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Abstract 
 

This paper studies perturbed Schrodinger Hirota equation with power law nonlinearity by obtaining its 1 – soliton solutions via He’s semi 

– inverse variation method and the Ansatz method and the results reveal that these methods are very effective ones for obtaining exact 

solutions to various types of nonlinear evolution equations appearing in the studies of science and engineering. 
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1. Introduction 

During the past a few decades, studies of optical solitons have 

become the most important branch of study in the field of Fiber 

Optics. Solitons are the result of a delicate balance between dis-

persion and nonlinearity. In particular, optical solitons are pulses 

which act as information carriers through optical fibers for Trans – 

continental and Trans – oceanic distances. For such signal trans-

missions, the basic governing equation is the so-called Nonlinear 

Schrodinger Equation (NLSE) [1], [2]. When dispersive effect like 

the third order dispersion (TOD) is taken into account, in addition 

to the group velocity dispersion (GVD), the nonlinear Schrodinger 

equation can be transformed into a nonlinear evolution equation 

known as the Schrodinger – Hirota equation (SHE) [3 – 7] through 

the application of Lie symmetry. When perturbation terms are 

taken into consideration, a perturbed Schrodinger – Hirota equa-

tion (perturbed SHE) with a power law nonlinearity can be written 

in the form  

 

iqt + aqxx + b|q|2n q + icqxxx + icλ|q|2n qx  

 

= iαqx + iβ(|q|2n q)x + iγ(|q|2n)x q                                           (1) 

 

where the independent variables x and t are spatial  and  temporal 

variables respectively, x being the displacement in the direction of 

wave propagation and t the retarded time in the GVD frame, the 

number n dictates the power law nonlinearity, the dependent vari-

able q(x, t) is a complex valued function representing a wave pro-

file and the subscripts denote partial derivatives with respect to 

them. On the left hand side, the first term is the time evolution 

term, the second is the GVD term, the third is a term with power 

law nonlinearity, the fourth is the third order dispersion (TOD) 

term and the fifth is a nonlinear dispersion (NLD) term. On the 

right hand side, the first term is the inter-modal dispersion term, 

the second one is the self-steepening (SS) term and the last one is 

another version NLD term. Moreover, a, b, c,  , , ,    are con-

stants and i =  √− 1 is imaginary number. For power law nonline-

arity, it is necessary to have the restriction 0 < n < 2 in order to 

avoid soliton collapse and in particular n ≠ 2 in order to avoid 

self – focusing singularity in nonlinear optics. 

2. Reduction to nonlinear ordinary differential 

equation 

To reduce Eq. (1) to a nonlinear ordinary differential equation, let 

us introduce the transformations 

 

q(x, t) = u(ξ) ei(− kx+ ωt+ ϕ) , ξ = x − vt                                      (2) 

 

where k is the constant frequency of the soliton,  is the constant 

soliton wave number   is a phase constant and v is the constant 

speed of the soliton. 

Substituting q(x, t) from Eq.(2) and also its relevant partial deriva-

tives into Eq.(1) and then splitting the resulting equation into real 

and imaginary parts, we write 

 

Real Part: 

 

(a + 3ck)
d2u

dξ2 − (ω +  αk + ak2 + ck3)u  

 

+ (b + cλk −  βk)u2n+1  = 0                                                        (3) 

 

and Imaginary Part: 

 

c
d3u

dξ3 − (v +  α + 2ak + 3ck2)
du

dξ
   

 

+ {cλ − (2n + 1)β − 2nγ}u2n du

dξ
= 0                                         (4) 
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Integrating both sides of Eq.(4) once with respect to ξ and choos-

ing the integration constant as zero, we obtain 

 

c
d2u

dξ2
− (v +  α + 2ak + 3ck2)u  

 

+ {cλ − (2n + 1)β − 2nγ}
u2n+1

(2n+1)
= 0.                                        (5) 

 

Since Eqs. (3) and (5) are simultaneously satisfied by the same 

function u(ξ), we must have the constraint conditions 

 
a+3ck

c
=  

ω+ αk+ak2+ck3

v+ α+2ak+3ck2   

 

= 
(2n+1)(b+cλk− βk)

cλ− (2n+1)β−2nγ
 .                                                                      (6) 

 

Now, instead of solving both of the equations (3) and (5), we can 

solve any one of these two. Here, let us solve Eq. (5).  

3. Outlines of semi-inverse variation method 

(SVM) 

In this section, the outlines of He’s SVM [8 – 13] is presented as 

in the following. If the nonlinear partial differential equation to be 

solved is in the form 

 

P(u, ut , ux , utt , utx , uxx , . . . ) = 0                                                (7) 

 

where t and x are independent variables and the subscripts denote 

partial derivatives of the dependent variable u with respect to them, 

then we are to perform the following operational steps.  

Step 1: The given nonlinear partial differential equation (NLPDE) 

is first to be reduced to a nonlinear ordinary differential equation 

(NLODE) by introducing a transformation u(x, t) = U(ξ) and ξ =
x − vt where v is a constant, generally, the constant speed of wave 

propagation. Let us assume that the equation is now reduced to a 

NLODE as 

 

Q(U, U′, U′′, . . . ) = 0                                                                      (8) 

 

where 

 

𝑈′ = 
𝑑𝑈

𝑑𝜉
, 𝑈′′ = 

𝑑2𝑈

𝑑𝜉2 , . . . 𝑒𝑡𝑐.  

 

Step 2: The reduced NLODE is to be integrated once or more so 

long as every term in that equation contains derivative(s) and for 

the sake of simplicity, we are to choose the integration constant(s) 

as zero. 

Step 3: Next, we are to construct a trial function 

 

𝐽(𝑈) =  ∫ 𝐿 𝑑𝜉
𝑏

𝑎
                                                                             (9) 

 

where a and b are the lower and the upper limits related to the 

problem and L is a function of U and its derivatives.  

Step 4: In accordance with Ritz method, we assume a solitary 

wave solution U in any one of the forms 

 

𝑈(𝜉) = 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉) , 𝑈(𝜉) = 𝐴 𝑐𝑜𝑠𝑒𝑐ℎ𝑝(𝐵𝜉),  
 

𝑈(𝜉) = 𝐴 𝑡𝑎𝑛ℎ𝑝(𝐵𝜉) , 𝑈(𝜉) = 𝐴 𝑐𝑜𝑡ℎ𝑝(𝐵𝜉),  
 

etc. 

Here, the parameter p is to be determined through a balancing of 

degrees between the term with the highest derivative and the term 

with highest nonlinearity. The remaining parameters A and B are 

to be determined by substituting the assumed solitary solution to 

Eq. (9) and making J stationary with respect to A and B, that is 

making  

 
𝜕𝐽

𝜕𝐴
= 0                                                                                          (10) 

 

and 

 
𝜕𝐽

𝜕𝐵
= 0.                                                                                         (11) 

 

Solving Eqs. (10) and (11), we will obtain the values of the pa-

rameters A and B. Then, substituting the values of p, A and B into 

the assumed solitary wave solution, we can obtain a solution of the 

Reduced NLODE and hence of the given NLPDE.  

4. Application of semi-inverse variation meth-

od 

Multiplying both sides of Eq. (5) by 
𝑑𝑈

𝑑𝜉
and integrating the result 

once with respect to 𝜉, we define  

 

𝑆 =  −𝑐 (
𝑑𝑈

𝑑𝜉
)
2
− (𝑣 + 𝛼 + 2𝑎𝑘 + 3𝑐𝑘2)𝑈2  

 

+ {𝑐𝜆 − (2𝑛 + 1)𝛽 − 2𝑛𝛾}
𝑈2𝑛+2

(𝑛+1)(2𝑛+1)
 .                                     (12) 

 

We define a stationary integral by 

 

𝐽 =  ∫ 𝑆 𝑑𝜉
+∞

−∞
  

 

= ∫

[
 
 
 
 − 𝑐 (

𝑑𝑈

𝑑𝜉
)
2
 

− (𝑣 + 𝛼 + 2𝑎𝑘 + 3𝑐𝑘2)𝑈2

+ {𝑐𝜆 − (2𝑛 + 1)𝛽 − 2𝑛𝛾} 
𝑈2𝑛+2

(𝑛+1)(2𝑛+1)]
 
 
 
 

 𝑑𝜉
+∞

−∞
.               (13) 

 

From Equation (5), balancing of degrees between the term with 

highest order derivative and the term with highest nonlinearity 

results in 

 

𝑝 + 2 = 𝑝(2𝑛 + 1)  

 

giving 

 

𝑝 =  
1

𝑛
.                                                                                          (14) 

 

For power law nonlinearity, let us assume the 1-soliton solution as 

 

𝑈(𝜉) = 𝐴 𝑠𝑒𝑐ℎ
1
𝑛(𝐵𝜉)                                                                  (15) 

 

where A is soliton amplitude and B is the soliton inverse width.  

Substituting Eq. (15) into Eq. (13), we obtain 

 

𝐽 =  
√𝜋 𝛤(

1

𝑛
)

𝛤(
1

𝑛
+

1

2
)

[
 
 
 
 −

𝑐 𝐴2𝐵

𝑛(𝑛+2)

− (𝑣 + 𝛼 + 2𝑎𝑘 + 3𝑐𝑘2)
𝐴2

𝐵

+
2{𝑐𝜆−(2𝑛+1)𝛽−2𝑛𝛾}

(𝑛+1)(𝑛+2)(2𝑛+1)
 
𝐴2𝑛+2

𝐵 ]
 
 
 
 

.                                 (16) 

 

Substituting Eq. (16) into Eq. (10), we obtain 

 

− 
𝑐𝐵2

𝑛(𝑛+2)
− (𝑣 + 𝛼 + 2𝑎𝑘 + 3𝑐𝑘2)  

 

+
2{𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾}

(𝑛+2)(2𝑛+1)
𝐴2𝑛 = 0.                                                     (17) 

 

Substituting Eq. (16) into Eq. (11), we obtain 
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− 
𝑐𝐵2

𝑛(𝑛+2)
+ (𝑣 + 𝛼 + 2𝑎𝑘 + 3𝑐𝑘2 )   

 

−
2{𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾}

(𝑛+1)(𝑛+2)(2𝑛+1)
 𝐴2𝑛  = 0.                                                    (18) 

 

Solving the two simultaneous equations (17) and (18), we obtain 

 

𝐴 =  ± [
(𝑛+1)(2𝑛+1)(𝑣+𝛼+2𝑎𝑘+3𝑐𝑘2)

𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾
]

1
2𝑛

                                        (19) 

 

and 

 

𝐵 =  ±𝑛 [
𝑣+ 𝛼+2𝑎𝑘+3𝑐𝑘2

𝑐
]

1
2
 .                                                         (20) 

 

Substituting Eqs. (19) And (20) with positive roots into Eq. (15), 

we obtain 

 

𝑈(𝜉) =  [
(𝑛+1)(2𝑛+1)(𝑣+𝛼+2𝑎𝑘+3𝑐𝑘2)

𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾
]

1
2𝑛

  

 

× 𝑠𝑒𝑐ℎ
1
𝑛 {𝑛 [

𝑣+𝛼+2𝑎𝑘+3𝑐𝑘2

𝑐
]

1
2
𝜉}.                                                  (21) 

 

Substituting Eq. (21) into Eq. (2), we write the bright 1-soliton 

solution of Eq. (1) as  

 

𝑞(𝑥, 𝑡)  

 

= [
(𝑛+1)(2𝑛+1)(𝑣+𝛼+2𝑎𝑘+3𝑐𝑘2)

𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾
]

1
2𝑛

  

 

× 𝑠𝑒𝑐ℎ
1
𝑛 {𝑛 [

𝑣+𝛼+2𝑎𝑘+3𝑐𝑘2

𝑐
]

1
2
 (𝑥 − 𝑣𝑡)}  

 

× 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡+ 𝜙) .                                                                       (22) 

 

with the constraints given in (6).  

5. Ansatz method 

In this section, Bright (or Non – topological) and Dark (or Topo-

logical) 1 – soliton solutions of the perturbed Schrodinger – Hirota 

equation (SHE) are obtained via the solitary wave ansatz method 

[14 – 16].  

5.1. Bright 1- soliton Solution 

For bright 1 – soliton solution, we assume a solution of Eq. (5) in 

the form 

 

𝑈(𝜉) = 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉)                                                                (23) 

 

where A, p and B are constants to be determined. Here, A and B 

are respectively called the soliton amplitude and the soliton in-

verse width. 

Substituting 𝑈(𝜉) from Eq. (23) and its relevant derivatives into 

Eq. (5), we obtain 

 

𝑐[𝑝2𝐴𝐵2 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉) − 𝑝(𝑝 + 1)𝐴𝐵2 𝑠𝑒𝑐ℎ𝑝+2(𝐵𝜉)]  
 

− (𝑣 +  𝛼 + 2𝑎𝑘 + 3𝑐𝑘2) 𝐴 𝑠𝑒𝑐ℎ𝑝(𝐵𝜉)  

 

+ {𝑐𝜆 − (2𝑛 + 1)𝛽 − 2𝑛𝛾}
𝐴2𝑛+1

2𝑛+1
𝑠𝑒𝑐ℎ𝑝(2𝑛+1)(𝐵𝜉)  

 

= 0.                                                                                              (24) 

 

From Eq. (24), equating the exponents p + 2 and p (2n + 1), we 

obtain 

 

𝑝 =  
1

𝑛
 .                                                                                         (25) 

 

Now, from Eq. (24), equating the coefficient of 𝑠𝑒𝑐ℎ2+1
𝑛(𝐵𝜉) to 

zero and solving for B, we obtain 

 

𝐵 = 𝑛𝐴𝑛  [
𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾

𝑐(𝑛+1)(2𝑛+1)
]
1
2
 .                                                      (26) 

 

Again, from Eq. (24), equating the coefficient of 𝑠𝑒𝑐ℎ
1
𝑛(𝐵𝜉)  to 

zero and solving for v, we obtain 

 

𝑣 =  
𝑐𝐵2

𝑛2
− (𝛼 + 2𝑎𝑘 + 3𝑐𝑘2).                                                   (27) 

 

Here, from Eq. (26), we have another constraint condition viz. 

 

𝑐{𝑐𝜆 − (2𝑛 + 1)𝛽 − 2𝑛𝛾} > 0 .                                                 (28) 

 

Substituting p and B in Eq. (23), we obtain the solution of Eq. (5) 

as 

 

𝑈(𝜉) = 𝐴 𝑠𝑒𝑐ℎ
1
𝑛 {𝑛𝐴𝑛 [

𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾

𝑐(𝑛+1)(2𝑛+1)
]
1
2
𝜉}.                             (29) 

 

Substituting Eq. (29) into Eq. (2), we obtain the bright 1 – soliton 

solution of Eq. (1) as 

 

𝑞(𝑥, 𝑡)  

 

= 𝐴 𝑠𝑒𝑐ℎ
1
𝑛 {𝑛𝐴𝑛 [

𝑐𝜆− (2𝑛+1)𝛽−2𝑛𝛾

𝑐(𝑛+1)(2𝑛+1)
]
1
2
(𝑥 − 𝑣𝑡)}   

 

× 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡+ 𝜙)                                                                         (30) 

 

with the constraint conditions shown in (6) and (28). 

Here, A is a running parameter. 

5.2. Dark 1- soliton solution 

For dark 1 – soliton solution, we assume a solution of Eq. (5) in 

the form 

 

𝑈(𝜉) = 𝐴 𝑡𝑎𝑛ℎ𝑝(𝐵𝜉)                                                                 (31) 

 

where A, p and B are constants to be determined. Here, A and B 

are respectively called the soliton amplitude and the soliton in-

verse width.  

 

Substituting 𝑈(𝜉) from Eq. (31) and its relevant derivatives into 

Eq.(5), we obtain 

 

𝑐[𝐴𝐵2𝑝(𝑝 − 1)] 𝑡𝑎𝑛ℎ𝑝−2(𝐵𝜉)  

 

−2p2 𝐴𝐵2  𝑡𝑎𝑛ℎ𝑝(𝐵𝜉) + 𝐴𝐵2𝑝(𝑝 + 1) 𝑡𝑎𝑛ℎ𝑝+2(𝐵𝜉)  

 

− (𝑣 + 𝛼 + 2𝑎𝑘 + 3𝑐𝑘2)𝐴 𝑡𝑎𝑛ℎ𝑝(𝐵𝜉)  

 

+{𝑐𝜆 − (2𝑛 + 1)𝛽 − 2𝑛𝛾}
𝐴2𝑛+1

2𝑛+1
 𝑡𝑎𝑛ℎ𝑝(2𝑛+1)(𝐵𝜉)  

 

= 0.                                                                                              (32) 

 

From Eq. (32), equating the exponents p+2 and p (2n + 1), we 

obtain 

𝑝 =  
1

𝑛
 .                                                                                                  (33)  
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Again, from Eq. (32), equating the coefficient of 𝑡𝑎𝑛ℎ𝑝−2(𝐵𝜉) to 

zero, we obtain 

 

𝑝 =  
1

𝑛
= 1 giving n = 1.                                                             (34) 

 

Moreover, from Eq. (32), equating the coefficient of 

𝐴 𝑡𝑎𝑛ℎ3(𝐵𝜉) to zero, we obtain 

 

𝐵 = 𝐴 [
3𝛽+2𝛾−𝑐𝜆

6𝑐
]
1
2
 .                                                                     (35) 

 

Substituting the values of p and B into Eq. (31), we obtain a solu-

tion of Eq.(5) as 

 

𝑈(𝜉) = 𝐴 𝑡𝑎𝑛ℎ {𝐴 [
3𝛽+2𝛾−𝑐𝜆

6𝑐
]
1
2
 𝜉}.                                            (36) 

 

Here, A is a running parameter as before. 

Substituting Eq. (36) into Eq. (2), we obtain the dark 1 – soliton 

solution of Eq. (1) as 

 

𝑞(𝑥, 𝑡) = 𝐴 𝑡𝑎𝑛ℎ {𝐴 [
3𝛽 +2𝛾−𝑐𝜆

6𝑐
]
1
2
 (𝑥 − 𝑣𝑡)}  

 

× 𝑒𝑖(− 𝑘𝑥+ 𝜔𝑡+ 𝜙) .                                                                       (37) 

6. Discussion 

It is observed that the semi – inverse variation method (SVM) can 

yield only the bright soliton solution whereas the ansatz method 

can yield both the bright and the dark soliton solutions. Moreover, 

the ansatz method reveals the fact that the dark soliton solution for 

the perturbed Schrodinger – Hirota equation exists only when the 

power law nonlinearity reduces to the Kerr law nonlinearity. We 

know that a medium that exhibits Kerr law nonlinearity is one in 

which the intensity of light passing through it depends on its re-

fractive index. 

7. Concluion 

In this paper, bright and dark soliton solutions of perturbed 

Schrodinger – Hirota equation have been obtained and the results 

show that the methods used here are effective tools for obtaining 

exact solutions of various types of nonlinear evolution equations 

(NLEEs) encountered in the study of many areas of nonlinear 

science and engineering. 
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