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Abstract

Some inferences based on Step-Stress Partially Accelerated Life Test (SS-PALT) are discussed in the present article. The Progressive Type-II
censoring criterion with Random Removal scheme is used for determining the Approximate Confidence Lengths and One-Sample Bayes
Prediction Bound Lengths for the unknown parameters of the Burr Type-XII distribution. Based on the simulated data, the analysis of the
present discussion has been carried out.
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1. Introduction

The Burr Type-XII distribution was first introduced by [1]. Its proba-
bility density function and cumulative distribution are given below,

f (x;θ ,σ) = σθxσ−1 (1+ xσ )−θ−1 ; θ > 0,σ > 0,x≥ 0 (1)

and

F (x;θ ,σ) = 1− (1+ xσ )−θ ; θ > 0,σ > 0,x≥ 0. (2)

The twelve different types of cumulative distribution functions were
included in the Burr system of distributions, that yield a variety
of density shapes. The Burr Type-XII distribution has applied in
several applied fields, including business, chemical engineering,
quality control, medical, and reliability studies.

The failure rate function and the reliability functions of un-
derlying distribution are given as

ρ(x) = σθ
xσ−1

1+ xσ
; θ > 0,σ > 0,x≥ 0 (3)

R(x) = (1+ xσ )−θ ; θ > 0,σ > 0,x≥ 0. (4)

The shape of failure rate function ρ(x) given in Eq. (3) does not
affect by the parameter θ . The failure rate function has a unimodal
curve when σ > 1 and it has decreasing failure rate function when
σ ≤ 1.

In the failure time modeling, quality control, and reliability
studies, the present distribution is very valuable. Few important
and recent references on the topic are included here. [2] deals with
Bayesian inference and prediction problems of the Burr Type-XII
distribution based on progressive first failure censored data. They
present Bayesian inference under a squared error loss function by
applying the Gibbs sampling procedure to draw Markov Chain
Monte Carlo (MCMC) samples. [3] were discussed about the
Bayes estimators for the parameters based on the upper records value.

[4] used a Koziol-Green model of random censorship for es-
timating the Bayes estimator of unknown parameters. [5] was
discussed about the problem of estimating two shape parameters
and the reliability function of Burr Type-XII distribution, based on
a general progressively Type-II censored samples under Bayesian
viewpoints. In addition, [6], [7], [8], and recently [9] also developed
different inferences about the Burr Type-XII model.

[10] derived some inferences for the Burr Type-XII distribu-
tion under the Progressive Type-II censoring criterion. [11] also
discussed the confidence limits for the underlying model based
on Constant-Partially Accelerated Life Test (CP-ALT) under the
Progressive Type-XII censoring with random removal. The focus
of this study is to review and extend the results based on the Burr
Type-II distribution under the Step-Stress partially accelerated
lift test (SS-PALT). The censoring criterion has used here as the
Progressive Type-II censoring with binomial removal. Based on
SS-PALT, the approximate confidence lengths (ACL) and the
One-Sample Bayes prediction bound lengths (BPBL) are obtained.
The analysis of the present discussion has been carried out by a
simulated data set.
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2. Progressive Type-II Censoring With Ran-
dom Removal

Let us suppose an experiment in which n independent and identical
units x1,x2, ...,xn are placed on a life test at the beginning time and
first m;(1≤ m≤ n) failure items are observed. At the time of each
failure occurring prior to the termination point, one or more surviving
units are removed from the test. Experiment is terminated at the
time of mth failure, and all remaining live units are removed from
the test. If x(1) ≤ x(2) ≤ ... ≤ x(m) are the lifetimes of completely
observed units to fail and R1,R2, ...,Rm;(m ≤ n) are the numbers
of units withdrawn at these failure times. Following [12], the joint
probability density function under the Progressive Type-II censoring
criterion is given as

f (θ ,σ |x) =Cp

m

∏
i=1

f (xi;θ ,σ) (1−F (xi;θ ,σ))Ri . (5)

Here, f (·) and F(·) be the probability density function and
cumulative density function respectively given in Eq. (1) and Eq. (2)
and Cp is known as the progressive normalizing constant.

Let an individual unit being removed from the test at the
ith ;(i = 1,2, ...,m − 1) failure is independent of the others
with some probability p. Hence, Ri of units removed at the
ith;(i = 1,2, ...,m−1) failure follows a Binomial distribution with
parameters p and n−m−∑

i−1
j=1 r j. Following [11], P(R) is now

defined and obtained as

P(R) = P(R1)P(R2|R1) ...P(Rm−1|Rm−2, ...,R1)

= Ωpa(1–p)b. (6)

where Ω =
(n−m)!

(n–m−a)!(a)! , a = ∑
m−1
j=1 R j and b = (m− 1)(n−m)−

∑
m−1
j=1 (m– j)R j.

3. Step-Stress Partially Accelerated Life Tests
(SS-PALT)

Accelerated Life Test (ALT) is used to control the reliability of a
product in a spell by accelerating the practice environment. The
acceleration factor is known or occurs a mathematical model that
specifies the relationship between lifetime and stress. In some
situations when the acceleration factor is unidentified or no any such
models exist or are very hard to assume. The partially accelerated
life tests (PALT) is a better option in such situations.

The stress can be applied in various ways, commonly used
method is Step-Stress. In Step-Stress PALT, a test item is run
first at normal use condition and, if it does not fail, then it is run
at accelerated condition until failure occurs or the observation is
censored. Several references have with SS-PALT, a little few of
them are [13], [14], [15], [16], [17], [18] and [19].

Let us suppose, n be the total test units are under the SS-
PALT, first run at the normal condition and if it does not fail by stress
change time to ε, then the test is transformed to the accelerated
condition and held until all units fail. [20] defined a tampered
random variable model for the lifetime of a unit under SS-PALT and
is given as

X =


Y ; 0 < Y ≤ ε

ε + Y−ε

β
; Y > ε;

(7)

where Y is the lifetime of a unit at normal condition, ε is the stress
change time and β is the acceleration factor. Based on the tampered
random variable (Eq. (7)) under the SS-PALT, the probability density
function of the considered distribution is rewritten as

f (x;θ ,σ) =


f1 = σθxσ−1 (1+ xσ )−θ−1 ; 0 < x≤ ε

f2 = σβθ x̃σ−1 (1+ x̃σ )−θ−1 ; x > ε;

where x̃ = (x− ε)β + ε. Thus, the joint probability density (like-
lihood) function when parameter σ is assume to be known, under
SS-PALT based on PRR-censoring is defined and obtained as

L ∝

k

∏
i=1

(
f1(1−F1)

Ri
)
×

m

∏
i=k+1

(
f2(1−F2)

Ri
)
×P(R = r)

∝ Ωpa(1− p)b
k

∏
i=1

σθxσ−1
i (1+ xσ

i )
−θR−1

×
m

∏
i=k+1

(
σβθW σ−1 (1+W )−θR−1

)

L ∝ θ
m

β
m−k pa(1− p)b T0(x,β ) e−θ(T1(x)+T2(x,β )); (8)

where T0(x,β ) = ∏
m
i=k+1

(
W σ−1

1+W σ

)
, T1(x) = ∑

k
i=1 R log

(
1+ xσ

i
)
,

T2(x,β ) = ∑
m
i=k+1 R log(1+W σ ) , W = (xi− ε)β + ε and

R = 1+Ri.

Taking logarithm of the likelihood function given in Eq. (8),
we get

Log L = m log θ +(m− k) log β +a log p

+b log (1− p)+ log T0 (x,β )−θT1(x)−θT2(x,β ). (9)

4. ML Based Approximate Confidence Lengths

The first order derivative of the log-likelihood equation given in Eq.
(9) with respect to the parameters θ ,β and p are obtained and given
as

∂

∂θ
log L =

m
θ
− (T1(x)+T2 (x,β ))

∂

∂β
log L =

m− k
β
−

m

∑
i=k+1

{
(xi− ε)((σθR+1)W σ −σ +1)

(1+W σ ) W

}
and

∂

∂ p
log L =

a
p
− b

1− p
.

Thus, the ML estimation corresponding to these parameters are
obtained by solving following equations respectively

θ̂ML =
m

∑
k
i=1 R log

(
1+ xσ

i
)
+∑

m
i=k+1 R log

(
1+Ŵ σ

)
(m–k) = β̂ML

m

∑
i=k+1

{
(xi− ε)

((
σθ̂MLR+1

)
Ŵ σ −σ +1

)(
1+Ŵ σ

)
Ŵ

}
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and

p̂ML =
a

a+b
; X̂ = (xi− ε) β̂ML + ε.

The close forms of these ML estimators are not possible. A
numerical technique (Newton Raphson integral method) is applied
here for obtaining the numerical findings of these ML estimators.

Based on the inverse of Fisher information matrix, the asymptotic
variances and co-variances of ML estimator for the parameters are
obtained
− ∂ 2

∂θ 2 Log L − ∂ 2

∂θ∂β
Log L − ∂ 2

∂θ∂ p Log L

− ∂ 2

∂β∂θ
Log L − ∂ 2

∂β 2 Log L − ∂ 2

∂β∂ p Log L

− ∂ 2

∂ p∂θ
Log L − ∂ 2

∂ p∂β
Log L − ∂ 2

∂ p2 Log L



−1

(θ̂ML,β̂ML,p̂ML)

=



Var
(
θ̂ML

)
Cov

(
θ̂ML, β̂ML

)
Cov

(
θ̂ML, p̂ML

)
Cov

(
β̂ML, θ̂ML

)
Var

(
β̂ML

)
Cov

(
β̂ML, p̂ML

)
Cov

(
p̂ML, θ̂ML

)
Cov

(
p̂ML, β̂ML

)
Var (p̂ML)


(10)

The second order derivatives of the log-likelihood equation are

∂ 2

∂θ 2 log L =− m
θ 2

∂ 2

∂β 2 log L =−m− k
β 2 −

m

∑
i=k+1

{
(xi− ε)2W−2

1+W σ

}
×

{
σ2θR+1

W−σ
−

− ((σθR+1)W σ +1−σ)(1+W σ (1+σ))

1+W σ

}

∂ 2

∂β 2 log L =− a
p2 −

b
(1− p)2

∂ 2

∂θ∂β
log L =

∂ 2

∂β∂θ
log L =−

m

∑
i=k+1

R(xi− ε)

(
σW σ−1

1+W σ

)

∂ 2

∂θ∂ p
log L = 0 =

∂ 2

∂ p∂θ
log L

and

∂ 2

∂β∂ p
log L = 0 =

∂ 2

∂ p∂β
log L.

All the expressions of second order derivative involve the unknown
parameters θ ,β and p. Hence, the Fisher information matrix can be
obtained by replacing the ML estimators of the parameters respec-
tively. The applicability of normal approximation of ML Estimation
is in small sample size. A log-transformation can be considered
for improvements of the performance of the normal approximation.

Based on the normal approximation, the (1− τ)100% approximate
confidence intervals for the parameters θ ,β and p are obtained asθ̂ML exp

∓Zτ/2

√
Var

(
θ̂ML

)
θ̂ML

 (11)

β̂ML exp

∓Zτ/2

√
Var

(
β̂ML

)
β̂ML


 (12)

and {
p̂ML exp

(
∓

Zτ/2
√

Var (p̂ML)

p̂ML

)}
. (13)

Here, Zτ/2 is the percentile of the standard normal distribution with
right-tail probability τ/2.

5. BPBL Under One-Sample Plan

For the future observation Y, the Bayes predicative density is denoted
by hΘ (y|x) and obtained by simplifying following expression

hΘ (y|x) ∝

∫
Θ

f (y;θ ,σ) π
∗
Θ dΘ; (14)

where π∗
Θ

; (Θ = θ ,β , p) be the posterior density corresponding to
the parameter Θ(= θ ,β , p) respectively.

A conjugate family of prior, two-parameter Gamma distribu-
tion is considered as the prior distribution for the shape parameter
θ , having probability density

πθ ∝ θ
α−1e−θ ; α > 0,θ > 0.

For the acceleration factor β , the vague prior is assumed, so that the
prior does not have any significant role in the analyses that follow.
The prior probability density is

πβ ∝ β
−1 ; β > 0.

The prior distribution regarding the factor p is assumed as Beta
distribution, with probability density

πp ∝ pγ−1(1− p)λ−1 ; γ > 0,λ > 0,0≤ p≤ 1.

Thus the joint prior distribution for Θ(= θ ,β , p) is now given as

π(θ ,β ,p) ∝ θ
α−1e−θ

β
−1 pγ−1(1− p)λ−1.

Therefore, the joint and marginal posterior densities for the
parameters are obtained respectively as

π
∗
(θ ,β ,p) =

π(θ ,β ,p)×L∫
β

∫
θ

∫
p π(θ ,β ,p)×L dθ d p dβ

∝
θ m+α−1β m−k−1 T0 (x,β ) e−θZβ∫

β
β m−k−1 T0 (x,β )

∫
θ

θ m+α−1e−θZβ dθ dβ

× pa+γ−1(1− p)b+λ−1∫
p pa+γ−1(1− p)b+λ−1d p
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π
∗
(θ ,β ,p) ∝ Ωθ

m+α−1
β

m−k−1 T0 (x,β )

×e−θZβ pa+γ−1(1− p)b+λ−1

and the marginal posteriors are

π
∗
θ ∝

ΩB(a+ γ,b+λ )

θ−m−α+1

∫
β

β
m−k−1 T0 (x,β ) e−θZβ dβ (15)

π
∗
β

∝ ΩB(a+ γ,b+λ )Γ(m+α)β m−k−1 T0 (x,β )
Zm+α

β

(16)

and

π
∗
p ∝ ΩΓ(m+α)

pa+γ−1

(1− p)−b−λ+1

∫
β

β
m−k−1 T0 (x,β )

Zm+α

β

dβ (17)

where Ω =

{
B(a+ γ,b+λ )Γ(m+α)

∫
β

β m−k−1 T0(x,β )
Zm+α

β

dβ

}−1

and Zβ = T1(x)+T2 (x,β )+1.

Using Eq. (1) and Eq. (15) in Eq. (14), the Bayes predic-
tive density of future variable Y, for the parameter θ is obtained as

hθ (y|x) =
∫

θ

f (y;θ ,σ)×π
∗
θ dθ

= ΩB(a+ γ,b+λ )
σyσ−1

1+ yσ

∫
β

β
m−k−1T0 (x,β )

×
∫

θ

θ
m+α exp

(
−θ
(
Zβ + log(1+ yσ )

))
dθ dβ

⇒ hθ (y|x) = Ω
∗
θ

σyσ−1

1+ yσ

∫
β

β
m−k−1

× T0 (x,β )(
Zβ + log(1+ yσ )

)m+α+1 dβ (18)

where Ω∗
θ
= ΩB(a+ γ,b+λ )Γ(m+α +1).

let l1 and l2 be the lower and upper Bayes prediction limits
for the future observation Y and (1−τ) be the confidence prediction
coefficient, then the one-sided Bayes prediction bound limits are
obtain by solving following equality

Pr (Y ≤ l1) =
τ

2
= Pr (Y ≥ l2) . (19)

Using Eq. (18) & Eq. (19), the Bayes predictive bound limits for the
parameter θ are obtained by solving following equations

Λ1 =
∫

β

β
m−k−1 T0 (x,β )

Zm+α

β

{
1−

(
1+

log
(
1+ lσ

1
)

Zβ

)−m−α}
dβ

(20)

and

Λ2 =
∫

β

β
m−k−1 T0 (x,β )

Zm+α

β

{
1−

(
1+

log
(
1+ lσ

2
)

Zβ

)−m−α}
dβ

(21)

where Λ1 =
τ

2Ω B(a+γ,b+λ )Γ(m+α)
and Λ2 =

( 2−τ

τ

)
Λ1.

An analytical solution of the expressions Eq. (20) and Eq.
(21) do not exists. A numerical technique is applied here for the
numerical findings of the prediction limits. Based on numerical
findings of l1 from Eq. (20) and l2 from Eq. (21), the Bayes
predictive bound length (BPBL) for the parameter θ is obtained as

Lθ = l2− l1. (22)

Similarly, the Bayes predictive density and prediction limits for the
parameter β are obtained by solving following equations respec-
tively;

hβ (y|x) = ΩB(a+ γ,b+λ )Γ(m+α)σθ

×
∫

β

β
m−k T0 (x,β )

Zm+α

β

((y− ε)β + ε)σ−1

×
(
1+((y− ε)β + ε)σ

)−θ−1 dβ (23)

Λ1 =
∫

β

β
m−k−1 T0 (x,β )

Zm+α

β

(Z1−Z2)dβ (24)

and

Λ2 =
∫

β

β
m−k−1 T0 (x,β )

Zm+α

β

(Z1−Z3)dβ (25)

where Z1 = 1+ (ε− εβ )σ , Z2 = 1+ (ε +(l1− ε)β )σ and Z3 =
1+(ε +(l2− ε)β )σ .

Based on the numerical findings of the lower and upper lim-
its, the BPBL for the parameter β is obtained by the relation

Lβ = l2− l1. (26)

Now, the Bayes predictive density for Y, prediction limits and resul-
tant BPBL corresponding to the parameter p, are obtained by solving
following equalities

hp (y|x) = Ω
∗
pσθ

yσ−1

(1+ yσ )θ+1 , (27)

l1 =


(

1− ε

2Ω∗p

)− 1
θ

−1


1
σ

, (28)

l2 =


(

1− 2− ε

2Ω∗p

)− 1
θ

−1


1
σ

(29)

and

Lp = l2− l1; (30)

where Ω∗p = ΩB(a+ γ,b+λ )Γ(m+α)
∫

β
β m−k−1 T0(x,β )

Zm+α

β

dβ .
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6. Numerical Illustration

6.1. Estimation of Optimal Stress Change Time

The optimal stress change time ε∗ is obtained by minimizing the
asymptotic variance of the Maximum Likelihood estimation of the
parameters θ , p and the acceleration factor β . The asymptotic vari-
ances of θ̂ML, β̂ML and p̂ML are given by the diagonal elements of
the inverse of the Fisher information matrix given in Eq. (10). The
optimal stress change time ε∗ of ε is obtained by minimizing the
generalized asymptotic variance of the MLE of the model parameters
and the acceleration factor. Using Mathematica 7.00, the optimal
stress change time ε∗ is 2.169 for θ = 0.25,σ = 0.25,β = 1.20,
n = 30 and m = 20.

6.2. Simulation Study

In the present section, a complete numerical illustration has presented
for the studying the properties of the present inference by the help
of simulated data. A set of 10,000 random sample generated, each
of size n = 30 by using following relation

xi =
{
(1−Ui)

− 1
θ

} 1
σ

with the help of (θ ,σ)(= 0.25,0.50,1.00). Here, Ui
are independently distributed U(0,1). The progres-
sive censoring pattern for m = 20 is considered as
Ri(= 1,0,2,0,0,3,0,1,2,0,4,0,0,5,2,2,0,1,0,2). The ML
estimate and corresponding mean square error (MSE) are given in
the Table 1.

It is observed from the table is that; the ML estimate and
their corresponding mean square errors are increasing as the
combination of the model parameters increase. A similar trend has
also seen when the optimal stress change time ε∗ varies with the
model parameters.

A log-transformed ACI and BPBL for all the parameters are
obtained and given in Table 2 & Table 3 for pre-selected values
as discussed above respectively. It is observed from the table is
that, the Approximate Confidence Length (ACL) increases when
τ increases. ACL decrease first and then increases when model
parametric value increases. A similar trend has also seen when, ε∗

varies. All properties regarding the ACL are similar explainable
for BPBL. However, the magnitude of the BPBL is robust when
compared with ACL.
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Table 1: ML Estimate and Mean Square Error

(θ ,σ) ε∗ θ̂ML β̂ML p̂ML
(0.25, 0.25) 2.169 1.0031 1.0197 0.9657
(0.50, 0.50) 2.341 1.0109 1.0387 0.9703
(1.00, 1.00) 2.398 1.0197 1.0531 0.9791

(θ ,σ) ε∗ R
(
θ̂ML

)
R
(

β̂ML

)
R(p̂ML)

(0.25, 0.25) 2.169 0.6789 0.7893 0.6891
(0.50, 0.50) 2.341 0.6809 0.8001 0.6902
(1.00, 1.00) 2.398 0.6897 0.8309 0.7004

Table 2: Log-Transformed Approximate Confidence Length

(θ ,σ) ε∗ τ = 99% τ = 95% τ = 90%

θ
0.25, 0.25 2.169 1.5051 1.4416 1.3808
0.50, 0.50 2.341 1.0349 0.9913 0.9495
1.00, 1.00 2.398 1.0491 1.0049 0.9625

β
0.25, 0.25 2.169 1.4513 1.3701 1.3415
0.50, 0.50 2.341 1.0234 0.9702 0.9689
1.00, 1.00 2.398 1.0357 1.0099 0.9802

p
0.25, 0.25 2.169 1.6701 1.5197 1.4322
0.50, 0.50 2.341 1.0197 1.0067 0.9555
1.00, 1.00 2.398 1.3407 1.2842 1.2301
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Table 3: Bayes Prediction Bound Lengths (BPBL)

(θ ,σ) ε∗ τ = 99% τ = 95% τ = 90%

θ
0.25, 0.25 2.169 1.4584 1.3965 1.3171
0.50, 0.50 2.341 1.0197 0.9771 0.9464
1.00, 1.00 2.398 1.0335 0.9984 0.9569

β
0.25, 0.25 2.169 1.4059 1.3167 1.2308
0.50, 0.50 2.341 0.9185 0.8696 0.8453
1.00, 1.00 2.398 0.9905 0.9653 0.9263

p
0.25, 0.25 2.169 1.5294 1.4227 1.0373
0.50, 0.50 2.341 0.9548 0.9322 0.8702
1.00, 1.00 2.398 1.1308 1.0229 0.9172
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