
 Journal of Advanced Computer Science and Technology, 1 (3) (2012) 116-133

©Science Publishing Corporation

www.sciencepubco.com/index.php/JACST

Implementing Stack E6 via OS Linux Sockets

Zaitsev D.A., Kharsun M.A.

Dr.Sci., Professor

Senior Member of the IEEE, Member of ACM, SIAM

International Humanitarian University

E-mail: zsoftua@yahoo.com

Bachelor of Computer Science

International Humanitarian University

E-mail: mikefromsky@gmail.com

Abstract

New software implementation of Ukrainian national stack of

networking protocols E6 was presented. Within operating system
Linux kernel, families of E6 protocols and addresses were created as
well as functions of their processing, in the form of a loadable module.
Application of socket technology gives a series of considerable
advantages among which unified with other stacks application
interface, reuse of the kernel resources facilitating the further
development and enterprise implementation of stack E6, engineering
corresponding networking devices.

Keywords: stack of networking protocols, E6, socket, kernel, Linux

1 Introduction

Packet switching networks dominate in modern communications world.

There is a tendency of network devices transformation into specialized computers

with predominance of software that implements high layers of open systems

interconnection basic reference model before data-link encoding and direct

transfer of signals within a media.

Acquirement of specialized software development methods for the

implementing network protocol stacks, packet switching and routing algorithms is

crucial for providing ways not only to exploit devices that are developed in other

countries, but also to produce the own ones.

http://www.mgu.com.ua/
mailto:zsoftua@yahoo.com?subject=130564
http://www.mgu.com.ua/

117 Zaitsev D.A., Kharsun M.A.

Recently Ukraine turns into a country, using network technologies developed

in other countries, due to the importing network devices and passive equipment.

Not only development, but the production of high-tech equipment is situated

outside the country.

Information about using programming code in the shape of virus-worm for

destabilization of uranium enrichment centrifuges in Iran appeared in ACM news.

That’s why aspects of exploited software source code openness become more

important. Complexities in examination of open specifications stimulate own

development of hardware (processors) by many other countries. Well known

examples of using software and hardware methods of communicating equipment

in realization of military and political sanctions against Third World countries

promote the initiation of national programs of production computing and

communications machinery.

As the production of equipment requires significant investment, the software

development is a more dynamic sphere. Its possibility of expansion is stipulated

by personnel’s level of qualification and organization. Using operating

environments compatible with freeware OS Linux in network devices, allows an

experimental development on home and office personal computers.

In Ukraine, a national stack of networking protocols E6 [1,2] was developed

and provided its experimental realization via additional OS Linux kernel system

call [3,4]. In spite of some advantages, said way has significant number of

shortcomings, which prevent further development of national stack E6 and its

industrial implementation. The main flaw is the need of OS kernel recompilation

for the new system calls addition and substantial modification of the API; besides

there are no possibilities of the reuse kernel methods involved in the

implementation of other stacks, TCP/IP for example.

Therefore, the independent realization of E6 datagram style on the basis of

standard OS Linux socket interface (the same as vast majority of other well

known protocols) was implemented in International Humanitarian University

(www.mgu.com.ua). This development is unique, because it requires a detailed

study of OS Linux kernel environment and significant integration with its data

structures and functions.

The goal of the present work is the rendering the software implementation of

E6 stack via OS Linux socket interface. It may be also considered as a case study

of new protocols software implementation in Unix-like operating environments.

2 Creating E6 sockets within OS Linux

OS Linux socket is a generalized inter-process communication channel,

which is represented as a file descriptor. As a rule, sockets are used for

communication between processes running on different computers. To provide

communication between two sockets, they have to support the same style and

http://www.mgu.com.ua/

Implementing Stack E6 via OS Linux Sockets 118

protocol of interaction. There are three basic styles supported: datagram (DGRAM),
stream (STREAM) and raw (RAW).

For the external indication of socket, its address is used, so the main features

of socket classes are address family (AF) and the appropriate protocol family

(PF). Among the known address families, AF_LOCAL – local format of

operating system and AF_INET – IP address family should be noted. During the

realization, the new E6 address family was created.

The main advantage of using sockets is a standard and consistent API for

each protocol, implemented via this interface. Basic functions of sockets are

contained in libc library, the main header file is sys/socket.h; besides for

specific address/protocol families, own header files are added, netinet/in.h in

TCP/IP, for example. For stack E6, the file e6.h was created.

Socket is created by the function
int socket(int protocol_family, int style, int protocol)

as result, the integer descriptor of associated file is returned; the set of available

protocols is determined by the selected family, for example, UDP_PROTO,

TCP_PROTO for TCP/IP family. In most cases, the protocol is uniquely determined

by the chosen style and can be omitted.

E6 socket for the datagram communication mode, that is similar to UDP

protocol, is created by the command
sock = socket(PF_E6, SOCK_DGRAM, IPPROTO_UDP);

Binding socket with a particular address is performed by the function
int bind (int socket, struct sockaddr *addr, socklen_t length)

where sockaddr structure is a generic data type, which allows using different

address systems, so the third parameter is an actual length of the structure. For E6

address family the following description from e6.h header file is used
#define E6_ADDR_LEN 6

#define PF_E6 33

#define AF_E6 PF_E6

typedef uint8_t e6_addr_t[E6_ADDR_LEN];

struct e6_addr

{

e6_addr_t s_addr;

};

typedef uint16_t e6_port_t;

struct sockaddr_e6

{

__SOCKADDR_COMMON (se6_);

 e6_port_t se6_port; /* E6 port number. */

 struct e6_addr se6_addr; /* E6 address. */

 /* Pad to size of `struct sockaddr'. */

 unsigned char se6_zero[sizeof (struct sockaddr) –

__SOCKADDR_COMMON_SIZE - sizeof (e6_port_t) - sizeof (struct

e6_addr)];

};

 Thus E6 socket address sockaddr_e6 consists of E6 host address of 6

octets and E6 port number of 2 octets. System of addresses and ports is

119 Zaitsev D.A., Kharsun M.A.

independent of other protocol families; particularly, it is independent of TCP/IP

(fig. 1).

An example of binding E6 server socket that allows calls from arbitrary E6

addresses to port 25, has the following form
#define E6ADDR_ANY ((struct

6_addr){.s_addr={0x00,0x00,0x00,0x00,0x00,0x00}})

server.se6_family = AF_E6;

server.se6_port = htons (25);

server.se6_addr = E6ADDR_ANY;

bind(sock, (struct sockaddr*) &server, sizeof(server))

 Note, that operation of conversion (struct sockaddr*) results in the

transforming a pointer of specific socket address to a generalized type, that is

required by function bind; zero address E6ADDR_ANY can receive datagrams from

arbitrary E6 addresses.

Ethernet network

Freme type

Ethernet driver

List of registered frame types

IP

E6

ip_rcv

e6_rcv

Protocol

stack frame

listener

Fig. 1: Demultiplexing frames of different types by Ethernet driver

 After binding, the exchange of data is performed by recvfrom and sendto

functions, which provide an opportunity of remote socket address receiving. In

addition, it is permissible to establish a connection with connect function and

then the further exchange is performed by functions send and recv, which do not

require address of the remote socket; this style of exchange is more characteristic

for the stream mode.

 Functions’ headers look as
int recvfrom (int socket, void *buffer, size_t size, int flags,

struct sockaddr *addr, socklen_t *length-ptr);

int sendto (int socket, void *buffer, size_t size, int flags,

struct sockaddr *addr, socklen_t length);

where buffer variable points to the datagram address buffer, and size is its

length in bytes, flags variable sets the mode of exchange and in the simplest case

equals to zero. Functions return the actual number of sent/received bytes; negative

Implementing Stack E6 via OS Linux Sockets 120

values correspond to an error. Function recvfrom creates socket address addr and

length values using length-ptr pointer in accordance with the actual sender of

the datagram; sendto function requires the receiver socket address addr and its

length length.

 An example of the server work cycle body has the form
len = recvfrom(sock, request, 1500, 0, (struct sockaddr *)&client,

&size);

<обработка запроса request, формирование ответа reply>

len = sendto (sock, reply, len, 0, (struct sockaddr *)&client,

size);

The socket address mapping into domain names is also provided by

gethostbyname function and its modifications as well as socket listening listen

and receiving connection requests accept. These methods are not used in the

current implementation of E6 stack.

3 Interface of the loadable kernel module E6-socket

Almost each OS Linux protocol stack is implemented as a loadable kernel

module. On the one hand it provides some autonomy for independent

development, and on the other hand the direct use of the kernel environment in the

form of special data structures and functions. Some modules, such as, for example,

TCP/IP stack, is loaded together with the OS loading that creates an external

effect of its presence in the static part of kernel - binary file linuz.

Modules that are not included in Linux startup scripts are loaded, unloaded

and maintained by special commands:

insmod <module name> <parameters> – load module;

rmmod <module name> – unload module;

modinfo <module name> – get information about loaded module;

modprobe <keys> <module name> <parameters> – load system module.

Parameters are formed by special macros module_param during the

module development and have the following key format of instruction

<parameter name>=<parameter value>.

Command insmod loads an arbitrary specified file, whereas command

modprobe works with modules located in /lib/modules directory and registered

within system with depmod command; advantage of modprobe command is the

ability to specify additional keys.

E6-socket module has name e6.ko; type .ko is standard and formed from

the reduction of words “kernel object”. To build a kernel module, a special way of

compilation and linking with make command is used to access the current kernel

symbol tables; the required by command make files makefile and KBuild are the

following:
Makefile::

obj-m := e6.o

KERNELDIR := /lib/modules/2.6.31.5-desktop-1mnb/build

all:: $(MAKE) -C $(KERNELDIR) M=`pwd` modules

121 Zaitsev D.A., Kharsun M.A.

KBuild::

 obj-m := e6.o

 E6-socket module parameters are: name of E6 device in OS Linux

devices’ name format – E6_devname, E6 device address (put in place of the

factory MAC-address) – E6_devaddr. Loading command example is the

following:
insmod e6.ko E6_devname=eth0 E6_devaddr=000000000001

In case of conflict when loading the module into the unknown kernel,

using the modprobe command with the forced loading keys is recommended.

 After E6-socket module is loaded, it is integrated into the system of known

protocol stacks and Ethernet frames by registering new protocol family

(E6_PF=33) and new frame type (ETH_P_E6=0xE600). As a result, the standard

socket environment sets pointer to E6 create socket program e6_create, and the

Ethernet driver receives a pointer to E6 frames processing program e6_rcv.

 This provides the use of standard user interface to work with sockets’

library libc, as described in the previous section, based on the functions socket,

bind, recvfrom, sendto, and others. Necessary supplements are associated

with a specific E6 address format, which determines the appropriate E6 socket

format. Recall that, in comparison with the IP address, the E6 address has a length

of 6 bytes, the hierarchical structure and is used both as a network and the data-

link address at the same time [1,2] - instead of the IP and MAC addresses.

 Data structures for describing the E6-address, E6-socket, and macros for

standard E6 addresses, such as the loopback address, arbitrary address, and

broadcast address are collected in the customer header file e6.h. Said header is

required to specify in the include directive in the beginning of an application that

uses the E6-socket module facilities:
#include “e6.h”

For testing the E6-socket module, the simplified remote shell application

was used. It is recommended for self-study training to modify and recompile the

standard TCP/IP stack applications, for example, TFTP to work via E6 stack.

4 The interaction of E6-socket module with the kernel

The interaction of a loadable module with the kernel is divided into four

main classes:

– call to the module initialization function;

– call to the module deinitialization function;

– calls of the kernel to the module standard functions for working with E6

sockets;

– calls of the module programs to the supporting functions of the kernel.

The overall structure of the E6-socket module is shown in fig.2. After the

module is loaded into memory, the insmod command starts automatically the

module initialization function that is registered with the system macro
module_init(e6_init);

Implementing Stack E6 via OS Linux Sockets 122

the header of the initialization function has the following form
static int __init e6_init(void)

Within the initialization function, the following procedures are executed:

E6 protocol family registering, E6-device search and its initialization and the

announcement of a new type of E6 frame. Thus the loadable module methods are

integrated into OS Linux kernel environment. To register a family of protocols,

the function
proto_register(&e6_proto, 0);

is called which receives the e6_proto structure address indicating the name,

owner, and the length of E6 protocol family socket. Structure e6_proto has the

following form
static struct proto e6_proto = {

 .name = "E6",

 .owner = THIS_MODULE,

 .obj_size = sizeof(struct e6_sock),

};

Then the E6-device initialization takes place by the internal E6-socket module

function e6_init_dev call
e6_dev=e6_init_dev(e6_devname,e6_devaddr,&e6_myaddr);

During executing this function, an attempt of the network device initialization is

done; in case of success E6 address is assigned to the network device and the

system is notified regarding the readiness of the device to the further work. Then

the virtual loopback interface is initiated
lo_dev = dev_get_by_name(&init_net, lo_devname);

The next command
sock_register(&e6_family_ops);

implements the E6 socket registration: it specifies the protocol family, address of

the sockets’ creating function and their owner. Structure e6_family_ops has the

following form:
static struct net_proto_family e6_family_ops = {

.family = PF_E6,

.create = e6_create,

.owner = THIS_MODULE,

};

It contains E6 protocol family name, function e6_create to create a socket of this

type and its belonging. Function e6_create has the header
static int e6_create(struct net *net, struct socket *sock, int

protocol)

and describes the process of creating E6 socket.

 The following call of function
dev_add_pack(&e6_packet_type);

registers new type of Ethernet frame: this function adds specified frame type

handler, using e6_packet_type structure and includes E6 frame type into the

kernel database
static struct packet_type e6_packet_type = {

 .type = __constant_htons(ETH_P_E6),

 .func = e6_rcv,

};

123 Zaitsev D.A., Kharsun M.A.

Date structures

e6_hdr

e6_sock

e6_cb

Functions

e6_create

e6_recv

e6_release

e6_bind

e6_connect

e6_recvmsg

e6_sendmsg

e6_init

initialization

e6_exit

deinitialization

insmod

module loading

rmmod

module unloading

Protocol family registration

PF_E6

e6_create

ETH_P_E6

e6_recv

Frame type registration

cancellation of registration

- protocol family

- frame type

Network device initialization

Fig. 2: E6 loadable module structure

As a result of executing the loadable module initialization function, a set

of data structures, constants, macros and functions joins OS Linux kernel, to

implement the datagram mode of transmission on the basis of the E6 stack. There

are two basic module entry points that are imported into OS Linux database:

e6_create to create E6 socket with socket user-end function at protocol family

PF_E6 specification; e6_rcv for the listening received frames of ETH_P_E6 type.

Thus, module interfaces of application and data-link layers are created.

Access to the functions of E6 module, implementing the standard socket

interface (bind, connect, release, recvfrom, sendto) is provided by the

table e6_dgram_ops of pointers to the standard socket entry points
const struct proto_ops e6_dgram_ops = {

 .family = PF_E6,

 .owner = THIS_MODULE,

 .release = e6_release,

 .bind = e6_bind,

 .connect = e6_connect,

 .socketpair = sock_no_socketpair,

 .accept = sock_no_accept,

 .getname = sock_no_getname,

 .poll = datagram_poll,

 .ioctl = sock_no_ioctl,

 .listen = sock_no_listen,

 .shutdown = sock_no_shutdown,

 .setsockopt = sock_common_setsockopt,

 .getsockopt = sock_common_getsockopt,

 .sendmsg = e6_sendmsg,

Implementing Stack E6 via OS Linux Sockets 124

 .recvmsg = e6_recvmsg,

 .mmap = sock_no_mmap,

 .sendpage = sock_no_sendpage,

};

Note that only the user functions e6_release, e6_bind, e6_connect,

e6_sendmsg, e6_recvmsg are implemented. For the rest of functions, system

stubs are used instead. The following is a snippet of e6_create function code that

creates E6 socket
sk = sk_alloc(net, PF_E6, GFP_KERNEL, &e6_proto);

sock->ops = &e6_dgram_ops;

sk->sk_family = PF_E6;

sk->sk_protocol = protocol;

e6_insert_socket(&e6_sklist, sk);

After the memory allocation by sk_alloc kernel function, address of table of

pointers to the standard functions sock->ops is installed. So each socket contains

a pointer to the table of its functions, which provides its autonomy. Finally,

created socket is included into general E6 socket list by e6_insert_socket

function.

In the case of input rmmod command from the Linux console, the process

of loadable module deinitialization begins. Before releasing memory occupied by

the module, the entry point to the completion of the module is automatically

invoked, given by the system macro
module_exit(e6_exit);

The header of the completion function of the module has the form
static void __exit e6_exit(void)

The main purpose of this function is cancelling the registration of the protocols

family and types of packets (frames). The function call
dev_remove_pack(&e6_packet_type);

removes records about E6 frame type in the kernel database. Then functions
sock_unregister(PF_E6);

proto_unregister(&e6_proto);

perform removal of E6 protocol and addresses family from the kernel database.

 Thus, the two entry points to the module are explicitly registered and

called by the kernel in the following cases: e6_create to create a customer E6

socket with the socket function; e6_rcv by Ethernet driver when receiving E6

frames. Other functions correspond to the user-end functions to work with

sockets; kernel determines their addresses from e6_dgram_ops entry points table

for the specified socket (fig.3).

125 Zaitsev D.A., Kharsun M.A.

e6_create

e6_release

e6_bind

e6_connect

e6_sendmsg

e6_recvmsg

e6_recv

.release

.bind

.connect

.sendmsg

.recvmsg

sock->ops

e6_sock e6_dgram_ops

Kernel

 file

socket.c

standard

functions for

working with

sockets

Ethernet driver

module

external

functions

e6_family_ops

e6_packet_type

Fig. 3: Access to the E6-socket module functions

More subtle issues of interaction, which reveal the main stages of the

transfer of control and data from the application process and the network device

driver by the module functions, are discussed in Section 6.

5 Algorithms of E6-socket module basic functions

To understand the algorithms of the module, should pay attention to the

basic data structures at first. In addition to described in the previous section

structures e6_proto, e6_family_ops, e6_packet_type, providing the

registration of a new stack in the kernel, as well as structures sockaddr_e6,

e6_addr and the type e6_port_t used to specify the E6 addresses and described

in Section 2, the module contains a description of a number of internal data

structures.

Moreover, the module uses the standard kernel data structures

struct socket – generalized socket;

struct sock – representation of a socket at the network level;

struct sk_buff – buffer for the transmission of the Ethernet frame;

struct net_device – network device descriptor.

Generalized socket is designed to provide a uniform standard handling of

different types of sockets in the kernel; structure socket contains a pointer to the

associated structure sock; frame buffers sk_buff are created by the module

during message transmission and by driver during receiving frame from network;

net device descriptor net_device contains its features. To understand the

interaction between data structures, it is essential to the study formed linked lists.

All E6 sockets are collected in a list e6_sklist, in addition, all the sockets of all

Implementing Stack E6 via OS Linux Sockets 126

types are included in the general list. To each socket sk, a queue of received

messages of sk_buff type is formed. To network device net_device, a single

queue of sent packets (frames) of type sk_buff is formed. Note, that the key of

socket search in e6_sklist list is E6 port.

Thus, the message transmission function comes to the formation of

sk_buff and inserting it to the queue of network device with net_device header;

the receiving message function comes to the extracting a frame from the

appropriate socket queue sk, depending on specified flags in case of the frame

absence in the queue, either the blocking of the process is executed for frame

entrance waiting or an error code returning. Frames sk_buff get into the socket

queue sk via the call by Ethernet driver of registered during module initialization

function e6_rcv after receiving E6 frame from network.

Module contains definitions of the following internal data structures. E6

frame header (data-link and network) contains pares of E6 addresses of receiver

de6a and sender se6a, and pares of sender de6p and receiver se6p ports
struct e6_hdr {

 struct e6_addr de6a;

 struct e6_addr se6a;

 __be16 type;

 e6_port_t de6p;

 e6_port_t se6p;

};

E6 socket contains standard socket sk and specific fields to specify the E6

addresses and port numbers of the sender saddr, sport and receiver daddr,

dport and flags as well.
struct e6_sock {

 struct sock sk;

 struct e6_addr saddr;

 e6_port_t sport;

 struct e6_addr daddr;

 e6_port_t dport;

 __u16 cmsg_flags;

};

The following static variables are created

static struct hlist_head e6_sklist; – header of E6 sockets list;

struct e6_addr e6_myaddr; – own E6 address;

static struct net_device *e6_dev; – address of E6 device descriptor.

Let us classify the functions of E6-socket module:

– initialization and deinitialization functions e6_init and e6_exit;

– socket user API implementation functions: e6_create, e6_release,

e6_bind, e6_connect, e6_sendmsg, e6_recvmsg;

– function-handler of received E6 packets (frames) e6_rcv;

– supporting functions: socket removing e6_remove_socket, inserting socket

to the list e6_insert_socket, searching socket with specified port

e6_find_port, searching free port e6_bind_port, searching socket with

127 Zaitsev D.A., Kharsun M.A.

specified address and port e6_find_socket, device initialization

e6_init_dev.

All module functions and data structures have prefix e6_. Note that for the

implementation of several user functions, only one module function can be used;

for example to implement functions sendmsg, sendto, send in the datagram

style, the module function e6_sendmsg is used, and to implement recvmsg,

recvfrom, recv functions, e6_recvmsg is used. Formation of various call

parameters is executed by intermediate kernel programs that are located in

socket.c kernel file.

E6 socket creating function code snippets were considered in Section 4.

Let us study the functions’ algorithms implementing sending and receiving

message operations. The sending message function has the form
static int e6_sendmsg(struct kiocb *iocb, struct socket *sock,

struct msghdr *msg, size_t len)

where iocb is the block of input/output control, msg is a message header, len is

the message length. Initially, memory is allocated for the packet (frame) buffer
skb = sock_alloc_send_skb(sk, len + sizeof(struct e6_hdr),msg-

>msg_flags & MSG_DONTWAIT, &err);

Copying information from the user's buffer to skb block is performed by

the memcpy_fromiovec command using the message header msg parameters
skb_reserve(skb, sizeof(struct e6_hdr));

err = memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len);

initial part of buffer is reserved by skb_reserve command for subsequent

placement of e6_hdr header. Recall that, e6_hdr is a combined network and data-

link layers header. Then the packet (frame) header is formed
hdr = (struct e6_hdr *)skb_mac_header(skb);

hdr->de6a = daddr;

hdr->se6a = addr;

hdr->type = htons(ETH_P_E6);

hdr->de6p = dport;

hdr->se6p = port;

The output device and the priority of the operation is specified
skb->dev = e6_dev;

skb->priority = sk->sk_priority;

The actual launch of the operation on the device is performed by the sequence of

commands
dev_queue_xmit(skb);

dev_put(dev);

Command dev_queue_xmit inserts the frame buffer skb to the device queue;

command dev_put forces the device driver to get started in case of absence of

active operation and does not involve any changes otherwise; the driver will check

the queue at the end of the active operation.

 Message receiving function has the header
static int e6_recvmsg(struct kiocb *iocb, struct socket *sock,

struct msghdr *msg, size_t len, int flags)

where the assignment of parameters corresponds to the previously described

function e6_sendmsg reversing the transmission direction at the data

Implementing Stack E6 via OS Linux Sockets 128

interpretation. Getting datagram in skb block from queue to the specified socket

sock is performed by the command
skb=skb_recv_datagram(sk,flags,flags&MSG_DONTWAIT,&err);

which in case of the datagram absence blocks the current process at indicating

MSG_WAIT flag and returns an error at MSG_DONTWAIT flag. Then the copying of

received data from skb block to user buffer is done, which msg->msg_iov address

is contained in msg header block
err = memcpy_toiovec(msg->msg_iov, skb->data+4, copied);

Then from skb block the socket address is copied to the to message header block

msg for the following return to the application process
msg->msg_namelen = sizeof(struct sockaddr_e6);

memcpy(msg->msg_name, skb->cb, msg->msg_namelen);

Using a simple copy command memcpy is due to the fact, that copying the socket

address is performed inside the kernel address space as opposed to copying data

from kernel space to user space (input/output block) by command

memcpy_toiovec. The processing is completed via releasing datagram memory by

the command
skb_free_datagram(sk, skb);

Thus, the receiving function is related to network device driver asynchronously

through a datagram queue skb to a socket, which is formed by e6_rcv function

considered later.

 Function of handling E6 frames received by driver has the header
static int e6_rcv(struct sk_buff *skb, struct net_device *dev,

struct packet_type *pt, struct net_device *orig_dev)

where skb is a received frame buffer, dev is a network device, pt is a frame type

descriptor, orig_dev is a source device, which may not match the dev in the case

of redirection.

 Function e6_rcv is called by Ethernet driver after receiving frame of

type ETH_P_E6 in accordance with registered during initialization packet type

e6_packet_type, address of the corresponding structure pt is specified

additionally in call parameters.

The driver performs a preliminary check of the packet destination address,

the results of which can be used to ignore packets addressed to other hosts,

because E6 address is used as well as the MAC address and set on the NIC during

the module initialization
if (skb->pkt_type == PACKET_OTHERHOST) goto drop;

Label drop designates action of the packet ignoring, reduced to releasing block

skb and return of the error code NET_RX_DROP
drop: kfree_skb(skb);

 return NET_RX_DROP;

In the module, a reliable version of the test is used in the form of an explicit

comparison of E6 destination address with own e6_myaddr and loopback

lo_e6_addr addresses`
hdr = (struct e6_hdr *)(skb->data-E6_TRANSPORT_HEADER_OFFSET);

if((memcmp(hdr->de6a.s_addr, &e6_myaddr, E6ADDRLEN) != 0) &&

129 Zaitsev D.A., Kharsun M.A.

 (memcmp(hdr->de6a.s_addr, &lo_e6_addr, E6ADDRLEN) != 0)) goto

drop;

Then the search for E6 socket with specified in the datagram port is run
sk = e6_find_socket(hdr->de6p, hdr->de6a);

if (!sk) goto drop;

Then the socket address of the received frame is stored in the supporting block cb

for the further use in the receiving packet function e6_recvmsg
e6cb=(struct e6_cb *)skb->cb;

e6cb->se6.se6_family=AF_E6;

e6cb->se6.se6_addr=hdr->se6a;

e6cb->se6.se6_port=hdr->se6p;

The processing is completed with inserting skb block to the queue of received

datagrams for found socket sk
if (sock_queue_rcv_skb(sk, skb)) goto drop;

Nonzero return code of sock_queue_rcv_skb function corresponds to an error

and leads to ignoring the packet. Interaction of Ethernet driver, e6_rcv function

and e6_recvmsg function are illustrated in fig.4. Note that running of functions

e6_rcv, e6_recvmsg is asynchronous: e6_rcv is called by driver and

e6_recvmsg runs while handling the corresponding system call of the application

process.

e6_sendmsg

Frame

buffer

skb

Network

device

descriptor

netdevice

skb skb

Ethernet

driver

Ethernet

network

e6_recvmsg Socket

sk

Frame

buffer

skb

skb skb

e6_recv

Fig. 4: Implementation of the datagram send/receive functions

Implementing Stack E6 via OS Linux Sockets 130

6 Tracing E6 packets transfer processes

Tracing the sequence of actions implementing certain user commands

allows us to understand peculiarities of the interaction among:

– application source code in C language written by the user;

– the object code of the library libc linked to the application;

– static part of the Linux kernel;

– loadable module.

Let us consider the tracing process on the example of user-defined

function of the receiving message by a server application
len = recvfrom(sock, request, 1500, 0, (struct sockaddr *)&client,

&size);

Initially, control inside application code is passed into recvfrom function

of libc that performs a preliminary check of parameters and generates a block of

input/output parameters presented with an array of type long.

Then it calls the syscall function of libc with the number of system call

SYS_SOCKETCALL=102 and the number of subfunction call=SYS_RECVFROM=12,

which execution leads to the application processor interruption number 0x80,

intended to implement the kernel system calls in Linux.

From the interrupt vector 0x80 in operating memory a new processor

status word is retrieved, which contains the system call handler address

system_call, and performs switching operation of the processor from the user to

the system mode (fig. 5).

#include <socket.h>

main(){

recvfrom(...)

}

recvfrom:: libc

Processes

Kernel

Interrupt vectors

Kernel entry point address

system_call

Parameters

block of type

long

RAM

Application

process

User

code

interruption

0х80

syscall(SYS_SOCKETCALL)

OS Linux

 kernel

Fig. 5: Sequence of entry into OS Linux kernel

131 Zaitsev D.A., Kharsun M.A.

The program system_call placed in the kernel file

arch/x86/kernel/entry_64.S works as a manager (switch): it finds the record

having number SYS_SOCKETCALL=102
.long sys_socketcall

in system call table sys_call_table of kernel file syscall_table_64.S that

contains the address of the function sys_socketcall which is a handler of all

system calls regarding sockets.

 Program sys_socketcall is a manager of socket system call

subfunctions, which retrieves the parameters from the parameters block and

passes control to the appropriate subprogram.

For SYS_RECVFROM subfunction, subprogram sys_recvfrom is called
err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],

(struct sockaddr __user *)a[4], (int __user *)a[5]);

which receives the first six parameters from the parameters block in accordance

with previously described format of the user-end function recvfrom; for

addresses specified by the user, user address space indicator __ user is written

explicitly.

The header of sys_recvfrom program is formed by the system macro
SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t,

size, unsigned, flags, struct sockaddr __user *, addr, int

__user *, addr_len)

which contains sequentially the types and names of parameters after the function

name. First of all, the address of socket in memory is determined on the file

descriptor, which the operation is performed for
sock = sockfd_lookup_light(fd, &err, &fput_needed);

Then the call parameters are copied into the fields of the message header block

msg of type msghdr and an input/output control unit (vector) iovec of type iov
msg.msg_control = NULL;

msg.msg_controllen = 0;

msg.msg_iovlen = 1;

msg.msg_iov = &iov;

iov.iov_len = size;

iov.iov_base = ubuf;

msg.msg_name = (struct sockaddr *)&address;

msg.msg_namelen = sizeof(address);

Then the program sock_recvmsg is called
err = sock_recvmsg(sock, &msg, size, flags);

The program sock_recvmsg after operations of safety audit is completed by the

calling
sock->ops->recvmsg(iocb, sock, msg, size, flags);

thus, the address specified by the description line
.recvmsg = e6_recvmsg,

is retrieved from e6_dgram_ops structure, which leads to the actual e6_recvmsg

function call of loadable module E6-socket (fig. 6), which algorithm was studied

in the previous section.

Implementing Stack E6 via OS Linux Sockets 132

system_call

SYS_SOCKETCALL

SYS_RECVFROM

Parameters block

of type long

sys_call_table

sys_socketcall

sys_recvfrom

SYS_SOCKECALL

SYS_RECVFROM

sock_recvmsg

Е6 socket

sock

Table of

functions

pointers

e6_dgram_ops

e6_recvmsg

sockfd_lookup_light

sock->ops->recvmsg

sock->ops

0х80

Interruption

handling

E6-socket

module

socket.c

Kernek file

functions

Fig. 6: The sequence of the module function calls within the kernel

Note that after the system call completion the reverse sequence of actions

in not obligatory. Some of calls result in blocking the current process, for example,

waiting for a message from the network. During this time, the kernel starts to

execute other ready-to-execute processes, or a special process-sloth idle in the

absence of ready processes.

In this case the change of process status will be caused by NIC interrupt

and after its completion the driver starts the program e6_rcv, which in turn

changes the state of the process while inserting the frame into the queue to the

appropriate socket.

7 Conclusion

The technology of software implementation of Ukrainian national protocol

stack E6 (the datagram mode) via OS Linux kernel sockets was presented which

allows minimizing modification of user interfaces and provides the kernel code

reuse that significantly reduces the complexity of development and creates a

prototype for further industrial implementations of stack E6. The implementation

was done in the kernel version 2.6.31.5 of the operating system Linux Mandriva

2010 and then moved to Linux Ubuntu, Debian, Fedora.

The material can also be considered as a case study of the software

implementation technology of new protocol stacks in Unix-like operating

environments.

The source files of the kernel module and test applications with brief

instructions on how to compile, install and run them are put on the website

http://daze.ho.ua and can be used as prototypes for the programmers to develop

their own protocol stacks.

http://daze.ho.ua/

133 Zaitsev D.A., Kharsun M.A.

References

[1] Zaitsev D.A., Bolshakov S.I. “E6 Addressing Scheme and Network

Architecture” Journal of Advanced Computer Science and Technology, No. 1,

(2012), pp.18-31.

[2] Vorobiyenko P.P., Zaitsev D.A., Nechiporuk O.L. “World-wide network

Ethernet?” Zviazok (Communications), No. 5, (2007), pp.14-19. In Russ.

[3] Zaitsev D.A., Guliaiev K.D. “Stack E6 and its Implementation within Linux

Kernel” Journal of Software Engineering and Applications, No. 4, (2011),

pp.379-387.

[4] Guliaiev K.D., Zaitsev D.A. “Experimental Implementation of Networking

Protocols Stack E6 into OS Linux Kernel” Artificial Intelligence, No. 2,

(2009), pp.105-116. In Russ.

[5] Herrin G. Linux IP Networking, TR-0004, (2000).

[6] Bovert D., Cesati M. Understanding the Linux Kernel, O’Reilly, (2000).

