Alive failures behind the windows of cancer therapy

  • Authors

    • Muhammad Islam LecturerDepartment of PharmacySouthern University BangladeshMehedibag-4000, Chittagong
    2017-07-16
    https://doi.org/10.14419/ijm.v5i2.7035
  • Apoptosis, Autophagy, Cancer Therapy, Challenges, Tumor Suppressor Gene.
  • The multiscope process, cancer is attributable from various geneses. Eventually, cancer is a complicated disease with unconstrained interca-lation and impacts on the physiological system. Therefore, an ideal cancer therapy must be like a multi-edged sword. Broadly, currently, available cancer therapies are the cytoprotective, inhibitors of oncogenes, correctors, and cell destructors. Doubtless, cancer therapists are most frequently handling apoptosis and autophagy inducers, targeting of tumor suppressor genes, epigenetic and immune therapies. How-ever, each therapy has a number of challenges yet to be resolved. This revision is aimed to find out some important points, depicting till the date, how successful we are and what are the failures behind those modes of therapeutic strategies.

  • References

    1. [1] Arandjelovic S, Ravichandran KS. 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:907-917. https://doi.org/10.1038/ni.3253.
      [2] Atsumi G, Tajima M, Hadano A, Nakatani Y, Murakami M, Kudo I. 1998. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation. J. Biol. Chem. 273:13870-13877. https://doi.org/10.1074/jbc.273.22.13870.
      [3] Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ, Kamarul T. 2016. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis. 7:e2058. https://doi.org/10.1038/cddis.2015.275.
      [4] Betti CJ, Villalobos MJ, Diaz MO, Vaughan AT. 2003. Apoptotic stimuli initiate MLL–AF9 translocations that are transcribed in cells capable of division. Cancer Res. 63:1377-1381.
      [5] Bondar T, Medzhitov R. 2010. P53 mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6:309-322. https://doi.org/10.1016/j.stem.2010.03.002.
      [6] Bonneau B, Prudent J, Popgeorgiev N, Gillet G. 2013. Non-apoptotic roles of Bcl 2 family: the calcium connection. Biochim. Biophys. Acta 1833:1755-1765. https://doi.org/10.1016/j.bbamcr.2013.01.021.
      [7] Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 434:913-917. https://doi.org/10.1038/nature03443.
      [8] Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401-404. https://doi.org/10.1158/2159-8290.CD-12-0095.
      [9] Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, et al. 2011. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19:58-71. https://doi.org/10.1016/j.ccr.2010.10.031.
      [10] Choi AMK, Ryter SW, Levine B. 2013. Autophagy in human health and disease. N. Engl. J. Med. 368:651-662. https://doi.org/10.1056/NEJMra1205406.
      [11] Choi S, Chen Z, Tang LH, Fang Y, Shin SJ, Panarelli NC, et al. 2016. Bcl xL promotes metastasis independent of its anti-apoptotic activity. Nat. Comm. 7:10384. https://doi.org/10.1038/ncomms10384.
      [12] Colin DJ, Hain KO, Allan LA, Clarke PR. 2015. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl 2 family proteins. Open Biol. 5:140156. https://doi.org/10.1098/rsob.140156.
      [13] Cook WD, McCaw BJ. 2000. Accommodating haploinsufficient tumor suppressor genes in Knudson’s model. Oncogene 19:3434-3438. https://doi.org/10.1038/sj.onc.1203653.
      [14] Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann. Rev. Pathol. 5:99-118. https://doi.org/10.1146/annurev-pathol-121808-102144.
      [15] Dimberg LY, Anderson CK, Camidge R, Behbakht K, Thorburn A, Ford HL. 2013. On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene 32:1341-1350. https://doi.org/10.1038/onc.2012.164.
      [16] Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43-50. https://doi.org/10.1038/34112.
      [17] Ford CA. Petrova S, Pound JD, Voss JJ, Melville L, Paterson M, et al. 2015. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr. Biol. 25:577-588. https://doi.org/10.1016/j.cub.2014.12.059.
      [18] Freed-Pastor WA, Prives C. 2012. Mutant p53: one name, many proteins. Genes Dev. 26:1268-1286. https://doi.org/10.1101/gad.190678.112.
      [19] Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, et al. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643-646. https://doi.org/10.1038/323643a0.
      [20] Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, et al. 2015. Autophagy in malignant transformation and cancer progression. EMBO J. 34:856-880. https://doi.org/10.15252/embj.201490784.
      [21] Garrison SP, Jeffers JR, Yang C, Nilsson JA, Hall MA, Rehg JE, et al. 2008. Selection against PUMA gene expression in Myc-driven B cell lymphomagenesis. Mol. Cell Biol. 28:5391-5402. https://doi.org/10.1128/MCB.00907-07.
      [22] Gewirtz DA. 2013. Autophagy and senescence: a partnership in search of definition. Autophagy 9:808-812. https://doi.org/10.4161/auto.23922.
      [23] Gole B, Wiesmuller L. 2015. Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front. Cell Dev. Biol. 3:41. https://doi.org/10.3389/fcell.2015.00041.
      [24] Gregory CD, Pound JD. 2011. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 223:177-194. https://doi.org/10.1002/path.2792.
      [25] Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell 140:883-899. https://doi.org/10.1016/j.cell.2010.01.025.
      [26] Gupta A, Yang Q, Pandita RK, Hunt CR, Xiang T, Misri S, et al. 2009. Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair. Cell Cycle 8:2198-2210. https://doi.org/10.4161/cc.8.14.8947.
      [27] Hardwick JM, Soane L. 2013. Multiple functions of BCL 2 family proteins. Cold Spring Harb. Perspect. Biol. 5:a008722. https://doi.org/10.1101/cshperspect.a008722.
      [28] Hars ES, Lyu YL, Lin CP, Liu LF. 2006. Role of apoptotic nuclease caspase-activated DNase in etoposide-induced treatment-related acute myelogenous leukemia. Cancer Res. 66:8975-8979. https://doi.org/10.1158/0008-5472.CAN-06-1724.
      [29] Huang Q, Fang Li, Xinjian Liu, Wenrong Li, Wei Shi, Fei-Fei Liu, et al. 2011. Caspase 3 mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17:860-866. https://doi.org/10.1038/nm.2385.
      [30] Huh JR, Guo M, Hay BA. 2004. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr. Biol. 14:1262-1266. https://doi.org/10.1016/j.cub.2004.06.015.
      [31] Hyman BT, Yuan J. 2012. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat. Rev. Neurosci. 13:395-406. https://doi.org/10.1038/nrn3228.
      [32] Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, et al. 2015. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57:860-872. https://doi.org/10.1016/j.molcel.2015.01.018.
      [33] Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. 2011. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193:275-284. https://doi.org/10.1083/jcb.201102031.
      [34] Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, et al. 1999. Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet. 21:187-190. https://doi.org/10.1038/5971.
      [35] Islam MT. 2016a. Membrane marker sensory strategy (MMSS) is a new concept in cancer therapy: A hypothesis. Int. J. Pharm. Pharm. Sci. 8(12):314-317.
      [36] Islam MT. 2016b. Crucial challenges in epigenetic cancer therapeutic strategy yet to be resolved. Int. J. Pharm. Pharm. Sci. 8(12):1-6. https://doi.org/10.22159/ijpps.2016v8i12.14510.
      [37] Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, et al. 2003. Puma is an essential mediator of p53 dependent and -independent apoptotic pathways. Cancer Cell 4:321-328. https://doi.org/10.1016/S1535-6108(03)00244-7.
      [38] Keniry M, Parsons R. 2008. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477-5485. https://doi.org/10.1038/onc.2008.248.
      [39] Kenzelmann Broz D, Attardi LD. 2010. In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogen 31:1311-1318. https://doi.org/10.1093/carcin/bgp331.
      [40] Kilbride SM, Prehn JH. 2013. Central roles of apoptotic proteins in mitochondrial function. Oncogene 32:2703-2711. https://doi.org/10.1038/onc.2012.348.
      [41] Kim M-J, Woo S-J, Yoon C-H, Lee J-S, An S, Choi Y-H, et al. 2011. Involvement of autophagy in oncogenic K-rasinduced malignant cell transformation. J. Biol. Chem. 286:12924-12932. https://doi.org/10.1074/jbc.M110.138958.
      [42] Kimmelman AC. 2011. The dynamic nature of autophagy in cancer. Genes Dev. 25:1999-2010. https://doi.org/10.1101/gad.17558811.
      [43] Kimmelman AC. 2015. Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 21:1828-1834. https://doi.org/10.1158/1078-0432.CCR-14-2425.
      [44] Kirkin V, McEwan DG, Novak I, Dikic I. 2009. A role for ubiquitin in selective autophagy. Mol. Cell 34:259-269. https://doi.org/10.1016/j.molcel.2009.04.026.
      [45] Kruiswijk F, Labuschagne CF, Vousden KH. 2015. P53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16:393-405. https://doi.org/10.1038/nrm4007.
      [46] Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, et al. 2015. Blocking PGE2 induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209-213. https://doi.org/10.1038/nature14034.
      [47] Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, et al. 2008. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454-463. https://doi.org/10.1016/j.ccr.2008.03.004.
      [48] Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J, et al. 2002. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res. 62:5736-5742.
      [49] Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL, et al. 2007. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin. Cancer Res. 13:832-838. https://doi.org/10.1158/1078-0432.CCR-05-2694.
      [50] Leffers N, Lambeck AJ, Gooden MJ, Hoogeboom BN, Wolf R, Hamming IE, et al. 2009. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int. J. Cancer 125:2104-2113. https://doi.org/10.1002/ijc.24597.
      [51] Letai AG. 2008. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer 8:121-132. https://doi.org/10.1038/nrc2297.
      [52] Li F, Huang Q, Chen J, Peng Y, Roop D, Bedford JS, et al. 2010. Apoptotic cells activate the “phoenix rising†pathway to promote wound healing and tissue regeneration. Sci. Signal 3:ra13. https://doi.org/10.1126/scisignal.2000634.
      [53] Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP, et al. 2015. Caspase 3 promotes genetic instability and carcinogenesis. Mol. Cell 58:284-296. https://doi.org/10.1016/j.molcel.2015.03.003.
      [54] Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, et al. 2011. Autophagy facilitates glycolysis during ras-mediated oncogenic transformation. Mol. Biol. Cell 22:165-178. https://doi.org/10.1091/mbc.E10-06-0500.
      [55] Lovric MM, Hawkins CJ. 2010. TRAIL treatment provokes mutations in surviving cells. Oncogene 29:5048-5060. https://doi.org/10.1038/onc.2010.242.
      [56] Luke JJ, Van De Wetering CI, Knudson CM. 2003. Lymphoma development in Bax transgenic mice is inhibited by Bcl 2 and associated with chromosomal instability. Cell Death Differ. 10:740-748. https://doi.org/10.1038/sj.cdd.4401233.
      [57] Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129:1261-1274. https://doi.org/10.1016/j.cell.2007.06.009.
      [58] Martin SA, McCabe N, Mullarkey M, Cummins R, Burgess DJ, Nakabeppu Y, et al. 2010. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell 17:235-248. https://doi.org/10.1016/j.ccr.2009.12.046.
      [59] Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. 2010. Irradiation selects for p53 deficient hematopoietic progenitors. PLoS Biol. 8:e1000324. https://doi.org/10.1371/journal.pbio.1000324.
      [60] Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen H-Y, et al. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062-1075. https://doi.org/10.1016/j.cell.2009.03.048.
      [61] Mattson MP. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1:120-129. https://doi.org/10.1038/35040009.
      [62] Michaelis M, Rothweiler F, Barth S, Cinatl J, van Rikxoort M, Löschmann N, et al. 2011. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis. 2:e243. https://doi.org/10.1038/cddis.2011.129.
      [63] Michalak EM, Jansen ES, Happo L, Cragg MS, Tai L, Smyth GK, et al. 2009. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16:684-696. https://doi.org/10.1038/cdd.2008.195.
      [64] Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. 2012. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488:337-342. https://doi.org/10.1038/nature11331.
      [65] Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, Timmermans PB, et al. 2009. Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res. 69:510-517. https://doi.org/10.1158/0008-5472.CAN-08-0858.
      [66] Nagata S. 2010. Apoptosis and autoimmune diseases. Ann. NY Acad. Sci. 1209:10-16. https://doi.org/10.1111/j.1749-6632.2010.05749.x.
      [67] Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T, et al. 2000. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD genedeleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60:6359-6366.
      [68] Noy R, Pollard JW. 2014. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49-61. https://doi.org/10.1016/j.immuni.2014.06.010.
      [69] Pedro JM, Wei Y, Sica V, Maiuri MC, Zou Z, Kroemer G, Levine B. 2015. BAX and BAK1 are dispensable for ABT 737 induced dissociation of the BCL2–BECN1 complex and autophagy. Autophagy 11:452-459. https://doi.org/10.1080/15548627.2015.1017191.
      [70] Perez-Garijo A, Martin FA, Morata G. 2004. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591-5598. https://doi.org/10.1242/dev.01432.
      [71] Pérez-Mancera PA, Young ARJ, Narita M. 2014. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14:547-558. https://doi.org/10.1038/nrc3773.
      [72] Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, et al. 2015. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 22:885-886. https://doi.org/10.1038/cdd.2015.25.
      [73] Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L, et al. 2005. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell. 7:193-204. https://doi.org/10.1016/j.ccr.2005.01.009.
      [74] Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112:1809-1820. https://doi.org/10.1172/JCI20039.
      [75] Quon KC, Berns A. 2001. Haplo-insufficiency? Let me count the ways. Genes Dev.15:2917-2921. https://doi.org/10.1101/gad.949001.
      [76] Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. 2014. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453-462. https://doi.org/10.1182/blood-2014-04-567933.
      [77] Rao RC, Dou Y. 2015. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15:334-346. https://doi.org/10.1038/nrc3929.
      [78] Rehm M, Huber HJ, Dussmann H, Prehn JH. 2006. Systems analysis of effector caspase activation and its control by X linked inhibitor of apoptosis protein. EMBO J. 25:4338-4349. https://doi.org/10.1038/sj.emboj.7601295.
      [79] Ryoo HD, Gorenc T, Steller H. 2004. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7:491-501. https://doi.org/10.1016/j.devcel.2004.08.019.
      [80] Sandilands E, Serrels B, Wilkinson S, Frame MC. 2012. Srcdependent autophagic degradation of Ret in FAK-signallingdefective cancer cells. EMBO Rep. 13:733-740. https://doi.org/10.1038/embor.2012.92.
      [81] Sandilands E, Serrels S, McEwan DG, Morton JP, Macagno JP, McLeod K, et al. 2011. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signaling. Nat. Cell Biol. 14:51-60. https://doi.org/10.1038/ncb2386.
      [82] Schuler M, Rochlitz C, Horowitz JA, Schlegel J, Perruchoud AP, Kommoss F, et al. 1998. A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer. Hum. Gene Ther. 9:2075-2082. https://doi.org/10.1089/hum.1998.9.14-2075.
      [83] Schuler PJ, Harasymczuk M, Visus C, Deleo A, Trivedi S, Lei Y, et al. 2014. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin. Cancer Res. 20:2433-2444. https://doi.org/10.1158/1078-0432.CCR-13-2617.
      [84] Seshadri R, Kutlaca RJ, Trainor K, Matthews C, Morley AA. 1987. Mutation rate of normal and malignant human lymphocytes. Cancer Res. 47:407-409.
      [85] Shall S, Gaymes T, Farzaneh F, Curtin N, Mufti GJ. 2011. The use of PARP inhibitors in cancer therapy: use as adjuvant with chemotherapy or radiotherapy; use as a single agent in susceptible patients; techniques used to identify susceptible patients. Methods Mol. Biol. 780:239-266. https://doi.org/10.1007/978-1-61779-270-0_15.
      [86] Somasekharan SP, Koc M, Morizot A, Micheau O, Sorensen PH, Gaide O, et al. 2013. TRAIL promotes membrane blebbing, detachment and migration of cells displaying a dysfunctional intrinsic pathway of apoptosis. Apoptosis 18:324-336. https://doi.org/10.1007/s10495-012-0782-6.
      [87] Spychala J. 2000. Tumor-promoting functions of adenosine. Pharmacol. Ther. 87:161-173. https://doi.org/10.1016/S0163-7258(00)00053-X.
      [88] Stanford JC, Young C, Hicks D, Owens P, Williams A, Vaught DB, et al. 2014. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J. Clin. Invest. 124:4737-4752. https://doi.org/10.1172/JCI76375.
      [89] Sulzmaier FJ, Jean C, Schlaepfer DD. 2014. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14:598-610. https://doi.org/10.1038/nrc3792.
      [90] Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, et al. 2015. Measuring in vivo mitophagy. Mol. Cell 60:685-696. https://doi.org/10.1016/j.molcel.2015.10.009.
      [91] Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH, et al. 1999. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst. 91:763-771. https://doi.org/10.1093/jnci/91.9.763.
      [92] Tang J, Chen Y, Cui R, Li D, Xiao L, Lin P, et al. 2015. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol. Med. Rep. 12:7907-7914. https://doi.org/10.3892/mmr.2015.4438.
      [93] Tao JJ, Castel P, Radosevic-Robin N, Elkabets M, Auricchio N, Aceto N, et al. 2014. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Sci. Signal 7:ra29. https://doi.org/10.1126/scisignal.2005125.
      [94] Tardaguila M, Manes S. 2013. CX3CL1 at the crossroad of EGF signals: relevance for the progression of ERBB2 breast carcinoma. Oncoimmunol. 2:e25669. https://doi.org/10.4161/onci.25669.
      [95] Thomas SM, Brugge JS. 1997. Cellular functions regulated by Src family kinases. Ann. Rev. Cell Dev. Biol. 113:513-609. https://doi.org/10.1146/annurev.cellbio.13.1.513.
      [96] Thorburn A. 2014. Autophagy and its effects: making sense of double-edged swords. PLoS Biol. 12:e1001967. https://doi.org/10.1371/journal.pbio.1001967.
      [97] Trinchieri G. 2012. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Ann. Rev. Immunol. 30:677-706. https://doi.org/10.1146/annurev-immunol-020711-075008.
      [98] Vakkila J, Lotze MT. 2004. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4:641-648. https://doi.org/10.1038/nri1415.
      [99] Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ, et al. 2003. p53-and drug-induced apoptotic responses mediated by BH3 only proteins Puma and Noxa. Sci. 302:1036-1038. https://doi.org/10.1126/science.1090072.
      [100] Vodenicharov MD, Sallmann FR, Satoh MS, Poirier GG. 2000. Base excision repair is efficient in cells lacking poly (ADP-ribose) polymerase1. Nucleic Acids Res. 28:3887-3896. https://doi.org/10.1093/nar/28.20.3887.
      [101] Von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, et al. 2015. Cancer cell-autonomous TRAIL R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27:561-573. https://doi.org/10.1016/j.ccell.2015.02.014.
      [102] Wang Y, Suh YA, Fuller MY, Jackson JG, Xiong S, Terzian T, et al. 2011. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J. Clin. Invest. 121:893-904. https://doi.org/10.1172/JCI44504.
      [103] Weissmueller S, Manchado E, Saborowski M, Morris JP 4th, Wagenblast E, Davis CA, et al. 2014. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 157:382-394. https://doi.org/10.1016/j.cell.2014.01.066.
      [104] Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, et al. 2010. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116:4578-4587. https://doi.org/10.1182/blood-2010-01-265769.
      [105] White E. 2015. The role for autophagy in cancer. J. Clin. Invest. 125:42-46. https://doi.org/10.1172/JCI73941.
      [106] Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, et al. 2015. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162:1257-1270. https://doi.org/10.1016/j.cell.2015.08.015.
      [107] Zhang H, Baehrecke EH. 2015. Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol. 25:376-387. https://doi.org/10.1016/j.tcb.2015.03.001.

  • Downloads

  • How to Cite

    Islam, M. (2017). Alive failures behind the windows of cancer therapy. International Journal of Medicine, 5(2), 179-185. https://doi.org/10.14419/ijm.v5i2.7035