fig.6 shows the different waveforms in the weight update block.

Journal of Advanced Computer Science and Technology 33

Fig.5: Weight update block

Fig.6: Waveforms in the weight update block.

4 Pulse mode RBFNN based edge detection

Genericity and updating of different parameters in neural networks can be seen as an easy bloc reconfiguration. Such

ability affords a great potential to reduce a system hardware resources cost by configuration of the network and making

it achieving different processing tasks. In this work, the proposed pulse mode RBFNN is used as a prevalent technology,

instead of classic edge detection methods. Edge detection presents a fundamental step in image processing. This stems

from the fact that edges characterize the boundaries of the image objects, and are therefore, the base for subsequent

applications such as image segmentation, boundary detection, object recognition and classification, image registration,

and so on. Consequently, the successes of these subsequent image processing tasks are strictly dependent on the

performance of edge detection. In this paper, we consider the Canny edge detection operator for modeling and

implementing the RBFNN. The Canny detector which is one of the most known border estimators in the literature and it

is widely used in several applications [14-15]. The Canny edge detector algorithm is based on several steps. Firstly, it

removes noise by a smoothing process. Secondly, it computes the image gradient to deduce regions with high

derivatives. Then, the algorithm tracks along these regions and suppresses any pixel that is not at the maximum [16]. In

this work, we try to include all these complex steps into a neural network based approach.

4.1 Learning step

The internal parameters of the proposed neural edge detector are optimized by using hybrid learning algorithm. Fig.7

represents the setup used for training. Firstly, the center positions of the gaussian functions are adjusted using the K-

means algorithm. Afterwards, the connection weights are updated by means of the back-propagation algorithm. In our

design, we constituted our database with different images from Wangz image database [17] such as dinosaur images,

34 Journal of Advanced Computer Science and Technology

fusil images, etc... Each set is divided on two classes, one is for the network training, and the other is for its

generalization test. For the back-propagation algorithm, we set to the network the input images and their corresponding

of the canny edge detector outputs as the target ones. For the K-means algorithm, we used only the input images. The

structure of the used network consists of nine inputs, four hidden neurons and one output neuron.

Fig.7: Hybrid on-chip learning steps for edge detection.

4.2 Experimental results

Performance of the proposed neural edge detector and its generalization abilities are tested by implementing the

designed architecture in the FPGA platform. Different test images from the nontraining database were used. All test

images are 8-bit grey level images having the same size. Fig.8 shows generalization results of the network.

To be able to evaluate the efficiency of the proposed edge detector, a metric based on the normalized mean square error

(NMSE) is used, it is given by:

2

1 1

2

1 1

[(,) (,)]

[(,)]

R C

r c

R C

r c

x r c y r c

NMSE

x r c

 (10)

Journal of Advanced Computer Science and Technology 35

Where x is the image resulting from network output and y is the image processed by Canny operator. Less NMSE

values show good edge detection results.

Fig.8: Generalization test results for the neural network based edge detection: (a1),(b1),(c1): Input images, (a2),(b2),(c2): Target images,

(a3),(b3),(c3): Output images

Table 1 presents relative errors with respect to the network generalization. It is clear that the designed network is able to

perform the edge detection operations; such results prove the efficient hybrid on-chip learning and the good

generalization abilities.

Table 1: NMSE values calculated for the RBFNN based edge detection.

Images NMSE values

(a3)

(b3)

(c3)

3.8%

4.1%

4.8%

5 Simulation results and synthesis

In this section, we implement the whole architecture of the pulse mode RBFNN with hybrid on-chip learning ability.

The implementation is realized on a (Virtex 2p7 Fg456) FPGA chip. All the connection weight parameters wjk are

expressed in 16-bits fixed-point. The period Tf is set to 256 clock period to encode the unsigned inputs (pixels)

presented in 8-bit. In the first one, we implement the K-means algorithm, its resources requirement is shown in Table 2.

Afterwards, the back-propagation is implemented; Table 3 illustrates its device utilization. It can be seen that the FPGA

chip is sufficient to perform the whole pulse mode RBFNN architecture, thus a larger network can be realized without

sacrificing its response time, which enable to perform real time applications. Comparisons with conventional techniques

and Neural ones [5,12], reveals the compactness of the suggested hybrid on-chip learning design and its ability to

reduce the hardware resource costs.

36 Journal of Advanced Computer Science and Technology

Table 2: Device utilization and timing summary of the K-means algorithm.

Table 3: Device utilization and timing summary of pulse mode RBFNN with on chip back-propagation algorithm.

Features Utilized

Number of external IOBs

Number of slices

RAM blocks

Clock blocks

Minimum period of the clock

Maximum frequency

113 out of 396 : 28%

3467 out of 4928 : 70 %

36 out of 44 : 81%

1 out of 16 : 6%

19.292 ns

51.835 MHz

6 Conclusion

In this paper, a pulse mode RBFFNN with hybrid on-chip learning has been discussed. The complexity of the on-chip

learning design and the difficulty of the hardware implementation are greatly reduced using a hybrid learning process,

consisting of the K-means algorithm and the back-propagation one. The most important feature of the proposed design

is the simplicity of implementation and the easy of programmability, not making use of any conventional multiplier,

which reduce significantly the learning time and enhance the hardware implementation.

Performance of the proposed design and its generalization abilities are validated by approximation of edge detection

function. Experimental results have been shown that the network can approximate well edge detection operation and

allows good generalization rates, in term of the normalized mean square error (NMSE). The whole network with on-

chip learning is implemented on FPGA platform. Such implementation offers many advantages over other solution with

respect to both hardware implementation cost and device timing performance.

References

[1] J.K. Sing, D.K. Basu, N. Mita, and M.K. Nasipuri, “Face recognition using point symmetry distance-based rbf network,” Applied Soft

Computing, vol.7,(2005), pp58-70.

[2] W. Guo, T. Qiu, H. Tang, and W. Zhang, “Performance of RBF neural networks for array processing in impulsive noise environment,” Digital

Signal Processing, vol. 8, (2008),pp168-178.

[3] D. Du, K. Li, M. Fei, “A fast multi-output rbf neural network construction method,” Neurocomputing, (2010).

[4] S. Song, Z. Yu, X. Chen, “A novel radial basis function Neural network for approximation,” International Journal of Information Technology,

vol.11, no.9, (2005).

[5] O. Polat, T. Yildirim, “FPGA implementation of a General Regression Neural Network: An embedded pattern classification system,” Digital

Signal Processing, vol. 20, (2010),pp.881–886.

[6] D.E. Van Den Bout, T.K. Miller III “A Digital Architecture Employing Stochasticism for the Simulation of Hopfield Neural Nets,” IEEE

Trans. Circuits Systems, vol. 36, n.5(1989).

[7] M. Krid, A. Dammak, and D.S. Masmoudi, “Hardware implementation of pulse mode RBF neural network-based image denoising,” Int. J.

Electron. Commun. (AEU), vol. 63, (2009),pp.810–820.

[8] H. Hikawa, “Frequency-Based Multilayer Neural Network with On-Chip Learning and Enhanced Neuron Characterisitcs,” IEEE Trans.

Neural Networks, vol. 10, no. 3, (2003).

[9] Y. Maeda, and T. Tada, “FPGA Implementation of a Pulse Density Neural Network With Learning Ability Using Simultaneous Perturbation,”

IEEE Trans. Neural Networks, vol.14, no. 3, (2003).

[10] Kaliraj & Baskar, “An efficient approach for the removal of impulse noise from the corrupted image using neural network based impulse

detector,” Image and Vision Computing, vol. 28, (2003), pp.458–466.

[11] D. Casasent, and X. Chen, “New training strategies for RBF neural networks for X-ray agricultural product inspection,” Pattern Recognition,

vol. 36,(2003), pp.535- 547.

Features Utilized

Number of external IOBs

Number of slices

RAM blocks

Clock blocks

Minimum period of the clock

Maximum frequency

113 out of 396 : 28%

727 out of 4928 : 14%

4 out of 44 : 9%

1 out of 16 : 6%

9.826 ns

101.771 MHz

Journal of Advanced Computer Science and Technology 37

[12] M. Krid, A. Gargouri, and D. S. Masmoudi, “Hardware implementation of pulse mode RBF neural network-based image denoising,” Int. J.

Innovative Computing and Applications, vol. 3, no. 4, (2011).

[13] Y. Zhao, F. E.H. Tay, F. Siong Chau, and G. Zhou, “Linearization of the scanning field for 2D torsional micromirror by RBF neural network,”

Sensors and Actuators, vol. 121, pp.230–236, (2005).

[14] A. Basturk, and E. Gunay, “Efficient edge detection in digital images using a cellular neural network optimized by differential evolution

algorithm,” Expert Systems with Applications, vol. 36, (2009),pp.2645–2650.

[15] M.E. Yuksel, “Edge detection in noisy images by neuro-fuzzy processing,” Int. J. Electron. Commun. (AEU), vol. 61, (2007),pp.8 –89.

[16] L.M. Reyneri, “Edge A performance analysis of pulse stream neural and fuzzy computing system,” IEEE Trans Circuits Syst, vol. 42,(1995)

pp.624–60.

[17] J. Z. Wang, z. James, "wang research group: Databases for research comparison,” [Online]. Available: http:// wang.ist.psu.edu/docs/ related.

shtml

