
 

 

 

 

 

International Journal of Physical Research, 1 (2) (2013) 48-54 

©Science Publishing Corporation 

www.sciencepubco.com/index.php/IJPR 

 

 

 

Effect of Bohm potential on magnetohydrodynamic wave 

propagation in dense quantum fluid plasma 
 

Sisir Kr. Garai*, R. P. Prajapati 

 
Department of Pure and Applied Physics, Guru Ghasidas Central University, Bilaspur (C.G)-495009, India 

*Corresponding author e-mail: sisirgarai89@gmail.com 

 

 

Abstract 

 

In this paper we have investigated the simultaneous effects of Bohm potential and electron spin on the low frequency 

magnetohydrodynamic (MHD) wave propagation in dense Fermi degenerate quantum plasma. The elementary ideal 

about quantum collision process in quantum plasma is also discussed. The quantum magnetohydrodynamic (QMHD) 

model is modified and a general dispersion relation is obtained using the plane wave approximation for the considered 

system. This dispersion relation is reduced for the parallel and perpendicular modes of propagations. We find that the 

quantum Bohm potential is coupled with the Alfven mode in perpendicular propagation but in the parallel mode of 

propagation the dispersion relation is unaffected due to the presence of magnetic field. From the curves we find that 

increase in Alfven velocity and sound velocity increases the frequency of the perturbations.      

 
Keywords:  Quantum plasma, MHD wave propagation, Bohm potential, Plane wave approximation, dispersion characteristics 
 

 

1 Introduction 

The study of quantum plasma has a great interest now day’s due to its many significant applications in ultra-small 

electronic devices, dense astrophysical plasmas, laser fusion plasma and in excitation of linear and nonlinear waves [1-

4]. In traditional plasma the magnetohydrodynamic (MHD) fluid model is widely used to discuss wave propagation in 

hot and cold plasmas. The MHD fluid model is one of the most useful fluid models which focus on the global properties 

of plasma. In the quantum plasma the de Broglie wavelength of charge carriers are become comparable to the inter-

particle distance at extremely low temperature thus one can consider that the overlapping of the neighboring particles 

[5,6]. The quantum magnetohydrodynamic (QMHD) model derived by Haas [7] including Bohm potential is 

appropriate to investigate waves and instabilities in quantum plasma. We can consider two significant quantum effects 

in non-relativistic dense Fermi degenerate quantum fluid plasma. One of this is quantum force produced by density 

fluctuations, which has its origin called Bohm potential. The second effect is caused by the spin of particles which is 

considered in the equation of motion. In general in quantum plasma, high density and low temperature are usually 

considered as the typical plasma environment in which quantum effect occurs. The atmospheres of neutron star and 

interiors of super dense white dwarf star are assumed to be like a Fermi gas where the number density of plasmas is 

controlled by Fermi-Dirac distribution rather than the Maxwell-Boltzmann distribution [8-10]. 

The quantum corrections are obtained in the classical dispersion relations by many authors recently with different 

assumptions [11]. Prajapati and Chhajlani [12] have investigated the effect of Hall current on the Jeans instability of an 

infinitely conducting, homogeneous, viscous quantum plasma. Prajapati and Chhajlani [13] have also studied effect of 

magnetic field on Jeans instability of quantum dusty plasma and applied the results in the formation of white dwarf star. 

The quantum effects for oblique propagation in magnetosonic waves for electron-positron-ion and dust-electron-ion 

plasma already studied by Masood and Mushtaq [14] including the contribution of Bohm potential. The effects of 

electron spin and Bohm potential in oblique propagation of magnetosonic was studied by Felipe [15]. The linear and 

nonlinear behavior of the slow and fast magnetosonic modes is studied by Mushtaq and Vladimirov [16] using QMHD 

model.  

In this paper we have investigated the simultaneous effects of Bohm potential and spin effect on MHD wave 

propagation of quantum fluid plasma. The present paper is organized as follows. In Sec. 2, the collision processes in 

classical and quantum plasmas are discussed. In Sec. 3, the model equations of the problem are formulated and a 

general dispersion relation is obtained. The results of the problem are discussed in Sec. 4. The present problem is 

summarized in Sec. 5. 
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2 Collision processes in classical and quantum plasmas 

In classical plasma all collisions are coulom  collision  There are two process-collision  etween li e charge particle and 

collision  etween unli e charge particle   n case of collision  etween li e charges  simply they interchange their or its 

 y changing the  elocity      in direction. The centre of mass of two guiding centers remains stationary and gi es rise to 

 ery little diffusion as shown in  ig      or collision  etween unli e charges  after collision  elocity are changed       in 

direction i.e. in reversed direction. In the case of collision between unlike charges the guiding centre shift in the same 

direction.  

 
(a) Collision between like charges                                         (b) Collision between unlike charges 

Fig.1: Collision processes between like and unlike charge particles. 

 

The process for changing guiding centre in case of quantum system is quite different than the classical approach. The 

origin of this difference is due to the presence of Coulomb force and spin force. The like spin tends to oppose each other 

and unlike spins have tendency to closes each other. We consider all the Fermion particles have half odd integral spin 

i.e. 
  

 
 
  

 
 
  

 
 which o ey the Pauli’s exclusion principle  In the case of quantum plasma there are five possible collision 

processes: (i) collision between like charges with same spin, (ii) collision between like charges but opposite spin (iii) 

collision between opposite charge with same spin, (iv) collision between opposite charge but opposite spin and (v) 

collision between charged and neutral particles. Quantum mechanically two possible collision processes are described 

in Fig. 2. This describes the collision between two particles with same spin and having opposite spin. In both the cases 

after collision the spin are interchanged. We assure that when two electrons move on same path from opposite side, just 

before collision the direction of electrons are shifted due to the repulsive nature of same spin thud only side by side 

collisions occur. The scattering angel  depends on the energy of particle which is related to the strength of magnetic 

field but for like spin scattering the scattering angel  is small compared to the unlike scattering.       

 
                                                     (a)   Same spin                                                                     (b)   Opposite spin 
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Fig.2: The quantum collision process in two charge particles with same and opposite spins. 

3 Model equations of the problem and dispersion relation 

Consider a compressible, in-viscid, perfectly conducting fluid immersed in presence of uniform magnetic field          

B(0, 0, B). Thus the continuity equation remains unchanged due to Bohm potential but the momentum equation is 

modified. The continuity equation and momentum equations for magnetized quantum fluid plasma are as follows [7]   
   

  
+ . (    u) =0,                                                                         (1) 
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where    is the mass density, u is the global fluid velocity,  J is the current density, p is the quantum Fermi pressure 

and   is the Planc ’s constant di ided  y 2 . The momentum Eq. (2) has been modified to include non-locality effects, 

such as tunneling, described by the Bohm potential. These effects arising from density perturbations play an important 

role for dense and low temperature plasma.  This system is closed with an equation of states for the pressure which is 

written as-  
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  where T is plasma thermal temperature in energy unit and j= (e, i) electron and ions. Here suffix j is for 

electron and ion.  

The Maxwell’s equations for magnetized system are 
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Substituting Eqs. (3), (5) (6) and (7) in Eq. (2) then we get 
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For deducing the dispersion relation we linearize above equations considering small-amplitude variation in each 

physical quantities with their equilibrium values such as  

B(r, t) =   +  (r, t),                                                                                 (9) 

   (r, t)=    +    (r, t),                                                                         (10) 

u(r, t) =  (r, t).                                                                                        (11) 

Thus the linearized form of the above equations will be   
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Differentiating Eq. (14) with respect to t and using Eqs. (11) and (13) we get-   
    

   
     

   (    ) +                 ]  
 
 

        
 
 

  
[        ] = 0,               (15) 

where   =
  

        
  is Alfven velocity.  

Now we consider the plane wave solution for Eq. (15) in the form of    (r, t)=  exp (ik.r  ωt)  where u1 is the 

perturbed velocity of fluid, k is propagation  ector  and ω is the plasma frequency  Simply we can replace the operator 

   by ik and partial time derivative by –    thus we get 

     + (  
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Using simplified form of Eq. (12)    = 
       

 
  we get  
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This equation shows the general dispersion relation of magnetized quantum fluid plasma modified due to the presence 

of quantum corrections. If we ignore the quantum effects then we get the classical dispersion relation of MHD wave 
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propagation. This dispersion relation can be further discussed for two modes of propagations one perpendicular and 

other parallel to the direction of applied magnetic field.                                                                                                                                                                                                                                                        

  

4 Discussions of the dispersion relation 

4.1   Propagation perpendicular to the magnetic field (kB) 
  

In this mode of propagation when wave vector k is perpendicular to the magnetic field B we have k.  =0 and we get 

two dispersion relations. In the longitudinal wave propagation when    is parallel to k the phase velocity is given by 
 

 
 =   

    
  

 
   

     
 
 
   .                                                (18) 

In the case of transverse wave propagation when    is perpendicular to k, we get the phase velocity   
 

 
 = 

 
   

     
 
 
   .                                                                     (19) 

From the above two dispersion relations it is obvious that in longitudinal wave propagation the dispersion relation is 

modified by Alfven mode, quantum acoustic speed and Bohm potential. But in transverse propagation Alfven velocity 

and quantum acoustic speed have not any influence on the dispersion properties. The above shows the coupling of 

Alfven and acoustic mode. 

In below Fig.3 we have plotted the variation of frequency of wave mode versus the wavenumber for various values of 

Alfven velocity. The parameters are taken for the interior of dense white dwarf star and numerical calculations have 

been performed using MATLAB code.    

 
Fig. 3: The frequency of perturbations versus wavenumber for various values of Alfven velocity. 

 

This graph shows that how longitudinal wave propagation is affected with different values of Alfven velocity. The 

numerical parameters are taken for dense white dwarf star as follows:   =9.109      gm,   =12 1.67      gm, 

  1.0546      erg-sec   =   gm-    ,   =9.3      cm-     , thus 
 
 

     
=4.574       unit with different 

Alfven velocities as shown in the graph. From the curves it is clear that as we increase wavenumber k, the frequency of 

oscillations ω also increases  The phase  elocity (ω/ ) also increases with increase in Alf en  elocity in the plasma   

In Fig.4 we have plotted the frequency of oscillations versus wavenumber for various values of quantum acoustic speed. 

From the curves it is clear that as we increase wavenumber k, the frequency of oscillations ω also increases  The phase 

 elocity (ω/ ) also increases with increase in quantum acoustic speed    
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Fig. 4: The frequency of perturbations versus wavenumber for various values of quantum acoustic speed. 

  

4.2   Propagation parallel to the magnetic field (k||B) 
 

In the parallel propagation when wave vector is along the direction of the magnetic field i.e. k||B , we have k.   
     and we get from Eq. (17) 
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     = 0.                                         (20) 

In the longitudinal wave propagation when    is parallel to k. the phase velocity is given by 
 

 
 =   

  
 
   

     
 
 
   .                                                                            (21) 

The Alfven velocity has not any contribution in this mode. In the case of transverse wave propagation when   is 

perpendicular to k we get the phase velocity  
 

 
=   .                                                                                                (22) 

In this case we get pure Alfven mode where there is no any effect due to the quantum Bohm potential. 

 

4.3   Quantum MHD wave propagation including electron spin 
 

We now employ this QMHD fluid model only for electron gas. The dynamics of electron is modified due to the 

contribution of spin force. The continuity equation remains unchanged as in Eq. (1) but momentum Eq. (2) gets 

modified. Thus the equations are  
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  S.  ,                    (23) 

where    is elementary magnetic moment of charge ‘q’and S is spin vector. B= (0, 0,   ) is magnetic field vector in z-

direction and ue is the electron fluid velocity. 

The evolution equation for the spin vector is 

(
 

  
 + ue.      

   

 
  (S  ).                                                                    (24) 

The spin pressure depends on angle between the magnetic field vector and spin vector    When     the spin is 

aligned along the magnetic field i. e. parallel and when     the spin is aligned against the magnetic field i. e. 

antiparallel. Consider the magnetic field in z direction so B=    , and let S=
 

 
      cos    , where ( ) = tan ( 

    

    
) is 

Brillion function due to magnetization of spin distribution. 

Differentiating Eq. (23) with respect to time then simplifying we get 
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In the perpendicular propagation i.e. k.VA =0 we get the wave propagation equation with phase velocity 
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In the case of parallel propagation when k.VA =kVA we get longitudinal wave propagation with phase velocity- 
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        .                                                  (27)  

From these two dispersion relations it is clear that the Alfven velocity has not any role in the longitudinal mode of 

propagation. If we remove the spin effect then we get general MHD wave propagation for quantum plasma as obtained 

in Eqs. (18) and (21) respectively. 

 

4.4   Quantum MHD oblique wave propagation  
 

Now we consider QMHD wave propagate in an arbitrary direction with respect to the magnetic induction B. We 

consider the coordinate such that y axis is normal to the plane of propagation k and the magnetic field B. We take B 

along    and the angle between k and B is  then k= k (   sin+  cos), VA= VA   , and    =      +     +                                                                                                            

Substituting these value in Eq. (17) and resolve the x, y  and z components respectively   
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  +     
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  cos   )= 0,                                                                             (29) 

    (    
 Sin  cos  )+     (    +     

        + 
    

     
cos  ) =0.                        (30) 

With the help of these equations we construct a matrix whose determinant setting equal to zero gives the general 

dispersion relation for oblique QMHD wave propagation. 
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After solving this matrix we get the following dispersion relation  
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(32) 

The solutions of Eq. (32) corresponding to plus sign yields the dispersion relation of fast QMHD wave and when we 

take minus sign we obtain the dispersion relation of slow QMHD wave mode. It is obvious that square root of  
 

 
 
 

 

provides two wave modes with opposite direction of propagation to each other. Obviously, we can say that when a 

magnetosonic waves propagates obliquely to the background magnetic field, the wave phase velocity becomes quite 

different from the purely parallel or perpendicular cases. 

 

5 Conclusion 

In present paper the QMHD wave propagation in dense Fermi degenerate quantum fluid plasma is investigated. The 

possible collision processes in classical and quantum plasmas are discussed. We have derived analytically the linear 

dispersion relation using QMHD equations in quantum plasma including Bohm potential. For perpendicular and parallel 

propagations we have obtained the modified dispersion relations which are reduced with previous published results. The 

quantum effects do not have influence in the parallel propagation of QMHD waves. From graph we find that when we 

increase Alfven velocity and quantum acoustic speed for particular wavenumber, the phase velocity also increases in 

both parallel and perpendicular modes of propagations. The modified dispersion relation due to the presence of electron 

spin is also obtained using the quantum fluid model for electron fluid. We find the spin contribution of electron affects 

the Alfven mode. The dispersion relation is also obtained for oblique propagation which is more complicated than 
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parallel and perpendicular propagations in QMHD waves. The results of the present work may be useful to understand 

the wave propagation in dense Fermi degenerate quantum plasma system like dwarf and neutron stars.    
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