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Abstract

Several important properties of chaos synchronization with gradient

based control of chaotic system with periodic parametric forcing remain

still unexplored. This paper investigates the behavior of the Lorenz sys-

tem to change from chaotic to periodic, parametric forcing also entrains

the system output with the forcing frequency. Secondly synchronization

of two identically chaotic Lorenz systems are derived by linear feedback

control and then discussed the gradient based control method for Lorenz

system with periodic parametric forcing. Finally numerical simulation

results are presented to show the feasibility and effectiveness of the ap-

proach.
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1 Introduction

Experimental observations have pointed out that chaotic systems are
common in nature. It is found that in Chemistry (Belouov-Zhabotinski reac-
tion), in Nonlinear Optics (lasers), in Electronics (Chua-Matsumoto circuits),
in Fluid Dynamics (Rayleigh-Benard convection), etc chaotic systems exist.
Chaos is found in meteorology, solar system, heart and brain of living organ-
isms and so on. Synchronization and control of interacting chaotic oscillators
is one of the fundamental phenomena of nonlinear dynamics and chaos. Ex-
perimental realization of chaos synchronization and control have been achived
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with a magnetoelastic ribbon, a heart, a thermal convection loop, a diode oscil-
lator, an optimal multimode chaotic solid-state laser, a Belousov-Zhabotinski
reaction diffusion chemical system, and many other experiments.
One of the most striking discoveries in the study of chaos is that chaotic sys-
tems can be made to synchronize with each other. Synchronization of chaos is
a phenomenon that may occur when two or more chaotic dynamical systems
are coupled. This was discovered by Pecorra and carroll in 1990 [1]. Since Pec-
ora and Carroll’s [1] work many effective methods namely, OGY method [2],
adaptive control [3], differential geometric method [4], inverse optimal control
[5], lag synchronization [6], projective synchronization [7], anti-synchronization
[8] etc for chaos control and synchronization have been proposed. Usually two
dynamical systems are called synchronized if the distance between their cor-
responding states converges to zero as time goes to infinity. This type of
synchronization is known as identical synchronization [1]. A generalization of
the concept for unidirectionally coupled dynamical systems was proposed by
Rulkov et al.[9], where two systems are called synchronized if a static func-
tional relationship exists between the states of the systems. They called this
kind of synchronization a generalized synchronization (GS). Kocarev and Par-
litz [10] formulated a condition for the occurrence of GS between two coupled
continuous dynamical systems. Yang and Chua [11] proposed GS of contin-
uous dynamical systems via linear transformations. Tarai et.al.[12] introduce
synchronization between two generalized bidirectionally coupled chaotic sys-
tem. In 2011, Khan et.al. [13] have discussed three control strategies for
unified chaotic system using dislocated feedback control, enhancing feedback
control and speed feedback control. Recently Khan and Poria [14] have stud-
ied generalized synchronization of bidirectionally coupled chaotic systems. In
2006, Battogtokh et.al. [15] have discussed synchronization of eukaryotic cells
by periodic forcing. Eccles et.al.[16] have studied synchronization and chaos
control in a periodically forced quasi-geostropic two layer model of baroclinic
instability in 2006. But no one discussed about gradient based control and
synchronization of chaotic system with periodic parametric forcing.
Here we discuss in chapter 1, formalizes some of the important parameter-
dependent approaches, which typically include periodic parametric forcing. A
general procedure, initiated by Ott.Grebogy and Yorke [2] is first to select a
desired dynamical behavior from a variety of dynamics, including chaos and
then to achieve and retain the behavior in some sense by applying tiny per-
turbations to the parameter of interest. The relative parameter variation on a
system parameter, considered as a time-dependent, weak periodic oscillation
in the form

p→ p(1 + ξψp(t))

where ξ is a constant and ψp(t) = ψp(t+tp) is a parametric periodic function of
period tp > 0. This type of coupling of weak periodic oscillations to a control
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parameter can be quite effective when applied to Lorenz chaotic system. In
chapter 2, chaos synchronization uses two identically chaotic Lorenz systems
via linear feedback control. Lastly, in chapter 3, we discusses one type of com-
mon adaptive control strategies, the gradient based adaptive control method
for Lorenz system with parametric forcing. Finally numerical simulation re-
sults are presented to show the efficiency of our method.

2 Lorenz system with parametrically forced

convective flows

The autonomous Lorenz system is the simplest model for the dynamics of con-
vective layers and the dynamics of closed convection loops. Lorenz discovered
that this simple-looking deterministic system could have extremely erratic dy-
namics, over a wide range of parameters, the solutions oscillate irregularly,
never exactly repeating but always remaining in a bounded region of phase
space. Now the Lorenz system is charaterized by the following differential
equation

ẋ = σ(y − x)

ẏ = −xz − y + (r0 + r1cos(ωt))x

ż = xy − bz (1)

where x, y and z are state variables and σ, r0, r1, ω, b > 0 are parameters. The
parametric forcing term r0 + r1cos(ωt) is a periodic Rayleigh number, propor-
tional to the temperature drop between the bottom and the top boundaries.
This parametrically forced model can be understand as the convective fluid be-
ing heated periodically at its bottom or cooled periodically at its top to control
the motion of the fluid and the heat transfer within it. It can be shown from
Figure 1-Figure 4, that periodic parametric forcing causes the Lorenz system
to undergo a transition from being chaotic to being one-periodic, two-periodic
and then four-periodic. Further increasing the mean value of the Rayleigh
number r0 will continue this periodic-doubling process until a new chaotic at-
tractor appears. This experiment clearly shows how simple parametric forcing
makes it possible to achieve a controlled transition to chaos, by simply varying
the mean value of the forcing term.

3 Synchronization of identical Lorenz system

with periodic forcing via linear feedback

Synchronization of the drive-response system can be understand from a feed-
back control point of view. To simulate this type of synchronization via linear
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Figure 1: Period-one with periodic parametric forcing r0 = 26.5 and r1 = 5
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Figure 2: Period-two with periodic parametric forcing r0 = 27.5 and r1 = 5
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Figure 3: Period-four with periodic parametric forcing r0 = 27.9 and r1 = 5
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Figure 4: Chaos with periodic parametric forcing r0 = 26.5 and r1 = 0
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Figure 5: Synchronization error with linear feedback controller coefficient Kx =
20.0, Ky = σ = 10.0 and Kz = 40.0

feedback, may chaotic systems can be used, including the familier Lorenz sys-
tem. When Lorenz system with parametric forcing is used then drive and
response system becomes

ẋ1 = σ(y1 − x1)

ẏ1 = (r0 + r1cos(ωt))x1 − y1 − x1z1

ż1 = x1y1 − bz1 (2)

and

ẋ2 = σ(y2 − x2) +Kx(x1 − x2) −Ky(y1 − y2)

ẏ2 = (r0 + r1cos(ωt))x2 − y2 − x2z2 +Kz(z1 − z2)

ż2 = x2y2 − bz2 (3)

Substracting equation (2) from equation (3) yields the error dynamical system
as

ė1 = −(σ +Kx)e1 + (σ −Ky)e2

ė2 = (r0 + r1cos(ωt))e1 − e2 −Kze3 + x1z1 − x2z2

ė3 = −be3 + x2y2 − x1y1 (4)

where e1 = x2 − x1, e2 = y2 − y1 and e3 = z2 − z1. Therfore the states of
the response system (3) and the states of the drive system (2) are globally
synchronized asympotically i.e.

limt→∞ ‖ e(t) ‖= 0

for σ = 10.0, b = 8/3, r0 = 27.5, r1 = 5.0 and with feedback controller
coefficient Kx = 20.0, Ky = σ = 10.0 and Kz = 40.0 where e(t) = [e1, e2, e3]

T .
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Figure 6: Gradient based control of chaotic Lorenz system

4 Gradient based control of Lorenz system with

parametric forcing

To illustrate the gradient based adaptive control method, consider the chaotic
Lorenz system (1). The objective is to control its trajectory to an unstable

equilibrium (ξ, ξ, ξ2

b
) where ξ2 = b(r − 1). A control input u = [u1, u2, u3]

T is
added to the system (1). Then the Lorenz system becomes

ẋ = σ(y − x) + u1

ẏ = −xz − y + (r0 + r1cos(ωt))x+ u2

ż = xy − bz + u3 (5)

Let ex = x − ξ, ey = y − ξ and ez = z − ξ2

b
, therefore the error dynamical

system becomes

ėx = σ(ey − ex) + u1

ėy = [(r0 + r1cos(ωt)) −
ξ2

b
]ex − ey − ξez − exez + ξ(r0 + r1cos(ωt)) −

ξ3

b
− ξ + u2

ėz = ξ(ex + ey) − bez + exey + u3 (6)

Let us consider the resulting controller as

u = [0 (x− ξ)u0 + ξ(u0 + 2) ξ(a− ξ)]T where u0 = ( ξ2

b
− r − 1).

Then the system becomes

ėx = σ(ey − ex)
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ėy = −ex − ey − ξez − exez

ėz = ξey − bez + exey (7)

The objective function is chosen as

F0(x, t) = 1

2
( 1

σ
e2x + e2y + e2z).

then Ḟ0 = −e2x − e2y − be2z < 0. Here u0 = ( ξ2

b
− r− 1) is the ideal controller of

the gradient based controller of Lorenz system.

5 Numerical Results

Numerical simulations are done by Fourth order Runge-Kutta method. We
consider σ = 10, ω = 7.62 and b = 8/3 are fixed, r0 is varied from 26.5 to
27.5, then to 27.9, with r1 = 0 and then changed to r1 = 5.0. From Fig.1-
Fig.4 it is clear that periodic parametric forcing causes the Lorenz system to
undergo a transition from being chaotic to being one-periodic, two periodic and
then four chaotic. We assume that the initial values of the error as e1(0) =
0.1,e2(0) = 0.1, and e3(0) = 0.1. Picture shows that the error is going to zero
asymptotically i.e. to two chaotic Lorenz systems with periodic parametric
forcing synchronized. Numerical simulation results is shown for gradient based
control of Lornz chaotic system with σ = 10, r0 = 27.5, r1 = 5.0 and b = 8/3.

6 Conclusion

In this work, gradient based control and synchronization of Lorenz system with
periodic parametric forcing is achieved. Numerical simulations are shown to
be consistent with theoretical statements. Lorenz system is taken an example
to show the effectiveness of our results. This synchronization scheme may be
useful for secure communication and for biological purposes.
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