Evaluating the protective impact of pumpkin seeds oil against ciprofloxacin induced hepatorenal toxicity in the male albino rats

  • Authors

    • Hanan Sabry Abd El-Shafi Ahmed october 6 university
    • Ashraf A. A.Elkomy Deputy of Animal Health Researchers Institute for Regional Laboratories
    • Enas A.H. Farag
    2022-02-02
    https://doi.org/10.14419/ijpt.v10i1.31908
  • Pumpkin Seed Oil, Ciprofloxacin, Antioxidant, Apoptosis, Tumor Necrosis Factor, GSH.
  • Background: Ciprofloxacin increased the production of reactive oxygen species, As a result of its intracellular accumulation, which leads to extracellular membrane damage, resulting in the release of apoptotic components into the bloodstream, a condition known as apoptosis.

    Objective: The goal of this study is to investigate the protective effect of pumpkin seeds oil (PSO), a well-known natural antioxidant against Ciprofloxacin-induced liver and kidney impairment (CPFX[i]).

    Material and methods: Forty-Four male albino rats weighing approximately 180–200 gm were formed. (n = 10): (1) control saline, (2) PSO [ii] (4ml/kg/day orally for 4 weeks), (3) CPFX (80mg/kg/day orally for 2 weeks), and (4) PSO (4ml/kg/day orally for 4 weeks) + CPFX (80mg/kg/day orally for 2 weeks), starting on the first day of the third week. Finally, Serum and tissue specimens are collected at the conclusion of the experiment for biochemical and histopathological examination. Results: It ended up being found in the CPFX-treated group. ALT [iii], AST [iv], and TNFα[v] levels were all significantly elevated in the serum. While this medication reduced the hepatocellular content of GSH [vi], it increased the tissue content of MDA [vii], which clearly shows oxidative stress Reduced BCL2[viii] levels also indicate the presence of apoptosis. CPFX causes an increase in kidney-specific markers such as creatinine and urea, indicating kidney disease. When PSO was combined with CPFX BAX [ix], MDA, AST, ALT, and TNFα levels were considerably reduced, while GSH and BCL2 levels increased, indicating that PSO has antioxidant action and reduces apoptosis. Additionally, the renal function parameters improved, as seen by lower serum creatinine and urea levels.

    Conclusion: In rats, employing PSO as a concurrent prophylactic therapy while administering CPFX effectively reduced CPFX-induced oxidative stress and apoptotic damage. PSO could be used as a preventive medication to prevent CPFX-induced cellular damage to the kidneys and liver.

     

     


     
  • References

    1. [1] Adikwu, E., & Brambaifa, N. (2012). Ciprofloxacin cardiotoxicity and hepatotoxicity in humans and animals. https://doi.org/10.4236/pp.2012.32028.

      [2] Afolabi, O. K., & Oyewo, E. B. (2014). Effects of ciprofloxacin and levofloxacin administration on some oxidative stress markers in the rat. Int J Biol Vet Agricult Food Eng, 8, 31-39.

      [3] Al-Naqeeb, M. A., Thomson, M., Al-Qattan, K., Kamel, F., Mustafa, T., & Ali, M. (2003). Biochemical and histopathological toxicity of an aqueous extract of ginger in female rats. Kuwait journal of science and engineering, 30(2), 35-48.

      [4] AL-Rikaby, A. A., Ghadhban, R. F., & Majeed, S. K. (2016). The effects of ciprofloxacin on male rabbits: Biochemical and histopathological study. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 15(1), 38-44.

      [5] Amin, T., & Thakur, M. (2013). Research article cucurbita mixta (pumpkin) seeds-a general overview on their health benefits. Int J Recent Sci Res, 4(6), 846-854.

      [6] Anand, A. (1993). Ciprofloxacin nephrotoxicity. Archives of internal medicine, 153(23), 2705-2706. https://doi.org/10.1001/archinte.1993.00410230129017.

      [7] Aranha, O., Wood, D. P., & Sarkar, F. H. (2000). Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clinical Cancer Research, 6(3), 891-900.

      [8] Aranha, O., Zhu, L., Alhasan, S., Wood, D. P., Kuo, T. H., & Sarkar, F. H. (2002). Role of mitochondria in ciprofloxacin induced apoptosis in bladder cancer cells. The Journal of urology, 167(3), 1288-1294. https://doi.org/10.1016/S0022-5347(05)65283-4.

      [9] Balick, M. J., Kronenberg, F., Ososki, A. L., Reiff, M., Fugh-Berman, A., Bonnie, O. C., . . . Atha, D. (2000). Medicinal plants used by Latino healers for women’s health conditions in New York City. Economic botany, 54(3), 344-357. https://doi.org/10.1007/BF02864786.

      [10] Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. https://doi.org/10.1515/BC.2009.033.

      [11] Battino, M., Bullon, P., Wilson, M., & Newman, H. (1999). Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Critical Reviews in Oral Biology & Medicine, 10(4), 458-476. https://doi.org/10.1177/10454411990100040301.

      [12] Beutler, E., & Kelly, B. M. (1963). The effect of sodium nitrite on red cell GSH. Experientia, 19(2), 96-97. https://doi.org/10.1007/BF02148042.

      [13] Brunton, L. L., Chabner, B., & Knollmann, B. C. (2018). Goodman & Gilman's the pharmacological basis of therapeutics: McGraw-Hill Education New York, NY, USA:.

      [14] Cherubin, C. E., Eng, R. H., Smith, S. M., & Tan, E. N. (1992). A comparison of antimicrobial activity of ofloxacin, L-ofloxacin, and other oral agents for respiratory pathogens. Diagnostic microbiology and infectious disease, 15(2), 141-144. https://doi.org/10.1016/0732-8893(92)90038-U.

      [15] Council, N. R. (2010). Guide for the care and use of laboratory animals.

      [16] Davalosâ€Misslitz, A. C., Rieckenberg, J., Willenzon, S., Worbs, T., Kremmer, E., Bernhardt, G., & Förster, R. (2007). Generalized multiâ€organ autoimmunity in CCR7â€deficient mice. European journal of immunology, 37(3), 613-622. https://doi.org/10.1002/eji.200636656.

      [17] Elbe, H., Dogan, Z., Taslidere, E., Cetin, A., & Turkoz, Y. (2016). Beneficial effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin in rats: A histological and biochemical study. Human & experimental toxicology, 35(3), 276-281. https://doi.org/10.1177/0960327115584686.

      [18] Eraslan, G., Kanbur, M., Aslan, Ö., & Karabacak, M. (2013). The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice. Environmental toxicology, 28(12), 681-688. https://doi.org/10.1002/tox.20763.

      [19] Farombi, E. (2013). Ethanol Extract of Moringa oleifera Leaves Modulates Ciprofloxacin-Induced Oxidant Stress in Testis and Semen of Rats. Archives of Basic and Applied Medicine, 1(1), 59-66.

      [20] Gajewski, M., Radzanowska, J., Danilcenko, H., Jariene, E., & Cerniauskiene, J. (2008). Quality of pumpkin cultivars in relation to sensory characteristics. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 36(1), 73-79.

      [21] Gomes, M. P., Gonçalves, C. A., de Brito, J. C. M., Souza, A. M., da Silva Cruz, F. V., Bicalho, E. M., . . . Garcia, Q. S. (2017). Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): implications for energy metabolism and antibiotic-uptake ability. Journal of hazardous materials, 328, 140-149. https://doi.org/10.1016/j.jhazmat.2017.01.005.

      [22] Hasanuzzaman, M., Bhuyan, M., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384.

      [23] Hemieda, F. A., El-Kholy, W. M., & Masud, A. S. A. (2019). Evaluating the protective impact of ginger extract against ciprofloxacin-induced hepatotoxicity in male albino rats. IOSR Journal of Pharmacy and Biological Sciences, 14(1), 23-30.

      [24] Hwang, Y. P., Choi, C. Y., Chung, Y. C., Jeon, S. S., & Jeong, H. G. (2007). Protective effects of puerarin on carbon tetrachloride-induced hepatotoxicity. Archives of pharmacal research, 30(10), 1309-1317. https://doi.org/10.1007/BF02980272.

      [25] K Ramadan, B., A Mohammad, S., S Mahmoud, E., & A Ouda, E. (2016). ROLE OF PUMPKIN SEED OIL ON SOME CARDIOVASCULAR AND RENAL ASPECTS IN ADULT MALE ALBINO RATS. Al-Azhar Medical Journal, 45(4), 931-956. https://doi.org/10.12816/0034755.

      [26] Kehrer, J., Robertson, J., & Smith, C. (2010). Free radicals and reactive oxygen species. https://doi.org/10.1016/B978-0-08-046884-6.00114-7.

      [27] Ketterer, B., Meyer, D., Taylor, J., Pemble, S., Coles, B., & Fraser, G. (1990). GSTs and protection against oxidative stress. Glutathione S-transferase and drug resistance. London: Taylor and Frances, 109.

      [28] Khaki, A., Heidari, M., Novin, M. G., & Khaki, A. A. (2008). Adverse effects of ciprofloxacin on testis apoptosis and sperm parameters in rats. Iranian Journal of Reproductive Medicine, 6(2), 71-76.

      [29] Kroemer, G., Galluzzi, L., & Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiological reviews, 87(1), 99-163. https://doi.org/10.1152/physrev.00013.2006.

      [30] Levinson, S. S. (1978). Kinetic centrifugal analyzer and manual determination of serum urea nitrogen, with use of o-phthaldialdehyde reagent. Clinical chemistry, 24(12), 2199-2202. https://doi.org/10.1093/clinchem/24.12.2199.

      [31] Lim, E. J., Yoon, Y. J., Heo, J., Lee, T. H., & Kim, Y.-H. (2018). Ciprofloxacin enhances TRAIL-induced apoptosis in lung cancer cells by upregulating the expression and protein stability of death receptors through CHOP expression. International journal of molecular sciences, 19(10), 3187. https://doi.org/10.3390/ijms19103187.

      [32] Lipsky, B. A., & Baker, C. A. (1999). Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clinical Infectious Diseases, 28(2), 352-361. https://doi.org/10.1086/515104.

      [33] Lo, W. K., Rolston, K. V., Rubenstein, E. B., & Bodey, G. P. (1993). Ciprofloxacin-induced nephrotoxicity in patients with cancer. Archives of internal medicine, 153(10), 1258-1262. https://doi.org/10.1001/archinte.1993.00410100082012.

      [34] Main, P. A., Angley, M. T., O'Doherty, C. E., Thomas, P., & Fenech, M. (2012). The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutrition & metabolism, 9(1), 1-37. https://doi.org/10.1186/1743-7075-9-35.

      [35] Murkovic, M., Hillebrand, A., Winkler, J., Leitner, E., & Pfannhauser, W. (1996). Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). Zeitschrift für Lebensmittel-Untersuchung und Forschung, 203(3), 216-219. https://doi.org/10.1007/BF01192866.

      [36] Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3.

      [37] Papich, M. G. (1998). Antibacterial drug therapy: focus on new drugs. Veterinary Clinics of North America: Small Animal Practice, 28(2), 215-231. https://doi.org/10.1016/S0195-5616(98)82002-0.

      [38] PatleviÄ, P., VaÅ¡ková, J., Å vorc Jr, P., VaÅ¡ko, L., & Å vorc, P. (2016). Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative medicine research, 5(4), 250-258. https://doi.org/10.1016/j.imr.2016.07.004.

      [39] Pham, T. D., Ziora, Z. M., & Blaskovich, M. A. (2019). Quinolone antibiotics. MedChemComm, 10(10), 1719-1739. https://doi.org/10.1039/C9MD00120D.

      [40] Prast-Nielsen, S., Huang, H.-H., & Williams, D. L. (2011). Thioredoxin glutathione reductase: its role in redox biology and potential as a target for drugs against neglected diseases. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810(12), 1262-1271. https://doi.org/10.1016/j.bbagen.2011.06.024.

      [41] Rabrenović, B. B., Dimić, E. B., Novaković, M. M., Tešević, V. V., & Basić, Z. N. (2014). The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Science and Technology, 55(2), 521-527. https://doi.org/10.1016/j.lwt.2013.10.019.

      [42] Reitman, S., & Frankel, S. (1957). Determination of glutamate-pyruvate transaminase (ALT) and aspartate aminotransfrase (AST). J Clin Pathol, 28, 56. https://doi.org/10.1093/ajcp/28.1.56.

      [43] Retnam, K. R., & Martin, P. (2006). Ethnomedicinal plants: Jodhpur.

      [44] Rizzato, G., & Allegra, L. (1997). Efficacy and tolerability of a teicoplanin-ciprofloxacin combination in severe community-acquired pneumonia. Clinical drug investigation, 14(5), 337-345. https://doi.org/10.2165/00044011-199714050-00001.

      [45] Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., Krasnov, G. S., & Dmitriev, A. A. (2019). ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative medicine and cellular longevity, 2019. https://doi.org/10.1155/2019/6175804.

      [46] Stojiljković, N., Veljković, S., Mihailović, D., Stoiljković, M., Radovanović, D., & Ranđelović, P. (2008). The effect of calcium channel blocker verapamil on gentamicin nephrotoxicity in rats. Bosnian journal of basic medical sciences, 8(2), 170. https://doi.org/10.17305/bjbms.2008.2977.

      [47] Taslidere, E., Dogan, Z., Elbe, H., Vardi, N., Cetin, A., & Turkoz, Y. (2016). Quercetin protection against ciprofloxacin induced liver damage in rats. Biotechnic & Histochemistry, 91(2), 116-121. https://doi.org/10.3109/10520295.2015.1085093.

      [48] Varzi, H., Esmailzadeh, S., Morovvati, H., Avizeh, R., Shahriari, A., & Givi, M. (2007). Effect of silymarin and vitamin E on gentamicinâ€induced nephrotoxicity in dogs. Journal of veterinary pharmacology and therapeutics, 30(5), 477-481. https://doi.org/10.1111/j.1365-2885.2007.00901.x.

      [49] Weyers, A. I., Ugnia, L. I., Ovando, H. G., & Gorla, N. B. (2002). Ciprofloxacin increases hepatic and renal lipid hydroperoxides levels in mice. Biocell, 26(2), 225. https://doi.org/10.32604/biocell.2002.26.225.

      [50] Wolfson, J., & Hooper, D. (1991). Pharmacokinetics of quinolones: newer aspects. European Journal of Clinical Microbiology and Infectious Diseases, 10(4), 267-274. https://doi.org/10.1007/BF01967000.

      [51] Wright, M. E., Wong, A. T., Levitt, D., Parrag, I. C., Yang, M., & Santerre, J. P. (2018). Influence of ciprofloxacinâ€based additives on the hydrolysis of nanofiber polyurethane membranes. Journal of Biomedical Materials Research Part A, 106(5), 1211-1222. https://doi.org/10.1002/jbm.a.36318.

      [52] Yeh, S.-H., Lin, C.-H., Lee, C.-F., & Gean, P.-W. (2002). A requirement of nuclear factor-κB activation in fear-potentiated startle. Journal of Biological Chemistry, 277(48), 46720-46729. https://doi.org/10.1074/jbc.M206258200.

  • Downloads

  • How to Cite

    Sabry Abd El-Shafi Ahmed, H., A. A.Elkomy, A., & A.H. Farag, E. (2022). Evaluating the protective impact of pumpkin seeds oil against ciprofloxacin induced hepatorenal toxicity in the male albino rats. International Journal of Pharmacology and Toxicology, 10(1), 1-9. https://doi.org/10.14419/ijpt.v10i1.31908