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Abstract 
 

This paper shows the applicability of the First Integral Method in obtaining solutions of Nonlinear Partial Differential Equations 

(NLPDEs). The method is applied in constructing solutions of Kudryashov-Sinelshchikov equation (KSE) and Generalized Radhakrish-

nan-Kundu-Lakshmanan Equation (GRKLE). The First Integral Method, which is based on the Ring Theory of Commutative Algebra, is 

a direct algebraic method for obtaining exact solutions of NLPDEs. This method is applicable to integrable as well as nonintegrable 

NLPDEs. The method is an efficient method for obtaining exact solutions of many Nonlinear Evolution Equations (NLEEs). 
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1. Introduction 

Nonlinear Evolution Equations (NLEEs) are frequently encoun-

tered in the study of many complex phenomena in various branch-

es of physics such as Biophysics, Condensed Matter Physics, Flu-

id Physics, Neurophysics, Nonlinear Optics, Particle Physics, 

Plasma Physics, Quantum Field Theory, etc. and in many other 

branches of science such as Ecology, Physiology etc. as well as in 

Economics and Social Science. In the recent a few decades, quite 

a number of methods had been suggested so far for finding exact 

solutions of NLEEs in Mathematical Physics and the First Integral 

Method is one of them. The first integral method, which is based 

on the ring theory of commutative algebra, was first proposed by 

Z.S. Feng [1] and was further developed by himself [2 - 4]. This 

method has been applied by many authors in solving different 

types of NLEEs encountered in science and engineering [5 – 18]. 

 In the present paper, the first integral method is applied in solving 

the Kudryashov-Sinelshchikov Equation (KSE) and the General-

ized Radhakrishnan- Kundu-Lakshmanan Equation (GRKLE). 

The rest of the article is arranged as in the following. In section 2, 

a brief description of the method is presented. In section 3, the 

method is applied in obtaining the solutions of KSE [19 – 22] and 

GRKLE [23-25]. In section 4, a brief conclusion is presented. 

2. The first integral method 

Let us consider a general NLPDE in the form 

 𝐹(𝑢, 𝑢𝑥 , 𝑢𝑡, 𝑢𝑥𝑥 , 𝑢𝑥𝑡, 𝑢𝑡𝑡, 𝑢𝑥𝑥𝑥 , . . . ) =  0,                                    (1)  

where 𝑢 = 𝑢(𝑥, 𝑡) is its solution, 𝑥 and 𝑡 represent the spatial  
and the temporal variables.  
 

Let us introduce the transformations, 

 

 𝑢 = 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 − 𝑣𝑡,                                                     (2)                                                  

where v  is a constant to be determined latter. 

Now, we have, 

 

 
𝜕

𝜕𝑥
(. ) =  

𝑑

𝑑𝜉
(. ),

𝜕

𝜕𝑡
(. ) =  −𝑣 

𝑑

𝑑𝜉
(. ),  

 
𝜕2

𝜕𝑥2
(. ) =  

𝑑2

𝑑𝜉2
(. ),   

𝜕2

𝜕𝑥𝜕𝑡
(. ) =  −𝑣

𝑑2

𝑑𝜉2
(. ), 𝑒𝑡𝑐.                             (3)                         

 

Using equations (3), we transform the NLEE (1) into a nonlinear 

ordinary differential equation (NLODE) of the form, 

 

𝐺(𝑈, 𝑈′, 𝑈′′ , 𝑈′′′ , . . . )  = 0,                                                          (4) 

 

where the primes denote derivatives with respect to the same vari-

able (ξ) such that  

 

𝑈′ =  
𝑑𝑈

𝑑𝜉
, 𝑈′′ =  

𝑑2𝑈

𝑑𝜉2 , 𝑒𝑡𝑐.   

 

Let us suppose that the solution of the Non Linear Ordinary Dif-

ferential Equation (NLODE) (4) can be expressed as 

 

𝑢(𝑥, 𝑡) = 𝑈(𝜉)  = 𝑓(𝜉).                                                               (5) 

 

We further introduce the following new independent variables 

 

𝑋(𝜉) = 𝑓(𝜉), 𝑌(𝜉) =  𝑓′(𝜉) =
𝑑𝑓

𝑑𝜉
=  

𝑑𝑋

𝑑𝜉
,                                  (6) 

 

leading to a system, 

 

𝑋′(𝜉) = 𝑌(𝜉),   𝑌′(𝜉) =  𝐻( 𝑋(𝜉), 𝑌(𝜉)).                                   (7) 
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If we can find two first integrals to the system of equations (7) 

under the same conditions, then the analytic solutions of equations 

(7) can be obtained directly. However, in general, it is really diffi-

cult for us to realize this even for one first integral, because for a 

given plane autonomous system, there exists neither a systematic 

theory that can tell us how to find its first integrals nor a logical 

way for telling us what these first integrals are. We will apply the 

Division Theorem to obtain a first integral to the system of equa-

tions (7) which reduces eqn. (4) to a first order integrable ODE. 

An exact solution of eqn. (1) is then obtained by solving this 

ODE. For convenience, let us recall the division theorem for two 

variables in the complex domain C [w, z]. 

Division Theorem: For two polynomials P(w, z) and Q(w, z) in a 

complex domain C [w, z], if P(w, z) is irreducible in C[w, z] and if 

Q(w, z) vanishes at all zero points of P(w, z), then there exists 

another polynomial G(w, z) in C[w, z] such that Q(w, z) = P(w, z) 

G(w, z). The division theorem follows immediately from Hilbert – 

Nullstellensatz theorem of commutative algebra. 

3. Applications of the first integral method 

The first integral method is applicable in solving various NLPDEs 

and systems of NLPDEs. Using this method, solutions of 

Kudryashov - Sinelshchikov Equation (KSE) and Generalized 

Radhakrishnan – Kundu - Lakshmanan Equation (GRKLE) are 

obtained as in the following. 

3.1. Kudryashov- Sinelshchikov Equation (KSE) 

The KSE [19 - 22] describes pressure waves in a liquid with gas 

bubbles taking into consideration the viscosity of the liquid and 

the heat transfer. The equation reads 

 

𝑢𝑡  +  𝛼𝑢𝑢𝑥  +  𝑢𝑥𝑥𝑥  −  𝛽(𝑢𝑢𝑥𝑥)𝑥  −  𝛾𝑢𝑥𝑢𝑥𝑥 = 0,                (8) 

 

where α, β, γ  are real parameters.  

Using the transformation u(x, t) = U (ξ) with ξ = x – v t and also 

the relations (3), eqn. (8) yields 

 

− 𝑣 𝑈′  +  𝛼𝑈𝑈′  +  𝑈′′′  −  𝛽(𝑈𝑈′′)′  −  𝛾𝑈′𝑈′′ = 0,              (9) 

 

where the primes denote differentiation with respect to ξ. 

Integrating both sides of eqn. (9) once with respect to ξ and choos-

ing the integration constant as zero, we obtain 

 

− 𝑣 𝑈 +  
𝛼

2
𝑈2  +  𝑈′′  −  𝛽𝑈𝑈′′  −  

𝛾

2
 𝑈′2

 =  0.                     (10) 

 

Using eqns. (6) and (7), we obtain 

 

𝑋′(𝜉) =  
𝑑𝑋(𝜉)

𝑑𝜉
=  𝑌(𝜉),   

 

𝑌′(𝜉) =
𝑑𝑌(𝜉)

𝑑𝜉
   

 

=  
1

1 − 𝛽𝑋(𝜉)
 [

𝑣 𝑋(𝜉)  −  
𝛼

2
 𝑋2(𝜉)

 + 
𝛾

2
 𝑌2(𝜉)

].                                             (11) 

 

Now, let us introduce another transformation, 

 

𝑑𝜉 =  (1 −  𝛽𝑋)𝑑𝜂 where 𝜂 is a new variable.                        (12) 

 

Then, eqn. (11) yields 

 
𝑑𝑋

𝑑𝜂
=  (1 −  𝛽𝑋) 𝑌,   

𝑑𝑌

𝑑𝜂
= 𝑣𝑋 − 

𝛼

2
𝑋2  +  

𝛾

2
 𝑌2 .                     (13) 

 

To seek the first integral of the system of eqns. (13), we are to 

apply the division theorem. Let us suppose that X = X (η) and Y = 

Y(η) are nontrivial solutions of eqn. (13), and 𝑞(𝑋, 𝑌) =

 ∑ 𝑎𝑗(𝑋)𝑌𝑗𝑚
𝑗=0  is an irreducible polynomial in C[X, Y] such that 

𝑞( 𝑋(𝜂), 𝑌(𝜂) ) =  ∑ 𝑎𝑗( 𝑋(𝜂) ) 𝑌𝑗(𝜂)𝑚
𝑗=0 = 0,                         (14) 

 

where 𝑎𝑗(𝑋) (𝑗 = 0, 1, 2, 3, . . . 𝑚)  are polynomials in X with 

𝑎𝑚(𝑋)  ≠ 0. Here, eqn. (14) is called the first integral of eqn. 

(13). It is noted that 
𝑑𝑞

𝑑𝜂
 is a polynomial in X and Y and that 

𝑑𝑞

𝑑𝜂
 =  0. Now according to the division theorem, there exists a 

polynomial 𝑔(𝑋) + ℎ(𝑋)𝑌 in C [X, Y] such that from eqns.(13) 

and (14), we have, 

 

 
𝑑𝑞

𝑑𝜂
=

𝑑𝑞

𝑑𝑋

𝑑𝑋

𝑑𝜂
 +  

𝑑𝑞

𝑑𝑌

𝑑𝑌

𝑑𝜂
   

 

=  {∑ 𝑎𝑗
′(𝑋)𝑌𝑗𝑚

𝑗=0 } {(1 −  𝛽𝑋) 𝑌}   

 

+ {∑ 𝑗𝑎𝑗(𝑋) 𝑌𝑗 −1𝑚
𝑗=0 } {𝑣𝑋 − 

𝛼

2
𝑋2  +  

𝛾

2
𝑌2}   

 

=  { 𝑔(𝑋)  + ℎ(𝑋) 𝑌} ∑ 𝑎𝑗(𝑋)𝑌𝑗 ,𝑚
𝑗=0                                          (15) 

 

where the prime denotes differentiation with respect to X . 

 

For m = 1, we have, 

 

 𝑎0
′ (𝑋) (1 –  𝛽𝑋) 𝑌 + 𝑎1

′ (𝑋)(1 –  𝛽𝑋)𝑌2   
 

+ 𝑎1(𝑋) {𝑣𝑋 – 
𝛼

2
𝑋2  +  

𝛾

2
𝑌2}   

 

=  { 𝑔(𝑋)  + ℎ(𝑋) 𝑌} {𝑎0(𝑋)  + 𝑎1 (𝑋) 𝑌 } .                            (16) 

 

Equating coefficients of 𝑌𝑗 (𝑗 = 2,1,0) from both sides of equa-

tion (16), we obtain, 

 

(1 −  𝛽𝑋) 𝑎1
′ (𝑋) =  {ℎ(𝑋)  − 

𝛾

2
} 𝑎1(𝑋),                                (17a) 

 
(1 −  𝛽𝑋) 𝑎0

′  (𝑋) = 𝑔(𝑋) 𝑎1(𝑋)  + ℎ(𝑋)𝑎0(𝑋) ,                   (17b) 

 

 𝑔(𝑋) 𝑎0(𝑋)  =  𝑎1 (𝑋) ( 𝑣 𝑋 − 
𝛼

2
 𝑋2 ),                                 (17c) 

 

where the primes denote differentiation with respect to X. 

Since 𝑎𝑗(𝑋) (𝑗 = 0,1) are polynomials, we deduce from eqn. (17a) 

that ℎ(𝑋) =  𝛾/2 and 𝑎1 (𝑋) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. For simplicity, we take 

𝑎1(𝑋) = 1 . Balancing the degrees of g(X) and 𝑎0 (𝑋)  in eqn. 

(17b), we conclude that 𝑑𝑒𝑔( 𝑔(𝑋) ) ≤ 𝑑𝑒𝑔( 𝑎0 (𝑋) ) = 1. Let us 

assume that 

 

𝑔(𝑋) =  𝐴0  +  𝐴1 𝑋 (𝐴1  ≠ 0),                                                 (18) 

 

𝑎0(𝑋) =  𝐵0  +  𝐵1 𝑋 (𝐵1  ≠ 0),                                                (19) 

 

Now, substituting the values of 

𝑎0(𝑋),  𝑎0
′  (𝑋), 𝑎1(𝑋), 𝑔(𝑋) 𝑎𝑛𝑑 ℎ(𝑋) into eqn. (17b), we obtain, 

 

𝐵1  − 𝛽 𝐵1 𝑋 =  𝐴0  +  𝐴1 𝑋 +  
𝛾

2
 𝐵0  +  

𝛾

2
 𝐵1 𝑋 .  

 

Equating coefficients of 𝑋𝑗 ( 𝑗 =  0,1) from both sides, we obtain  

 

𝐴0  =  𝐵1  −  
𝛾

2
 𝐵0 ,                                                                     (20) 

 

𝐴1  =  − (𝛽 + 
𝛾

2
) 𝐵1 .                                                                (21) 

 

Substituting the values of 𝐴0 𝑎𝑛𝑑 𝐴1 into eqn. (18), we obtain,  

 

 𝑔(𝑋)  =  𝐵1  −  
𝛾

2
 𝐵0  −  ( 𝛽 +

𝛾

2
 ) 𝐵1 𝑋 .                                 (22) 
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Substituting this value of g(X) and also the values of 

𝑎0(𝑋) 𝑎𝑛𝑑 𝑎1(𝑋) into eqn. (17c), we obtain, 

{ 𝐵1  −  
𝛾

2
 𝐵0  −  (𝛽 +

𝛾

2
 ) 𝐵1 𝑋} {𝐵0  +  𝐵1 𝑋}  

 

=  𝑣𝑋 − 
𝛼

2
 𝑋2 ,                                                                          (23) 

 

Equating coefficients of 𝑋𝑗 ( 𝑗 =  0,1,2) to zero, we obtain the 

following set of nonlinear algebraic equations, 

 

𝐵0 𝐵1  −  
𝛾

2
 𝐵0

2  =  0,                                                                (24a) 

𝐵1
2 −  (𝛽 +  𝛾)𝐵0 𝐵1  −  𝑣 =  0,                                               (24b) 

𝛼

2
 −  ( 𝛽 + 

𝛾

2
) 𝐵1

2 =  0.                                                            (24c)  

 

The solutions of the set of eqns. (24) are 

 

𝐵0  =  ± 
2

𝛾
 √

𝛼

2𝛽 + 𝛾
                                                                   (25a) 

 

𝐵1  =  ± √
 𝛼 

2𝛽 + 𝛾
                                                                       (25b) 

 

𝑣 =  − 
𝛼 

𝛾
                                                                                  (25c) 

 

Now eqn (14) yields, 

 

𝑎0  +  𝑎1 𝑌 =  0,                                                                       (26) 

 

Using eqns. (19), (25a) and (25b), eqn. (26) yields 

 

± 
2

𝛾
 √

𝛼

2𝛽 + 𝛾
 ±  √

𝛼

2𝛽 + 𝛾
 𝑋 +  𝑌 =  0.                                     (27) 

 

As  𝑌 =  
𝑑𝑋

𝑑𝜉
, we write, 

𝑑𝑋 

𝑑𝜉
± √

 𝛼

2𝛽 + 𝛾
 𝑋 =  ∓ 

2

𝛾
 √

𝛼 

2𝛽 + 𝛾
 .                                           (28)     

𝐻𝑒𝑟𝑒, 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =  𝑒𝑥𝑝(±√
𝛼

2𝛽 + 𝛾
  𝜉 ). 

 

Eqn. (28) has the solution,  

 

𝑋(𝜉)  =  ∓ 
2

𝛾
 +  𝐶 𝑒𝑥𝑝 (∓ √

𝛼

2𝛽 + 𝛾
  𝜉) .                                   (29) 

 

Using eqns. (5), (6) and (25c), eqn. (29) yields, 

𝑢(𝑥, 𝑡) =  ∓ 
 2

𝛾
 + 𝐶 𝑒𝑥 𝑝 [ ∓ (√

𝛼

2𝛽 + 𝛾
) (𝑥 + 

 𝛼

𝛾
 𝑡)].             (30) 

𝐿𝑒𝑡 𝑢𝑠 𝑝𝑢𝑡 𝐶 =  − √
2𝛽 + 𝛾

𝛼
 𝑒𝑥𝑝

[ ∓ (√
𝛼

2𝛽 + 𝛾
) 𝑥0]

 𝑤ℎ𝑒𝑟𝑒 𝑥0 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

   

 

 Then, we have, 

 

 𝑢(𝑥, 𝑡) =  ∓ 
2

𝛾 
  

 

− √
2𝛽 + 𝛾

𝛼
 𝑒𝑥 𝑝 [ ∓ (√

𝛼

2𝛽 + 𝛾
) ( 𝑥0 + 𝑥 + 

𝛼

𝛾
 𝑡)].                     (31) 

 

Eqn. (31) is an exact solution of the Kudryashov – Sinelshchikov 

equation (8). 

In a similar manner, we can obtain solutions for other values of m. 

 

3.2. Generalized Radhakrishnan- Kundu- Lakshmanan 

equation (GRKLE) 

The GRKLE [20] is generally encountered in the study of optical 

solitons in Nonlinear Fiber Optics. The equation reads 

 

𝑖 𝑞𝑡  +  𝑎 𝑞𝑥𝑥  +  𝑏 |𝑞|2𝑛 𝑞 −  𝑖 [ 𝜆 (|𝑞|2𝑛 𝑞)𝑥  
 

+ 𝜈 (|𝑞|2𝑛)𝑥  𝑞 −  𝛾 𝑞𝑥𝑥𝑥 ]  =  0.                                               (32) 

 

Here, the parameter n (positive integer) dictates the power law 

nonlinearity. If n is unity, the power law nonlinearity reduces to 

the Kerr law nonlinearity. A special case of equation (32) with n = 

1 and ν = 0 is called the Radhakrishnan- Kundu- Lashmanan 

Equation (RKLE). In eqn. (32), a, b, λ, ν, and γ are all real con-

stants. The first term represents the evolution term, the second and 

the third terms respectively represent the group velocity dispersion 

(GVD) and nonlinear terms, the fourth term represents the self- 

steepening term, the fifth term represents the nonlinear dispersion 

term and the last term represents the third order dispersion term. 

Let us assume the solution of eqn. (32) as 

 

𝑞(𝑥, 𝑡)  =  𝑓(𝜉) 𝑒𝑥𝑝[ 𝑖 { 𝜒(𝜉)  −  𝜔 𝑡}] ,                                    (33) 

 

𝑤ℎ𝑒𝑟𝑒 𝜒 (𝜉 )  =  𝛽𝜉 +  𝑥0 , 𝜉 =  𝑥 −  𝑣 𝑡                              (34) 

 

and f (ξ) is a function to be determined latter.  

Now, we have, 

 
𝑖𝑞𝑡  =  [( 𝛽𝑣 + 𝜔) 𝑓(𝜉)  
 

−𝑖 𝑣 𝑓′(𝜉) ] 𝑒𝑥𝑝[𝑖{ 𝜒(𝜉)  −  𝜔 𝑡}],                                            (35) 

 

𝑎 𝑞𝑥𝑥 =  [ −𝑎𝛽2 𝑓(𝜉)  +  2𝑖𝑎 𝛽 𝑓′(𝜉)   
 

+ 𝑎𝑓′′(𝜉)] 𝑒𝑥𝑝[ 𝑖 { 𝜒(𝜉)  −  𝜔 𝑡}],                                             (36) 

 

𝑏 |𝑞|2𝑛 𝑞 =  𝑏 𝑓2𝑛 +1(𝜉) 𝑒𝑥𝑝[ 𝑖 { 𝜒(𝜉)  −  𝜔 𝑡}],                     (37) 

 

𝑖 𝜆 (|𝑞|2𝑛 𝑞)𝑥  = [
 − 𝛽𝜆𝑓2𝑛 +1 (𝜉) 

+ 𝑖 ( 2𝑛 + 1) 𝜆𝑓2𝑛  (𝜉)𝑓′(𝜉)
] 𝑒𝑥𝑝[𝑖 { 𝜒(𝜉) −

 𝜔 𝑡}],                                                                                          (38) 

 

𝑖 𝜈 (|𝑞|2𝑛)𝑥  𝑞   
 

=  [ 2𝑖𝜈𝑛 𝑓2𝑛(𝜉) 𝑓′(𝜉)] 𝑒𝑥𝑝[ 𝑖 { 𝜒(𝜉)  −  𝜔 𝑡}],                       (39) 

 

− 𝑖𝛾𝑞𝑥𝑥𝑥  =  [
 − 𝛽3 𝛾 𝑓(𝜉)  +  3 𝛽 𝛾 𝑓′′(𝜉)

+ 3𝑖𝛽2𝛾𝑓′(𝜉)  −  𝑖 𝛾 𝑓′′′(𝜉) 
]  

 

×  𝑒𝑥𝑝[ 𝑖 { 𝜒(𝜉)  −  𝜔 𝑡}] .                                                          (40) 

 

Substituting eqns. (35) to (40) into eqn. (32), we obtain, 

 

(𝛽𝑣 +  𝜔) 𝑓(𝜉)  − 𝑖 𝑣𝑓′(𝜉)  −  𝑎𝛽2 𝑓(𝜉)  + 2𝑖𝑎𝛽𝑓′(𝜉)  +
𝑎𝑓′′(𝜉) +  𝑏𝑓2𝑛 +1 (𝜉)  

 

+ 𝛽𝜆𝑓 2𝑛 +1(𝜉) – 𝑖 (2𝑛 + 1)𝜆𝑓2𝑛  (𝜉) 𝑓′(𝜉)  −
2𝑖𝜈𝑛𝑓 2𝑛(𝜉) 𝑓′(𝜉)  +  𝛽3 𝛾 𝑓(𝜉)  
 

 −3𝑖𝛽 2𝛾𝑓′(𝜉)  − 3 𝛽𝛾𝑓′′ (𝜉)  +  𝑖𝛾𝑓′′′ (𝜉) = 0.                       (41) 

 

From eqn. (41), equating the real and the imaginary parts separate-

ly to zero, we obtain,  

Real Part: 

 

( 𝑎 − 3𝛽𝛾) 𝑓′′(𝜉)  +  (𝛽𝑣 +  𝜔 – 𝑎𝛽 2 + 𝛽 3𝛾)𝑓(𝜉)  

 

+ (𝑏 +  𝛽𝜆) 𝑓2𝑛 +1(𝜉)  = 0.                                                     (42) 

 

Imaginary Part: 
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 𝛾𝑓′′′(𝜉)  + ( 2𝑎𝛽 –  𝑣 − 3𝛽 2𝛾) 𝑓′(𝜉)  
 

− {(2𝑛 + 1) 𝜆 + 2𝜈𝑛} 𝑓2𝑛  (𝜉) 𝑓′(𝜉) = 0.                               (43) 

 

Integrating eqn. (43) once with respect to ξ and choosing the inte-

gration constant as zero, we obtain, 

 

𝛾 𝑓′′(𝜉)  + ( 2𝑎𝛽 – 𝑣 − 3𝛽 2𝛾)𝑓(𝜉)  

 

− 
{(2𝑛 +1) 𝜆 +2𝜈𝑛}

2𝑛 +1
 𝑓2𝑛 +1(𝜉)  = 0.                                              (44) 

 

As the same function f (𝜉) satisfies both the equations (42) and 

(44), we obtain the following constraint conditions 

 
(𝑎 −3𝛽𝛾)

𝛾 
 =  

(𝛽𝑣 + 𝜔 −𝑎𝛽2 + 𝛽3 𝛾)

2𝑎𝛽 −𝑣 −3𝛽2 𝛾
 =  − 

(𝑏 + 𝛽𝜆)(2𝑛 +1)

(2𝑛 +1)𝜆 +2𝜈𝑛
 .                (45) 

 

Thus, instead of solving both the eqns. (42) and (44), we have to 

solve either of the two eqns. Let us solve eqn. (44) under the con-

straint conditions of eqns. (45). 

 

𝐿𝑒𝑡 𝑢𝑠 𝑝𝑢𝑡 𝑓(𝜉) =  𝑈
1

𝑛(𝜉) .                                                        (46) 

 

Then, we have, 

 

 𝑓′(𝜉)  =  
1

𝑛
 𝑈 

1

𝑛
 −1(𝜉) 𝑈′,                                                         (47a) 

 

𝑓′′  (𝜉) =  
(1 −𝑛)

𝑛2  𝑈
1 −2𝑛

𝑛  𝑈′2
 +  

1

𝑛
 𝑈

1 −𝑛

𝑛  𝑈′′ ,                             (47b) 

 

where the primes indicate differentiation with respect to ξ. 

Using eqns. (46) and (47) in eqn. (44), we obtain, 

 

𝑈 ′′  +  
1 –𝑛

𝑛
 
𝑈′2

𝑈
 +  

𝑛( 2𝑎𝛽 –𝑣 −3 𝛽2𝛾)

𝛾
 𝑈   

 

− 
𝑛 { (2𝑛 +1)𝜆 + 2𝜈𝑛} 

𝛾( 2𝑛 +1) 
𝑈3 = 0.                                                       (48) 

 

If we put  𝑋 = 𝑈(𝜉), 𝑌 =  
𝑑𝑈 

𝑑𝜉
 =  

𝑑𝑋

𝑑𝜉
=  𝑋′ ,                            (49) 

 

eqn. (48) is equivalent to a two dimensional autonomous system, 

 

𝑋′  =  𝑌,                                                                                    (50a) 

 

𝑌′  =  (1 − 
1

𝑛
) 

𝑌2

𝑋
 +  

𝑛 ( 3𝛽2 𝛾 +𝑣 −2𝑎𝛽)

𝛾
 𝑋   

 

+ 
𝑛 {(2𝑛 +1) 𝜆 + 2𝜈𝑛} 

𝛾(2𝑛 +1)
𝑋3 .                                                            (50b) 

 

Making the transformation 

 

𝑑𝜂 =  
𝑑𝜉

𝑋
 ,                                                                                    (51) 

 

The system (50) becomes 

 
𝑑𝑋

𝑑𝜂
 = 𝑋𝑌,                                                                                  (52a) 

 

𝑎𝑛𝑑 
𝑑𝑌

𝑑𝜂
 =  

𝑛(3𝛽2 𝛾+ 𝑣 −2𝑎𝛽)

𝛾
 𝑋 2  +  

𝑛{(2𝑛 +1)𝜆 +2𝜈𝑛}

𝛾(2𝑛 +1)
 𝑋4  

 

+ (1 −
1 

𝑛
 ) 𝑌2.                                                                          (52b) 

 

Let us apply the Division Theorem to seek the first integral to 

system (52). Let us assume that X = X(η) and Y = Y(η) are the non-

trivial solutions to the system (52). Further, let us assume that  

 

 𝑄(𝑋, 𝑌) =  ∑ 𝑎𝑗(𝑋) 𝑌𝑗𝑗=𝑚
𝑗=0 = 0                                                 (53) 

 

is an irreducible polynomial in the complex domain C [X, Y] such 

that  

 

𝑄( 𝑋(𝜂), 𝑌(𝜂)) =  ∑ 𝑎𝑗( 𝑋(𝜂) )𝑚
𝑗=0  𝑌𝑗(𝜂)  = 0                        (54) 

 

𝑤ℎ𝑒𝑟𝑒 𝑎𝑗(𝑋) (𝑗 = 0,1,2, . . . 𝑚) 𝑎𝑟𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑋 

 𝑎𝑛𝑑 𝑎𝑚(𝑋) ≠ 0.   
 

Eqn. (54) is called the first integral to the system (52). 

According to the Division Theorem, there exists a polynomial      

g (X) + h (X) Y in the complex domain C [X, Y] such that 

 
𝑑𝑄

𝑑𝜂
=  

𝑑𝑄 

𝑑𝑋
 
𝑑𝑋

𝑑𝜂
 +  

𝑑𝑄

𝑑𝑌
 
𝑑𝑌

𝑑𝜂
=  {𝑔(𝑋)  + ℎ(𝑋)𝑌} ∑ 𝑎𝑗(𝑋) 𝑌𝑗𝑚

𝑗=0  ,  

 

𝑂𝑟, ∑ 𝑎𝑗
′(𝑋)𝑚

𝑗=0  𝑋 𝑌𝑗 +1   

 

+ ∑
𝑛(3𝛽2 𝛾 +𝑣 −2𝑎𝛽)

𝛾

𝑚
𝑗=0  𝑗 𝑎𝑗(𝑋) 𝑋2 𝑌𝑗 −1   

 

+ ∑
𝑛{(2𝑛 +1)𝜆+2𝜈𝑛}

𝛾(2𝑛 +1)
𝑚
𝑗=0  𝑗𝑎𝑗(𝑋) 𝑋4𝑌𝑗 −1  

 

+ ∑ (1 −  
1

𝑛
)𝑚

𝑗=0  𝑗𝑎𝑗(𝑋) 𝑌𝑗 +1   

 

=  ∑ { 𝑔(𝑋) + ℎ(𝑋) 𝑌 } 𝑚
𝑗=0 𝑎𝑗(𝑋) 𝑌𝑗 ,                                       (55) 

 

where the primes denote differentiation with respect to X. 

Let us consider the case with m = 1. Then, equating the coeffi-

cients of 𝑌𝑗 (𝑗 = 2,1,0) from both sides of eqn. (55), we obtain, 

 

𝑋𝑎 1
′ (𝑋)  =  ℎ(𝑋) 𝑎1(𝑋)  −  (1 – 

1

𝑛
) 𝑎1(𝑋) ,                          (56a) 

 

𝑋𝑎0
′ (𝑋)  = 𝑔(𝑋) 𝑎1(𝑋)  + ℎ(𝑋) 𝑎0(𝑋) ,                                 (56b) 

 

𝑎1(𝑋) [ 
𝑛(3𝛽 2𝛾 +𝑣 −2𝑎𝛽)

𝛾
 𝑋2 + 

𝑛 { (2𝑛 +1) 𝜆 + 2𝜈𝑛})

𝛾(2𝑛+1)
 𝑋4 ]  

 

= 𝑔(𝑋) 𝑎0(𝑋).                                                                          (56c) 

 

Since 𝑎𝑗  (𝑗 = 0,1) are polynomials, we deduce from eqn. (56a) 

that 𝑎1(𝑋) is a constant and ℎ (𝑋)  = (1 − 
1

𝑛
) . For simplicity, 

we take, 𝑎1(𝑋)  = 1. Balancing the degrees of g(X) and 𝑎0(𝑋), we 

conclude that 𝑑𝑒𝑔[𝑔(𝑋)]  =  𝑑𝑒𝑔[𝑎0(𝑋)]  = 2.  Let us suppose 

that 

 

𝑎0(𝑋) =  𝐴 0  + 𝐴1 𝑋 +  𝐴2 𝑋 2                                                (57) 

 

𝑤ℎ𝑒𝑟𝑒 𝐴0 , 𝐴1 , 𝐴 2 (𝐴2  ≠ 0) are arbitrary constants to be deter-

mined. 

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎0(𝑋) 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎0
′ (𝑋)  

 

From equation (57) and also the values of 𝑎 1(𝑋) 𝑎𝑛𝑑 ℎ(𝑋) ob-

tained earlier into eqn. (56b), we obtain, 

 

𝑔(𝑋) =  ( 
1

𝑛
 − 1) 𝐴0 + 

𝐴1

𝑛
 𝑋 + (1 +  

1

𝑛
) 𝐴2 𝑋2.                    (58) 

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎 0(𝑋),  𝑎 1(𝑋) 𝑎𝑛𝑑 𝑔(𝑋)𝑖𝑛𝑡𝑜   
 

𝑒𝑞𝑛. (56𝑐), 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛,  
 
n( 3 𝛽2 𝛾 +𝑣 −2𝑎𝛽)

𝛾
  𝑋 2  +  

𝑛 { (2𝑛 +1)𝜆 +2𝜈𝑛}

𝛾(2𝑛 +1)
 𝑋4   
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 = {
(

1 

𝑛
 − 1) 𝐴0  +  

𝐴1

𝑛
 𝑋 

+ (1 +  
1

𝑛
) 𝐴2 𝑋2

} (𝐴0 + 𝐴 1 𝑋 + 𝐴2 𝑋2).              (59) 

 

Equating coefficients of like powers of X from both sides, we 

obtain, 

 

𝑋0 : ( 
1

𝑛
 − 1) 𝐴0

2  = 0.   

 

𝑋: ( 
2 

𝑛
 − 1)  𝐴0 𝐴1 = 0.  

 

𝑋2 : 
2

𝑛
 𝐴0 𝐴2 +  

𝐴1
2 

𝑛
=  

 𝑛( 3𝛽2𝛾 +𝑣 −2𝑎𝛽)

𝛾 
 .  

 

𝑋3 : ( 
 2 

𝑛
 + 1) 𝐴1𝐴2 = 0 .   

 

𝑋4 : ( 1 +  
1

𝑛
) 𝐴2

2  =  
𝑛 { (2𝑛 +1)𝜆 +2𝜈𝑛} 

𝛾(2𝑛 + 1)
 .  

 

𝑈𝑠𝑖𝑛𝑔 𝑀𝑎𝑡ℎ𝑚𝑎𝑡𝑖𝑐𝑎, the 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑠𝑒𝑡 𝑜𝑓 

 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒  𝑓𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒  

 

𝐴0 = 0 , 𝐴1 = 0 , 𝐴2 =  ± 𝑛 √
{ (2𝑛 +1)𝜆+2𝜈𝑛} 

𝛾( 𝑛 +1)( 2𝑛 +1)
 ,   

 

 𝑣 =  2𝑎𝛽 − 3𝛽2 𝛾 .                                                                  (60) 

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐴0,  𝐴1 ,  𝐴2 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎0(𝑋)  
𝑎𝑛𝑑 𝑎1 (𝑋) 𝑖𝑛𝑡𝑜 𝑒𝑞𝑛. (54), 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛,  
 

𝑌 ±  𝑛 √
{(2𝑛 +1)𝜆 +2𝜈𝑛}

𝛾( 𝑛 +1)( 2𝑛 +1)
 𝑋2 = 0.   

 

𝑅𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑋 =  𝑈 ,  𝑌 =  
𝑑𝑋

𝑑𝜉
 =  

𝑑𝑈

𝑑𝜉
 , 

𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛,  
 

𝑑𝑈

𝑑𝜉
 =  ∓ 𝑛 √

{ (2𝑛 +1) 𝜆 +2𝜈𝑛}

𝛾( 𝑛 +1)( 2𝑛 +1)
 𝑈2 .  

 

𝐹𝑢𝑟𝑡ℎ𝑒𝑟, 𝑟𝑒𝑚𝑒𝑚𝑏𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑓(𝜉)  =  𝑈
1

𝑛(𝜉) 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜   
 

 𝑞(𝑥, 𝑡) = 𝑓(𝜉) exp[ 𝑖 { 𝜒(𝜉) −  𝜔 𝑡}],  
 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚  

 

 𝑈 =  ± √
 𝛾( 𝑛 +1)( 2𝑛 +1)

𝑛2 { (2𝑛 +1)𝜆 + 2𝜈𝑛}
 𝜉 – 1 ,   

 

𝑂𝑟, 𝑞 (𝑥, 𝑡)  =  ± 𝑒𝑥𝑝[ 𝑖 {𝛽 ( 𝑥 −  𝑣𝑡) −  𝜔 𝑡 + 𝑥0}]   
 

×  [√
 𝛾 ( 𝑛+1) ( 2𝑛+1) 

𝑛2{ ( 2𝑛+1)𝜆 + 2𝜈𝑛 }
 .

1

( 𝑥 − 𝑣𝑡 )
]

1

𝑛

                                             (61) 

 

 𝑤ℎ𝑒𝑟𝑒 𝑣 =  2𝑎𝛽 − 3𝛽2 .  
 

We can find solutions for other values of m also. 

4. Conclusion 

The first integral method has been successfully employed in solv-

ing the Kudryashov- Sinelshchikov equation and the Generalized 

Radhakrishnan-Kundu-Lakshmanan equation. It is seen that the 

performance of the method is quite well and we feel that the 

method is a powerful one in handling a wide variety of Nonlinear 

Evolution Equations available in many branches of Science and 

Engineering. 
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