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Abstract 

 

Diabetes incidence is one of the most serious health challenges in both industrial and developing countries; however, it 

is for sure that the early detection and accurate diagnosis of this disease can decrease the risk of affiliation to other 

relevant disease in diabetes patients. Because of the effective classification and high diagnostic capability, expert 

systems and machine learning techniques are now gaining popularity in this field. In this study, Least square support 

vector machine (LS-SVM) was used for diabetes diagnosis. The effectiveness of the LS-SVM is examined on Pima 

Indian diabetes dataset using k-fold cross validation method. Compared to thirteen well-known methods for the diabetes 

diagnosis in the literature, the study results showed the effectiveness of the proposed method. 

 

Keywords: Diabetes disease diagnosis, k-fold cross validation, Medical diagnosis, Least square support vector machine, Pima Indian Diabetes 

Datasets. 
 

 

1 Introduction 

Diabetes is a major health problem in both developed and developing countries, and its morbidity is increasing. It is a 

disease in which the body unable to produce or properly use insulin [1]. It is proved that diabetes increases the risks of 

kidney disease, blindness, nerve damage, blood vessel damage and it contributes to heart disease.  

The cause of diabetes continues to be a mystery, although both genetics and environmental factors such as obesity and 

lack of exercise appear to play roles [2]. The most common form of diabetes is Type 2 diabetes [3]. This type diabetes 

results from insulin resistance (a condition in which the body fails to properly use insulin), combined with relative 

insulin deficiency.  

Although detection of diabetes is improving, about half of the patients with Type 2 diabetes are undiagnosed and the 

delay from disease onset to diagnosis may exceed 10 years. Thus, earlier detection of Type 2 diabetes and treatment of 

hyperglycemia and related metabolic abnormalities is of vital importance. 

Fortunately, in recent years with an increased emphasis on diagnostic techniques and more effective treatments, the 

mortality rate from diabetes has declined. A key factor in this approach is the early detection and accurate diagnosis of 

this affliction [4-6]. 

Undoubtedly, the evaluation of data taken from patients and decisions of experts are the most important factors in 

diagnosis.  Therefore, the use of classifier systems in medical diagnosis has been gradually increasing. After all, expert 

systems and various artificial intelligence techniques for classification also help experts to a considerable extent. 

Classification systems can help minimize possible errors that might occur due to in experienced experts, and also 

provide medical data to be examined in shorter time and more detailed [6, 7]. 

Proposed as effective statistical learning methods for classification [8], Support Vector Machines (SVMs) rely on 

support vectors (SV) to identify the decision boundaries between different classes. Nonlinearly related to the input 

space, SVM is based on a linear machine in a high dimensional feature space, which has allowed the development of 

somewhat quick training techniques, despite the large number of input variables and large training sets. SVMs have 

successfully been used to address many problems including handwritten digit recognition [9], object recognition [10], 

speaker identification [11], face detection in images [12], and text categorization [13]. 
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The Least Square Support Vector Machine (LS-SVM) was first proposed by Suykens and et al. by modifying the 

formulation of standard SVM [14]. The LSSVM was modified at two points: First, instead of inequality constraints, it 

takes equality constraints and changed the quadratic programming to a linear programming. Second, a squared loss 

function is taken from the error variable [14, 15]. 

In this study, LS-SVM was employed to diagnose the diabetes disease. For training and testing experiments, Pima 

Indian diabetes dataset taken from the University of California at Irvine (UCI) machine learning repository was used. It 

was observed that the proposed method yielded the highest classification accuracies among the thirteen other methods 

in the literature. In this study, the performance was evaluated by the well-known k-fold cross validation method. 

The rest of the paper is organized as follows. Section 2 briefly discusses the methods and results of previous studies on 

diabetes disease diagnosis. Section 3 reviews basic SVM and LS-SVM concepts, respectively. Section 4 elaborates on 

the Pima Indian diabetes dataset. Section 5 presents the experimental results achieved by applying the proposed method 

to diagnose diabetes. Finally, we would make our concluding remarks in section 6. 

 

2 Review of literature 

A great deal of approaches has been proposed to deal with automated diagnosis of diabetes with Pima Indian diabetes 

disease, and most of them have managed to achieve high generalization performances.  

Deng et al. obtained 78.4% classification accuracy using ESOM [16]. Kayaer et al. [17] achieved 77.08% classification 

accuracy using multilayer neural network with LM algorithm. They have used conventional (one training and one test) 

validation method. Temurtas et al. use the probabilistic neural network (PNN) and they obtained 78.05% classification 

accuracy [18]. Smith et al. [19] proposed a neural network ADAP algorithm to build associative models and acheive to 

accuracy of 76%. Quinlan [20] applied C4.5 algorithm and the classification accuracy was 71.1%. Sahan et al. [21] used 

Attribute Weighted Artificial Immune System with 10-fold cross validation method and obtained a classification 

accuracy of 75.87%. Kumari and Chitra used SVM as famous computer aid diagnostic system in diabetes disease and 

obtained accuracy of 78% [22]. In [23], the researcher reached 76.73% accuracy with SSVM approach. Moreover, in 

order to prepare the performance of the LS-SVM in automated diagnostics, five different variant of Artificial Neural 

Networks (ANNs) were employed in this study, which are frequently used in the literature. There are different kinds of 

ANNs, which are determined by their training algorithms and topologies. Adjusting the weights and bias of the ANN, to 

train an ANN, means to select a model from the set of allowed models that minimize the error of the generalization 

criterion. In this study, three training algorithms were used for training a three-layer ANN. The first is a well-known 

Levenberg-Marquardt Back Propagation (LM BP), the second is Gradient Descent Back Propagation (GD BP), the third 

is Gradient Descent with Momentum Back Propagation (GDM BP), and the fourth is Gradient Descent with Adaptive 

learning rule Back Propagation (GDA BP). The fifth comparison method is Radial Basis Function (RBF), which turned 

out as a famous variant of ANNs. 

 

3 Support vector machines for classification  

In this section, we summarize the basic SVM concepts with regard to typical two-class classification problems. Support 

vector machines (SVM) originally developed by Boser et al. [24] and Vapnik [25], is based on the Vapnik–

Chervonenkis (VC) theory and structural risk minimization (SRM) principle [25], by trying to find a trade-off between 

minimizing the training set error and maximizing the margin to achieve the best generalization ability and remain 

resistant to over fitting. Moreover, one major advantage of SVM is its use of convex quadratic programming, which 

provides only global minima; therefore, it avoids being trapped in local minima. For more details, cf. [25, 26], which 

give a complete description of the theory of SVM. In this section we will discuss the basic SVM concepts for typical 

binary-classification problems. 

 

3.1   Linear separable case-hard margin SVM  
 

Let us consider a binary classification task: { , },  1,. . . , ,i ix y i l { 1,  1}iy   , i d
x R , where ix  are data points and iy are 

corresponding labels. They are separated with a hyper plane given by 0
T

W x b  , where w is an n-dimensional 

coefficient vector which is normal to the hyperplane and b is the offset from the origin. 

There are lots of hyperplanes that can separate the two classes, whereas the decision boundary should be as far away 

from the data of both classes as possible, the support vector algorithm seeks an optimal separating hyper plane that 

maximizes the separating margin between the two classes of data. As the wider margin can acquire the better 
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generalization ability, we can define a canonical hyper plane [25] such that 1 : 1
T

H W x b

    for the closet points on 

one side and 2 : 1
T

H W x b

   for the closest on the other. Now to maximize the separating margin is equivalent to 

maximizing the distance between hyper plane H1 and H2. Hence we can get the maximal width between 

them:
2

( ) .
w

m x x
w w

 
   . To maximize the margin the task is therefore: 
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Therefore, the learning task could be reduced to minimization of the primal Lagrangian: 

 

2

1

1
( , , ) ( ( ) 1)

2

n

i

T
p i i iMinL w b w y w x b 



     (2) 

 

where i are Lagrangian multipliers, hence 0i  . The minimum with respect to b and w of the Lagrangian, Lp, is 

given by, 
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Now we substitute back b and w in the primal, which gives the dual Lagrangian: 
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Obviously, it is a quadratic optimization problem (QP) with linear constraints. From Karush Kuhn–Tucker (KKT) 

condition, we know that: ( ( ) 1) 0i
T

i iy W X b    ,Thus, only support vectors have 0i  ,which carry all the relevant 

information about the classification problem. Hence the solution has the form: 
1

n

i i i i i ii i SV
W y x y x 

 
   , where 

SV is the number of support vectors. And gets b from ( ) 1 0
T

i iy W X b   , where ix is support vector. Therefore, the 

linear discriminant function takes the form: ( )
T T

i i i ii SV
g x W x b y x x


   . 

 

3.2   Linear non-separable case-soft margin SVM  
 

In practice, it is impossible to classify two classes accurately, because the data is always subject to noise or outliers, so 

in order to extend the support vector algorithms and solve imperfect separation, positive slack variables 1,. . . ,i l  [25, 

26] are introduced to allow misclassification of noisy data points, and to take into account the misclassification errors a 

penalty value C is introduced for the points that cross the boundaries. In fact, parameter C can be viewed as a way of 

controlling over-fitting. Therefore, the new optimization problem can be reformulated as follows: 
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Translate this problem into a Lagarangian dual problem 
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The solution to this minimizations problem is identical to the separable case except for the upper bound C on the 

Lagrange multipliers i . 

 

3.3   Non-linear separable case-kernel trick 
 

In most cases, one can’t linearly separate the two classes. In order to extend the linear learning machine to work well 

with nonlinear cases, a general idea is introduced, i.e., the original input space can be mapped into some higher-

dimensional feature space where the training set is separable. With this mapping, the discriminant function is of 

following form: 

( ) ( ) ( ) ( )T T
i ii SV

g x W x b x x b   


     (7) 

 

where T
i ix x in the input space is represented as the form of ( ) ( )T

ix x  in the feature space. The functional form of the 

mapping ( )ix does not need to be known since it is implicitly defined by the choice of kernel: 

( , ) ( ) ( )T
i j i jK x x x x  . Thus, the optimization problem can be rewritten as: 
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After the optimal values of i  have been found, the decision function would be based on the sign of: 

 

( ) ( , )i i ii SV
g x y K x x b


   (9) 

 

As a rule, any positive semi-definite functions K(x, y) that satisfy Mercer’s condition could be kernel functions [27]. 

Kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded 

feature space. There are many kernel functions that can be employed in SVM. The most commonly used kernels in 

SVM are listed in Table 1. 

 
Table 1: The conventional Kernel function 

Name Kernel Function expression 

Linear Kernel ( , )
T

l l
k x x x x  

Polynomial Kernel ( , ) ( )
T d

l l
k x x t x x   

RBF Kernel 
2 2

( , ) exp( || || / )
l l

k x x x x     

MLP Kernel 
0 1

( , ) tanh( )
T

l l
k x x x x    
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In this Table   and d  are constants and those parameters must be set by a user. For MLP kernel a suitable choice for 

0  and 1  is needed to enable the kernel function to meet Mercer’s condition. 

 

3.4   Least square support vector regression 
 

The Least Square Support Vector Regression (LS-SVR) fully described in [28], is considered as an approximation tool 

in this study. The formulation of SVR was modified by Suykens and et al. at two points: First, instead of inequality 

constraints, it takes equality constraints and changed the quadratic programming to a linear programming. Second, a 

squared loss function is taken from the error variable [28, 29]. These modifications greatly simplified the problem and 

can be specifically described as follows: 
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where 
k

e  are error variables that play a similar role as the slack variables k  in Vapnik SVM formulation and  is a 

regularization parameter in determining the trade-off between minimizing the training errors and minimizing the model 

complexity. 

The Lagrangian corresponding to (10) can be defined as: 
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where k R   are the Lagrange multipliers. The KKT optimality conditions for a solution can be obtained by partially 

differentiating with respect to w , b , ke , and k  
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After elimination of the variable w  and ke , the following linear equation can be obtained: 
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 (13) 

where 1[ , , ]Ny y y ,  1 [1, ,1]N  and 1[ , , ]Ny    . The kernel trick is applied here as follows  
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( ) ( ) ( , ), , 1, ,T
kl k l k lx x K x x k l N       (14) 

where (.,.)K  is the kernel function meeting Mercer’s condition. b and  can be obtained by the solution to the linear 

system 
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Eventually, the resulting LS-SVR model for function estimation can be expressed as: 

 

1

( ) ( , )

N

k k l

k

y x K x x b



    (17) 

 

3.5   Model selection 

 
LS-SVMs have two adjustable sets of parameters. One of them is called kernel parameter(s) and the other is called 

regularization parameter (  ). LS-SVM generalization ability depends on the proper choosing of those parameters. The 

best performance of SVM is realized with an optimal choice of the kernel parameter(s) and the regularization parameter. 

The optimal choice of those parameters is called LS-SVM’s model selection problem [30-32]. 

Kernel parameter(s) are implicitly characterizing the geometric structure of data in high dimensional space named 

feature space. In the feature space the data becomes linearly separable in such a way that the maximal margin of 

separation between two classes is reached. The selection of kernel parameter(s) will change the shape of the separating 

surface in input space. Selecting improperly large or small values in kernel parameter results Over-fitting or Under-

fitting in the LS-SVM model surface, so the model would be unable to accurately separate data [33, 34]. 

In non-separable problems, noisy training data will introduce slack variables to measure their violation of the margin. 

Therefore, a penalty factor   is considered for controlling the amount of margin violation. Other words, the penalty 

factor  is defined to determine the trade-off between minimizing empirical error and structural risk error and also to 

guarantee the accuracy of classifier outcome in the presence of noisy training data. Higher  values cause the margin to 

be hard and the cost of violation to become too high, so the separating model surface over-fits the training data. In 

contrast, lower  values allow the margin to be soft, which results in under-fitting separating model surface. In both 

cases, the generalization performance of classifier is unsatisfactory, so it makes the LS-SVM model useless [33, 35]. 

In this research, we employ a grid-search technique [36] using 5-fold cross-validation to find out the optimal model 

selection of LS-SVM. 

 

4 The Pima Indian diabetes disease diagnosis problem  

In order to perform the research reported in this manuscript, Pima Indian diabetes dataset taken from the UCI machine 

learning respiratory were used [17-19, 37]. The reason for using this dataset is that because it is very commonly used 

among the other classification systems that we have used to compare this study with for Pima Indian diabetes diagnosis 

problem. All patients in this database are Pima Indian women at least 21 years old and living near Phoenix, Arizona, 

USA. 

The dataset which consists of Pima Indian diabetes disease measurements contains two classes and 768 samples. The 

class distribution is 

 

 Class 1: normal (500) 

 Class 2: Pima Indian diabetes (268) 

 

All samples have eight features. These features are: 
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1. Number of times pregnant (
1
 ). 

2. Plasma glucose concentration a 2 h in an oral glucose tolerance test (
2

 ). 

3. Diastolic blood pressure (mm Hg) (
3

 ). 

4. Triceps skin fold thickness (mm) (
4

 ). 

5. 2-h serum insulin (lU/ml) (
5

 ). 

6. Body mass index (weight in kg/(height in m)^2)      (
6

 ). 

7. Diabetes pedigree function Feature 8: 2-h serum insulin (lU/ml) (
7

 ). 

8. Age (years) (
8

 ). 

Although the dataset is labeled as there are no missing values, there were some liberally added zeros as missing values. 

Five patients had a glucose of 0, 28 had a diastolic blood pressure of 0, 11 more had a body mass index of 0, 192 others 

had skin fold thickness readings of 0, and 140 others had serum insulin levels of 0. After the deletion there were 460 

cases with no missing values. 

 

5 Experimental results and discussion 

In this section, we introduce the performance evaluation method, which is used to evaluate the proposed method. 

Finally, we would present the experimental results and discuss our observations of the results. All the experiments 

reported here are implemented using RBF kernels for the following reasons: 

When the relation between desired output and input attributes is nonlinear, the RBF kernel non-linearly maps datasets 

into the feature space so that it can handle the datasets. The number of hyper-parameters is the second reason which 

influences the complexity of model selection. The RBF kernel has less hyper-parameter than the polynomial kernel. 

Eventually, the RBF kernel is numerically less difficult [38-41]. 

 

5.1   Performance evaluation methods 

 
In this study, k-fold cross validation method was used for performance evaluation of diabetes diagnosis using LS-SVM. 

k-fold cross validation is a way to improve over the holdout method. The data set is divided into k subsets, and the 

holdout method is repeated k times. Every time, one of the k subsets is used as the test set, and the other k-1subsets are 

gathered to form a training set. Then the average error across all k trials is calculated. The advantage of this method is 

that it is less significant for this method how the data gets divided. Every data point gets to be in a test set only once, 

and gets to be in a training set k-1 times. As k increases, the variance of the resulting estimate reduces. The downside of 

this method is that the training algorithm must rerun k times from scratch, in other words, it takes k times computation 

to make an evaluation. To randomly divide the data into a test and training set k different times is a variant of this 

method. The advantage of this method is that you can independently choose how large you wish each test set to be and 

after how many trials you average should be over [42]. 

 

5.2   Results and discussion  

 
We conducted some experiments on the Pima Indian diabetes disease dataset mentioned in section 4, so that we can 

evaluate the effectiveness of LS-SVM. We compared our results with those of earlier methods. Table 2 shows the 

classification accuracies of our method and ten previous methods. As the results show, our method using 10-fold cross 

validation has obtained the highest classification accuracy, 79.66% reported up to now. 

Given the research findings, the SVM-based model that we have developed yielded very promising results in classifying 

the disease. We believe that the proposed system could be very helpful for physicians in their final decisions about their 

patients. Using such a tool, they can make reasonably accurate decisions. 
 

6 Conclusion 

Classification systems used in medical decision making, provide medical data to be examined in a shorter time and 

more detail. In this study, a medical decision making system based on LSSVM was applied in diagnosing diabetes and 

the most accurate learning methods were evaluated. To  diagnose diabetes in a  fully  automatic  manner  using  LSSVM, 
Table 2: Classification accuracies obtained with LS-SVM and other classifiers from the literature 
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Method Classification accuracy (%) 

ESOM [16] 78.40 

MLNN with LM [17] 77.08 

PNN [18] 78.05 

SVM [19] 75.53 

C4.5 [20] 71.10 

AWAIS [21] 75.87 

SVM [22] 78.00 

SSVM [23] 76.73 

BP-GD 70.48 

BP-GDM 71.36 

BP-GDA 73.28 

BP-LM 75.14 

RBF 75.00 

LS-SVM 79.66 

experiments were conducted on the Pima Indian diabetes disease dataset. The experiment results strongly suggest that 

LSSVM could be helpful in diagnosis of disease. Compared to thirteen well-known methods in the literature, the 

experiment results demonstrated that the proposed method was more effective than other ten methods in the disease 

diagnosis. 
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