Sodium-glucose cotransporter-2 inhibitors: current knowledge on the use of canagliflozin, dapagliflozin and empagliflozin in the treatment of type 2 diabetes mellitus

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Sodium-glucose cotransporter-2 inhibitors are considered the newest class of medication developed for the treatment of type 2 diabetes mellitus. This class of drug reduces blood glucose levels by decreasing glucose absorption at the level of the kidneys. Through their mechanism of action, drugs within this class exhibit the ability to reduce blood pressure, fasting blood glucose and body weight. The common side effects observed with the use of sodium-glucose cotransporter-2 inhibitors include: genital mycotic infections, intravascular volume depletion and dehydration. To date, much is already known about Sodium-glucose cotransporter-2 inhibitors and their use in treating type 2 diabetes mellitus; however, continuous studies are currently being undertaken to further investigate the cardiovascular benefits and side effect profile of this class of drug. This review discusses sodium glucose cotransporter-2 inhibitors specifically focusing on what is currently known about the use of canagliflozin, dapagliflozin and empagliflozin in the treatment of type 2 diabetes mellitus.

     


  • Keywords


    Canagliflozin; Dapagliflozin; Empagliflozin; Type 2 Diabetes Mellitus.

  • References


      [1] Anderson, S.L., Marrs, J.C., (n.d.). Dapagliflozin for the Treatment of Type 2 Diabetes—Amie McCord Brooks, Stacey M Thacker, 2009.

      [2] Barnett, A. H., Mithal, A., Manassie, J., Jones, R., Rattunde, H., Woerle, H. J., & Broedl, U. C. (2014). Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: A randomised, double-blind, placebo-controlled trial. The Lancet Diabetes & Endocrinology, 2(5), 369–384. https://doi.org/10.1016/S2213-8587(13)70208-0.

      [3] Boeder, S., & Edelman, S. V. (2019). Sodium-glucose co-transporter inhibitors as adjunctive treatment to insulin in type 1 diabetes: A review of randomized controlled trials. Diabetes, Obesity & Metabolism, 21 Suppl 2, 62–77. https://doi.org/10.1111/dom.13749.

      [4] Bommel, E. J. M. van, Muskiet, M. H. A., Tonneijck, L., Kramer, M. H. H., Nieuwdorp, M., & Raalte, D. H. van. (2017). SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome. Clinical Journal of the American Society of Nephrology, 12(4), 700–710. https://doi.org/10.2215/CJN.06080616.

      [5] Brown, E., Rajeev, S. P., Cuthbertson, D. J., & Wilding, J. P. H. (2019). A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes, Obesity & Metabolism, 21 Suppl 2, 9–18. https://doi.org/10.1111/dom.13650.

      [6] Carbone, S., & Dixon, D. L. (2019). The CANVAS Program: Implications of canagliflozin on reducing cardiovascular risk in patients with type 2 diabetes mellitus. Cardiovascular Diabetology, 18(1), 64. https://doi.org/10.1186/s12933-019-0869-2.

      [7] Cefalu, W. T., & Riddle, M. C. (2015). SGLT2 Inhibitors: The Latest “New Kids on the Block”! Diabetes Care, 38(3), 352–354. https://doi.org/10.2337/dc14-3048.

      [8] Chawla, G., & Chaudhary, K. K. (2019). A complete review of empagliflozin: Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes & Metabolic Syndrome, 13(3), 2001–2008. https://doi.org/10.1016/j.dsx.2019.04.035.

      [9] Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023.

      [10] Clar, C., Gill, J. A., Court, R., & Waugh, N. (2012). Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open, 2(5), e001007. https://doi.org/10.1136/bmjopen-2012-001007.

      [11] Diabetes. (n.d.). Retrieved 2 October 2019, from https://www.who.int/news-room/fact-sheets/detail/diabetes.

      [12] Eliasson, B., Ekelund, J., Amberntsson, R., Miftaraj, M., & Svensson, A.-M. (2019). Cardiovascular Disease in Patients with Type 2 Diabetes and in Patients Starting Empagliflozin Treatment: Nationwide Survey. Diabetes Therapy, 10(4), 1523–1530. https://doi.org/10.1007/s13300-019-0632-4.

      [13] Gerich, J. E. (2010). Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications. Diabetic Medicine: A Journal of the British Diabetic Association, 27(2), 136–142. https://doi.org/10.1111/j.1464-5491.2009.02894.x.

      [14] Gomes, M. B., Rathmann, W., Charbonnel, B., Khunti, K., Kosiborod, M., Nicolucci, A., DISCOVER investigators. (2019). Treatment of type 2 diabetes mellitus worldwide: Baseline patient characteristics in the global DISCOVER study. Diabetes Research and Clinical Practice, 151, 20–32. https://doi.org/10.1016/j.diabres.2019.03.024.

      [15] Hsia, D. S., Grove, O., & Cefalu, W. T. (2017). An Update on SGLT2 Inhibitors for the Treatment of Diabetes Mellitus. Current Opinion in Endocrinology, Diabetes, and Obesity, 24(1), 73–79. https://doi.org/10.1097/MED.0000000000000311.

      [16] Isaji, M. (2011). SGLT2 inhibitors: Molecular design and potential differences in effect. Kidney International, 79, S14–S19. https://doi.org/10.1038/ki.2010.511.

      [17] Jaikumkao, K., Pongchaidecha, A., Chatsudthipong, V., Chattipakorn, S. C., Chattipakorn, N., & Lungkaphin, A. (2017). The roles of sodium-glucose cotransporter 2 inhibitors in preventing kidney injury in diabetes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 94, 176–187. https://doi.org/10.1016/j.biopha.2017.07.095.

      [18] Jung, C. H., Jang, J. E., & Park, J.-Y. (2014). A Novel Therapeutic Agent for Type 2 Diabetes Mellitus: SGLT2 Inhibitor. Diabetes & Metabolism Journal, 38(4), 261–273. https://doi.org/10.4093/dmj.2014.38.4.261.

      [19] Kalra, S. (2014). Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Therapy, 5(2), 355–366. https://doi.org/10.1007/s13300-014-0089-4.

      [20] Kaushal, S., Singh, H., Thangaraju, P., & Singh, J. (2014). Canagliflozin: A Novel SGLT2 Inhibitor for Type 2 Diabetes Mellitus. North American Journal of Medical Sciences, 6(3), 107–113. https://doi.org/10.4103/1947-2714.128471.

      [21] Levine, M. J. (2017). Empagliflozin for Type 2 Diabetes Mellitus: An Overview of Phase 3 Clinical Trials. Current Diabetes Reviews, 13(4), 405–423. https://doi.org/10.2174/1573399812666160613113556.

      [22] Lupsa, B. C., & Inzucchi, S. E. (2018). Use of SGLT2 inhibitors in type 2 diabetes: Weighing the risks and benefits. Diabetologia, 61(10), 2118–2125. https://doi.org/10.1007/s00125-018-4663-6.

      [23] Madaan, T., Akhtar, Mohd., & Najmi, A. K. (2016). Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective. European Journal of Pharmaceutical Sciences, 93, 244–252. https://doi.org/10.1016/j.ejps.2016.08.025.

      [24] Mather, A., & Pollock, C. (2011). Glucose handling by the kidney. Kidney International, 79, S1–S6. https://doi.org/10.1038/ki.2010.509.

      [25] Moses, R. G., Colagiuri, S., & Pollock, C. (2014). SGLT2 inhibitors: New medicines for addressing unmet needs in type 2 diabetes. The Australasian Medical Journal, 7(10), 405–415. https://doi.org/10.4066/AMJ.2014.2181.

      [26] Mosley, J. F., Smith, L., Everton, E., & Fellner, C. (2015). Sodium-Glucose Linked Transporter 2 (SGLT2) Inhibitors in the Management Of Type-2 Diabetes: A Drug Class Overview. Pharmacy and Therapeutics, 40(7), 451–462.

      [27] Nasiri-Ansari, Ν., Dimitriadis, G. K., Agrogiannis, G., Perrea, D., Kostakis, I. D., Kaltsas, G., … Kassi, E. (2018). Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovascular Diabetology, 17(1), 106. https://doi.org/10.1186/s12933-018-0749-1.

      [28] Plosker, G. L. (2014). Canagliflozin: A Review of Its Use in Patients with Type 2 Diabetes Mellitus. Drugs, 74(7), 807–824. https://doi.org/10.1007/s40265-014-0225-5.

      [29] Saeed, M. A., & Narendran, P. (2014). Dapagliflozin for the treatment of type 2 diabetes: A review of the literature. Drug Design, Development and Therapy, 8, 2493–2505. https://doi.org/10.2147/DDDT.S50963.

      [30] Satoh, H. (2018). Pleiotropic effects of SGLT2 inhibitors beyond the effect on glycemic control. Diabetology International, 9(4), 212–214. https://doi.org/10.1007/s13340-018-0367-x.

      [31] Scheen, A. J. (2015). Pharmacodynamics, Efficacy and Safety of Sodium–Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs, 75(1), 33–59. https://doi.org/10.1007/s40265-014-0337-y.

      [32] Skelley, J. W., Carter, B. S., & Roberts, M. Z. (2018). Clinical potential of canagliflozin in cardiovascular risk reduction in patients with type 2 diabetes. Vascular Health and Risk Management, 14, 419–428. https://doi.org/10.2147/VHRM.S168472.

      [33] Staels, B. (2017). Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. American Journal of Cardiology, 120(1), S28–S36. https://doi.org/10.1016/j.amjcard.2017.05.013.

      [34] Tanaka, A., & Node, K. (2017). Emerging roles of sodium–glucose cotransporter 2 inhibitors in cardiology. Journal of Cardiology, 69(3), 501–507. https://doi.org/10.1016/j.jjcc.2016.10.019.

      [35] Thomas, M. C., & Cherney, D. Z. I. (2018). The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia, 61(10), 2098–2107. https://doi.org/10.1007/s00125-018-4669-0.

      [36] Thynne, T., & Doogue, M. (2014). Sodium-glucose co-transporter inhibitors. Aust Prescr, 37, 14–6. https://doi.org/10.18773/austprescr.2014.005.

      [37] Van Baar, M. J. B., van Ruiten, C. C., Muskiet, M. H. A., van Bloemendaal, L., IJzerman, R. G., & van Raalte, D. H. (2018). SGLT2 Inhibitors in Combination Therapy: From Mechanisms to Clinical Considerations in Type 2 Diabetes Management. Diabetes Care, 41(8), 1543–1556. https://doi.org/10.2337/dc18-0588.

      [38] Vasilakou, D., Karagiannis, T., Athanasiadou, E., Mainou, M., Liakos, A., Bekiari, E., … Tsapas, A. (2013). Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Annals of Internal Medicine, 159(4), 262–274. https://doi.org/10.7326/0003-4819-159-4-201308200-00007.

      [39] Vivian, E. M. (2014). Sodium-glucose co-transporter 2 (SGLT2) inhibitors: A growing class of antidiabetic agents. Drugs in Context, 3. https://doi.org/10.7573/dic.212264.

      [40] Whalen, K., Miller, S., & Onge, E. S. (2015). The Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Treatment of Type 2 Diabetes. Clinical Therapeutics, 37(6), 1150–1166. https://doi.org/10.1016/j.clinthera.2015.03.004.

      [41] Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311–321. https://doi.org/10.1016/j.diabres.2011.10.029.

      [42] Wilding, J. P. H. (2014). The role of the kidneys in glucose homeostasis in type 2 diabetes: Clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism, 63(10), 1228–1237. https://doi.org/10.1016/j.metabol.2014.06.018.

      [43] Wiviott, S. D., Raz, I., Bonaca, M. P., Mosenzon, O., Kato, E. T., Cahn, A., … DECLARE–TIMI 58 Investigators. (2019). Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 380(4), 347–357. https://doi.org/10.1056/NEJMoa1812389.

      [44] Zelniker, T. A., Wiviott, S. D., Raz, I., Im, K., Goodrich, E. L., Bonaca, M. P., … Sabatine, M. S. (2019). SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. The Lancet, 393(10166), 31–39. https://doi.org/10.1016/S0140-6736(18)32590-X.

      [45] Zhang, Y.-J., Han, S.-L., Sun, X.-F., Wang, S.-X., Wang, H.-Y., Liu, X., … Xia, L. (2018). Efficacy and safety of empagliflozin for type 2 diabetes mellitus. Medicine, 97(43). https://doi.org/10.1097/MD.0000000000012843.


 

View

Download

Article ID: 30308
 
DOI: 10.14419/ijm.v8i1.30308




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.