Effects of food-chain mediated metal exposures on phosphatases’ profile in rats

Richard Omonigho OVIE *, Samuel Ogheneovo ASAGBA

Department of Biochemistry, Faculty of Science, Delta State University, P.M.B. 1 Abraka, Nigeria
*Corresponding author E-mail: omo_richard@yahoo.com

Abstract

This study seeks at investigating the separate and combined toxicities of Arsenic (As) and Cadmium (Cd) administered along food-chain. The natural food-chain was mimicked by exposing rats to diet containing milled Cd and As-exposed (at a dose of 0.4mg/100ml each) catfish as source of protein. Control groups were fed with normal formulated rat feed with non-metal contaminated fish as source of protein. The effects of Cd and As exposures were sought by determining indices of plasma and lysosomal membrane integrity in plasma and organs of the rats after three months exposure time. The results depict that Cd and As exposures in the rats led to bioaccumulation of the metals in their plasma and organs. The results gotten revealed significance (p<0.05) in gain of body weight in both Cd and As exposed rats when control is compared to them. Phosphatases’ activities (ALP and ACP) in the plasma and vital organs were also significant in the metal inoculated rats when the control is compared to them. These results explained that arsenic and cadmium forms free radicals which cause stress due to oxidation, kidney impairment and immunologic disorders.

Keywords: Arsenic; Cadmium; Exposures; Food-Chain; Rats.

1. Introduction

Food-chain contamination is part of the common routes for entry of metals into the animal system (Oscarson et al. 1992) and therefore, monitoring the bioavailability pools of metals in contaminated feed is of uttermost concern. Cadmium and Arsenic can be transported, dispersed to and accumulated in plants, to animals and passed across the food chain to humans, Hongyu et al. (2005). Since mineral concentrations may consistently biomagnify from one trophic level to another, animals higher along the chain of food may accumulate more toxins than the constituents intended to provide, Montero et al. (1996). It is known that exposure in diets is the major route for metal bioaccumulation of many marine and terrestrial animals (Talmage & Walton 1991, Shore 1995, Wang & Fisher 1999, Komarnicki 2000). Metalloids and metals that accumulate in biological tissue may be converted to other chemical forms and passed on via numerous pathways. Humans, as the final consumers in the chain of food, are thus the likely recipients of enormous amounts of minerals from infected food and may accumulate same in their organs (Oscarson et al. 1992). These metals affect every living organism and have possible toxic impact on all levels of food-chain (Sami & Druzykli 2003). The effects of the toxicity are acute, when large amounts are ingested or the element is particularly toxic or chronic, with toxicity only being noticed after a long time (Toens et al. 1998, Bahemuka & Mobufu 1999, Ikeda et al. 2000). The latter may be the result of the bioaccumulation process across the food chain (Lucatus et al. 1996, Turkdogan et al. 2003).

Cadmium (Cd), a metal common in native environments, is also extremely toxic (Wang & Fisher 1999). Cd pollution has been known to be a potential health problem to wild animals as found by Toens et al. in 1998. Its uses in technology have escalated to increase in the ecosystem and also in body of humans. Effects of food chain contaminations of metal toxicity have led to increase in pollution. Present studies indicate that Cd is highly toxic towards multiple organs and a potent immune-toxicant. Researches on humans and rodents have depicted influence on immune system function (Pathak & Khandelwal 2006). Several literatures have explained that Cd exposure has the tendency to result to stress due to oxidation, reduce lymphocytes function and may ensue apoptosis and necrosis on humans and also rodents (Pathak & Khandelwal 2006, Pathak & Khandelwal 2007). Arsenic exists naturally in 3 allotropic states of alpha, beta and gamma. The popular numbers of oxidation are +5, +3 and −3, which enable the element to give compounds of organic and non-organic nature in the ecosystem and in humans (Orloff et al. 2009). When carbon and hydrogen is bonded to arsenic, it is called organic, whereas it is inorganic when chlorine, sulphur and oxygen are combined to it. Examples of inorganic arsenic are arsenite (As (III)) and arsenate (As (V)) that a methyl group can attach to, to form monomethylarsonic acid (MMA (V)) or remove as seen with arsenic acid having 2 methyl groups. Inorganic arsenic metabolism occurs through two electron decrease of arsenic having valency of 5 to one having valency of 3, which require glutathione, then formation of arsenic of organic nature with valency of 5 through oxidative methyl group addition (Hughes 2002). Organic arsenic is found to be less toxic than inorganic (Shi et al. 2004, Valko et al. 2005). Arsenic is harmful to majority of organs, of which the kidney may be the primary target (Cohen et al. 2006). The extent of as poisoning depends on many variants like dose, individual susceptibility and age. While long-term exposures to arsenic will affect the vesicle system and induces hypertension with cardiovascular diseases, the short-term arsenic exposures can result to cardiomyopathy and hypotension. The most prevalent effect of long-term as toxicity on the neuron is peripheral neuropathy and mani-
festation of toxic hepatitis in the gastro-intestine followed by elevation of enzymes of the hepatocytes. The consuming of exposed arsenic, cadmium diets along several metals can seriously reduce the body reserves of iron, ascorbic acid and other vital nutrients resulting to distortion of immune defense, retardation of growth of uterus, abnormal epidemics linked to malnutrition (Iyengar & Nair 2000).

2. Materials and methods

2.1. Animals

Male Wistar (no. 16) albino rats, mean weight 129±4g, were utilized for this study. The rats were obtained at the Delta State University’s Animal House in Pharmacy Faculty, Abraka. Prior to commencement of the experiment, the rats were kept for 10-day period in cages to help them get use to the new climate.

2.2. Preparation of the diet

In order to simulate exposure to Cd and As through the food chain, four diets (1 control and 3 tests) that differed in terms of the nature of the protein were formulated. The test diets contained milled Cd, and Cd+As exposed fish as a source of protein, while the control diet contained milled non-Cd and As exposed fish. Other components of the diets were corn starch (Livestock Feed depot, Warri), multivitamin/minerals mix (Vetindia Pharmaceuticals Limited, India), vegetable oil (obtained locally in Abraka, Nigeria), cellulose (analytical grade) and granulated refined sugar (obtained from Abraka market).

2.3. Experimental design

The rats were divided into four experimental groups of four rats each and housed singly in metabolic cages. Rats in the cages were maintained for 3 months on the control, Cd, As and Cd+As test diet respectively. They were allowed free access to water any time they are tasty.

2.4. Collection and treatment of samples

At the end of the specified period of exposures, the animals were fasted for three hours and weighed before sacrificed under chloroform anaesthesia. While under anaesthesia, each rat was slaughtered by heart puncture, using a hypodermic syringe and needle. The blood collected from the heart was transferred to heparinized tubes which were carefully swirled. Plasma was later obtained by centrifugation at 4000rpm for 10 minutes. The heart, liver and kidney were quickly excised, placed on ice and subsequently centrifuged at 4000rpm for 10 minutes to obtain clear supernatants for biochemical analysis.

2.5. Determination of various biochemical parameters

The plasma and the supernatants obtained from the heart, kidney and liver were used for the determination of the activities of ALP (E.C. 3.1.3.1) and ACP (E.C. 3.1.3.2). ALP activity was assayed by the method of Roy (Roy 1970) based on the colorimetric end-point method where the alkaline phosphatase acts upon the AMP-buffered sodium thymolphthalein monophosphate to produce a blue chromogen, which is measured photometrically using Teco Diagnostic test kits. The activity of the enzyme is expressed in international unit per litre. ACP activity was determined by the method of Hillman (Hillman 1971) as adapted in Teco Diagnostic test kits’ kinetic method in which a coloured complex is produced when the α-Naphthol released from the substrate α-Naphthylphosphate by acid phosphatase is coupled with Fast Red TR. The activity of the enzyme is expressed in units per litre. One International Unit is defined as the amount of enzyme that catalyzes the transformation of one micromole of substrate per minute under defined conditions.

2.6. Statistical analysis

The results were expressed as mean ± SEM. Statistical analysis was done by one-way analysis of variance (ANOVA) using a computer software package (SPSS version 16.0, SPSS Inc. NC, USA). Least significant difference (LSD) test was used to check mean difference between the test and control groups. Statistical significance was considered at P<0.05.

3. Results

The body weight gain and organ/body weight ratios in rats are presented in Table 1. The body weight gain of rats administered Cd and As contaminant diet was significantly decreased (p<0.05) relative to control. The results indicate that there was a body weight loss of rats exposed to Cd and As in diet. Conversely, no significant difference (p>0.05) was observed in the body weight gain of rats fed a combination of Cd and As in diet as compared to control. The organ/body weight ratios for the liver and heart were not significantly different in all the experimental groups. Similarly, no significant difference was observed in the kidney/body weight of rats fed diet containing Cd and combination of Cd/As relative to control. On the other hand, this parameter was significantly increased in rats fed As via the food chain. Thus the study showed that the organ/body weight ratios of the rats were influenced by Cd and As exposures.

Table 1: Effects of Food-Chain Mediated Metal Exposures on Body Weight Gain and Organ/Body Weight Ratios in Rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Cd</th>
<th>As</th>
<th>Cd+As</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight gain (g)</td>
<td>77.50±7.60</td>
<td>27.10±7.91</td>
<td>39.28±11.66</td>
<td>80.08±5.40</td>
</tr>
<tr>
<td>Liver/body weight ratio</td>
<td>0.03±0.00</td>
<td>0.03±0.00</td>
<td>0.04±0.00</td>
<td>0.03±0.00</td>
</tr>
<tr>
<td>Heart/body weight ratio</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.01±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Kidney/body weight ratio</td>
<td>0.01±0.00</td>
<td>0.01±0.00</td>
<td>0.01±0.00</td>
<td>0.01±0.00</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM, n=4. Values not sharing a common superscript letter in the same column differ significantly at (p<0.05).

The effects of Cd, As and a combination of both metals on plasma and organ ALP and ACP activity in rats is presented in Table 2. The plasma, liver, heart and kidney ALP and ACP activity in rats given Cd, As and a combination of Cd and As contaminated diet was significantly increased (p<0.05) relative to control. Similarly, multiple comparisons of organ ALP activity in Cd, As and Cd+As contaminated rats showed significant increase relative to control. Plasma ALP and tissue ACP activity in Cd, As and a combination of Cd and As contaminated rats showed no significant difference (p>0.05) when compared to one another, while plasma ACP activity in the rats administered a combination of Cd and As significantly increased when compared to those given Cd and As separately. However, the hepatic ACP in rats fed As contaminated diet was significantly decreased as compared to those fed either Cd or combination of Cd and As. Similarly, the renal ALP was significantly decreased in rats fed a combination of Cd and As compared to those fed either Cd or As diet. This study reveals that Cd and As exposures via the food-chain for three months altered phosphates’ activities in rats.
threat to the life of the cells that are dependent on a variety of
phosphate esters for their vital processes (Butterworth & Moss
1966) as it may lead to indiscriminate hydrolysis of phosphate ester
metabolites of the liver. Consequently, this may adversely
affect the facilitation of the transfer of metabolites across the cell
membrane. It follows therefore that such hyper-production of ALP
may also have severe consequences on the architecture of the cells
of the affected organs.

Lysosomal response was considered as the most reliable effect
observed during stress (Grundy et al. 1996) and ACP is a lysoso-
mal marker enzyme that exists in the tissue and serum (Braun et al.
1989). Metals may disrupt lysosomal membrane integrity and
cause its destabilization followed by release of stored lysosomal
hydrolases into the serum thereby increasing the activity of the
enzyme in the serum. The above explanation justifies the hyperac-
tivity of ACP in the plasma and organs of rats after separate and
combined treatment with Cd and As in food (Table 2). The higher
activity of ACP in the plasma and organs of metal exposed rats
can also be due to the hyper-synthesis of ACP and its subsequent
release into the blood occasioned by metal insult. This may be a
necessary defensive mechanism in response to metal exposures.
Previous studies show that ACP activity in serum can reflect the
immune state of the two species of Scallop, A. Irradians and C.

Interactions between the heavy metals tested can lead to syner-
gism or to antagonism or rather to an addition of the effects. Thus,
the decrease in the combined effect of Cd and As on kidney ALP
activity (Table 2) as compared to the effect on the same parameter
by Cd and As alone suggest antagonism between these metals.

Conflicts of interest

The authors declare that there are none.

Acknowledgement

Special thanks to the Staff of the Department of Biochemistry,
Delta State University, Abraka for their support.

References

consumption of metabisulphite on the integrity of the kidney cellular
system. Toxicolgy 81, 173-179. http://dx.doi.org/10.1016/0022-
8103(93)90010-P

vegetables grown along the site of the Simba and Msimbazi River
http://dx.doi.org/10.1016/S0308-8146(98)00213-1

tase activities in the kidney cell surface. EMBO Journal 8, 12,
3633 – 3640.

http://dx.doi.org/10.1038/209805a0

[5] Cheng TC (1988) In vitro effects of heavy metals on cellular de-
fense mechanisms of C. virginica: phagocytic and endocytic indices.
Journal of Invertebrate Pathology 51, 215-220.
http://dx.doi.org/10.1016/0022-1148(88)90028-6

Methylated arsenicals: the implications of metabolism and carcino-
genicity studies in rodents to human risk assessment. Critical Re-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Cd</th>
<th>As</th>
<th>Cd + As</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma ALP</td>
<td>30.87±0.57</td>
<td>43.16±3.60</td>
<td>42.64±3.11</td>
<td>42.64±1.52</td>
</tr>
<tr>
<td>ACP</td>
<td>7.46±1.49</td>
<td>13.43±2.86</td>
<td>10.45±2.86</td>
<td>20.90±3.86</td>
</tr>
<tr>
<td>Liver ALP</td>
<td>19.81±5.16</td>
<td>53.06±2.24</td>
<td>35.87±1.73</td>
<td>73.25±4.96</td>
</tr>
<tr>
<td>ACP</td>
<td>34.12±0.00</td>
<td>51.18±9.85</td>
<td>51.18±7.06</td>
<td>51.18±9.85</td>
</tr>
<tr>
<td>Heart ALP</td>
<td>22.43±4.65</td>
<td>47.81±5.32</td>
<td>60.54±0.75</td>
<td>65.02±4.43</td>
</tr>
<tr>
<td>ACP</td>
<td>34.12±0.00</td>
<td>42.65±8.53</td>
<td>42.65±8.53</td>
<td>42.65±8.53</td>
</tr>
<tr>
<td>Kidney ALP</td>
<td>14.95±1.22</td>
<td>50.82±4.03</td>
<td>66.52±6.73</td>
<td>35.12±0.75</td>
</tr>
<tr>
<td>ACP</td>
<td>34.12±0.00</td>
<td>51.18±9.85</td>
<td>51.18±9.85</td>
<td>51.18±9.85</td>
</tr>
</tbody>
</table>

Abbreviations as in Table 1. The activities of the phosphatases are in IU/L.

Figures in brackets represent percentage inhibition relative to control.

4. Discussion

Heavy metals are not biodegradable and persist in the environment
for long periods causing serious ecological problems. In addition,
some toxic metals may mimic essential metals and thereby gain
access to important molecular targets. These toxic metals enter
organisms via food, drinking water and air and are bio-
persistent pollutants that accumulate at the top of the food-chain
(Scheifer et al. 2006). Thus the food-chain is one of the natural
routes of entry of heavy metals into humans. However, in most
animal studies on heavy metal toxicity, exposures to metals is not
often through the food-chain, but by direct addition to the food
offered to the experimental animals.

The objective of the present study was to determine the effects of
food-chain mediated metal exposures on phosphatases’ profile in
rats. The findings of the study revealed a decrease body weight
gain ratio of rats administered Cd and As via the food-chain (Table 1).
An increased kidney/body weight ratio was also observed in rats
fed As contaminated diet. The decreased body weight gain and
increased kidney/body weight ratio are indications of toxicity of
these metals. Changes in body weight gain and organ/body weight
ratio have been used as indices of toxicity of chemicals (Timbrell
1991). The changes observed in the body weight gain of the rats
exposed to these metals correlates with the findings of Prabu and

Quantitative assessment of enzyme is a reliable indicator of stress
imposed on the organism by environmental pollutants such as
heavy metals (Cheng 1988). Many physiological processes includ-
ing activity of many lysosomal hydrolytic enzymes are inhibited
by heavy metals even though these metals may also activate cer-
tain enzymes. Two important enzymes that can be influenced by
heavy metals are ALP and ACP both differing in their subcellular
distribution. These enzymes were also monitored in the plasma
and organs of rats exposed to Cd, As and combination of both
metals in diet. The findings of the study revealed that plasma and
organ levels of ALP and ACP were influenced by separate treat-
ment with these metals and treatment with both metals (Table 2).
The increased activity of ALP in the liver and other organs of the
exposed rats and the corresponding increase in the plasma may be
due to de novo synthesis of the enzyme molecule. ALP is a marker
enzyme for the plasma membrane and endoplasmic reticulum
(Wright & Plummer 1974). It is often employed to assess the in-
tegrity of the liver plasma membrane (Akanji et al. 1993), since it
is localized predominantly in the microvilli in the bile canaliculi.
Since ALP hydrolyzes phosphate monoesters, the enzymes hyper-
production observed in the metal exposed rats could constitute a
view in Toxicology 36, 99–133.


