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Abstract 
 

In this paper, the problem of steady slip magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a nonlinear permeable 

shrinking surface in a heat generating fluid is studied. The transformed boundary layer equations are then solved numerically using the 

bvp4c function in MATLAB solver. Numerical results are obtained for various values of the magnetic parameter, the slip parameter and 

the suction parameter. The skin friction coefficients, the heat transfer coefficients, as well as the velocity and temperature profiles for 

various values of parameters are also obtained and discussed. 
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1. Introduction 

In the problems of shrinking and stretching surfaces, the main assumption of many studies is the "no slip condition" on the surface. How-

ever, in certain situations this assumption is no longer valid. The flow of a viscous fluid with slip past a stretching surface has been discussed 

by many authors in different aspects [1 – 6]. The slip magnetohydrodynamic (MHD) flow and heat transfer problem over a nonlinear 

permeable stretching surface with chemical reaction has been studied by Yazdi et al. [3]. Later, Reddy et al. [4] investigated a two-dimen-

sional MHD boundary layer flow of a Maxwell nanofluid over an exponentially stretching surface in the presence of velocity slip and 

convective boundary conditions. Hayat et al. [5] solved numerically via Runge-Kutta-Fehlberg method the problem of heat transfers in 

MHD stagnation-point flow of Cross fluid towards a stretching surface. Recently, Sravanthi and Gorla [6] examined the effects of heat 

source/sink and chemical reaction on a steady MHD Maxwell nanofluid over a porous exponentially stretching sheet with suction and 

blowing using the homotopy analysis method (HAM).  

Meanwhile, for the shrinking surface, several researchers have studied the slip problems, namely, Jain and Choudhary [7], Nandeppanavar 

[8] and Ahmad et al. [9]. Jain and Choudhary [7] studied the effect of magnetohydrodynamic on boundary layer flow over an exponentially 

shrinking permeable sheet with slip condition, placed at the bottom of fluid saturated porous medium, where the setup was subjected to 

suction to contain the vorticity in the boundary layer. Later, Nandeppanavar [8] considered the effect of second order slip of viscous flow 

and heat transfer over a shrinking sheet for both constant and prescribed surface temperatures in his research. Further, Ahmad et al. [9] 

investigated the heat transfer of MHD boundary layer flow over a shrinking sheet with the effect of thermal slip. They transformed the 

nonlinear partial differential equations into nonlinear ordinary differential equations using the Lie group analysis.  

On the other hand, slip problems can also be found in many other aspects, for example, Muhammad and Makinde [10] discussed the 

thermodynamics irreversibility of an unsteady MHD mixed convection with slip and thermal radiation over a permeable surface. Further, 

Eegunjobi and Makinde [11] investigated the combined effects of magnetic field, buoyancy force, velocity slip, suction and injection, 

porous medium permeability, thermal radiation absorption, viscous and Joule heating on MHD mixed convection flow of Casson fluid in 

a vertical channel. Later, Shashikumar et al. [12] studied the Casson nanofluid flow between parallel plates with the effects of second order 

slip and nonlinear thermal radiation. The problem of an unsteady MHD mixed convection flow of nanofluid in a stagnation region of an 

impulsively rotating sphere has been studied by Ahmed and Rashed [13]. Ahmed and Rashed [13] used the Buongiorno’s model and 

considered the effects of slip, thermal radiation and convective boundary conditions.  

The aim of this present study is to solve the problem of slip MHD flow and heat transfer in a heat generating fluid over a nonlinear 

permeable shrinking surface. To the best of our knowledge, this specific problem has not been considered before. 
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2. Mathematical formulation 

Consider a steady MHD flow and heat transfer towards a nonlinear permeable shrinking surface in a heat generating electrically conducting 

fluid. It is assumed that the velocity of the shrinking surface is uw(x), while the velocity of the slip flow is us(x) and it is also assumed 

that the mass transfer velocity is vw(x). Further, it is assumed that the temperature of the surface (sheet) is Tw(x), while the uniform 

temperature of the ambient fluid is T∞. The fluid is bounded by the shrinking sheet at y = 0 and the flow occupies the space y > 0. A 

variable magnetic field of strength B(x) is applied in the transverse direction to the flow. The schematic diagram of the problem is shown 

in Figure 1. 

 

 
Fig. 1: Physical Model and Coordinate System. 

 

The electric and induced magnetic fields are negligibly small. Following Yazdi et al. [3] and Merkin [14], the basic equations for the 

problem under consideration by applying the boundary layer approximations can be written as 
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subject to the boundary conditions 

 
u = ±[uw(x) + us(x)], v = vw(x), T = Tw(x) at y = 0

u → 0, T → T∞ as y → ∞ 
                                                                                                                              (4) 

 

where  is the kinematic viscosity, ρ is the fluid density,  is the electrical conductivity, α is the thermal diffusivity of the fluid, cp is the 

specific heat capacity, Q0 is the volumetric ratio of generation of heat and p is the exponent. The last term of Eq. (3) refers to the local 

power-law temperature dependence (see Merkin [15]). The slip velocity  us(x) is assumed to be proportional to the local wall shear stress 

as follows (see Gal-el-Hak [16]): 

 

us(x) = l(x) (
∂u

∂y
)

y=0
                                                                                                                                                                                     (5) 

 

where l(x) is slip as a proportional constant of the velocity slip. 

In order that Eqs. (1)-(3) subject to the boundary conditions (4) admit a similarity solution, we assume that uw(x), Tw(x), B(x) and l(x) 

are given as (see Yazdi et al. [3]), 

 
uw(x) = u0xm, Tw(x) = T∞ + T0xn,

B(x) = B0x(m−1)/2, l(x) = Kx(1−m)/2 
                                                                                                                                                         (6) 

 

where u0 is a constant rate parameter of the stretching/shrinking surface velocity, m is the nonlinear shrinking parameter, n is a constant, 

T0 is the characteristic temperature, B0 is the constant applied magnetic field and K = [2/(m + 1)u0]1/2 is the constant slip parameter. 

By using a similarity transformation, the basic equations (1)-(3) are transformed into ordinary differential equations. Thus, the mathematical 

analysis of the problem can be simplified by introducing the following dimensionless variables (7): 
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                                                                                                                            (7) 

 

Substituting (7) into Eqs. (2) and (3), we obtain the following nonlinear similarity equations: 

 

f ′′′ + ff ′′ − (
2m
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) f ′2
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) f ′ = 0                                                                                                                                                          (8) 
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1

Pr
θ′′ + fθ′ − (

2n

m+1
) f ′θ + Qx(p−1)n−m+1θp = 0.                                                                                                                                        (9) 

 

The boundary conditions (4) now become 

 
f(0) = s, f ′(0) = ±[1 + Kf ′′(0)], θ(0) = 1

f ′(η) → 0, θ(η) → 0 as η → ∞ 
                                                                                                                                               (10) 

 

where s is the suction/injection parameter, M is the magnetic parameter, Q is the Eckert number and Pr is the Prandtl number. Note that s 

negative is for mass injection and s positive is for mass suction.  

It is noticed that for the energy equation (9) to have a similarity solution, we have to take  

 

n =
m−1

p−1
 .                                                                                                                                                                                                      (11) 

 

and it becomes 

 
1

Pr
θ′′ + fθ′ − (

2n

m+1
) f ′θ + Qθp = 0.                                                                                                                                                           (12) 

3. Results and discussion 

The nonlinear ordinary differential equations (8) and (12) subject to the boundary conditions (10) have been solved numerically by the 

bvp4c function in MATLAB software. The equations are solved simultaneously. The present numerical results are compared with the 

results by Javed et al. [17] and Yazdi et al. [3] to check on the accuracy of the results obtained. Javed et al. [17] solved their problem 

numerically using the finite-difference scheme, known as the Keller box method, while Yazdi et al. [3] used the Dormand-Prince pair and 

shooting method. The comparison results for the velocity gradients are shown in Table 1 and it is found that there is a very good agreement 

between the present results and the previously published ones.  

 
Table 1: Comparison of the Velocity Gradient at the Wall |f(0)| for the Stretching Case 

m s K M Javed et al. [17] Yazdi et al. [3]  Present  

0 0 0 0 0.6275 0.6275 0.6275 

0.2 0 0 0 0.7668 0.7667 0.7667 

0.5 0 0 0 0.8895 0.8896 0.8895 
0.75 0 0 0 0.9539 0.9540 0.9538 

 

Figures 2 and 3 show the variations of the skin friction coefficient f"(0) with suction parameter, s, for different values of the magnetic 

parameter, M, and the velocity profiles for various M, respectively. It is found that the skin friction coefficient in Figure 2 increases with 

M due to the increase in Lorentz force, which opposes the flow. This leads to the increase in the skin friction coefficient and decelerates 

the velocity profiles as shown in Figure 3. However, in Figure 4, the opposite effect occurs for the local Nusselt number when the magnetic 

parameter is applied. It is observed that both the skin friction coefficient and also the local Nusselt number increase with the suction 

parameter, s. The changes in the local Nusselt number for various magnetic parameter M is not significant as suction parameter s increases. 

This is due to magnetic parameter M and suction parameter s affect the fluid flow directly, but not the temperature, as can be seen clearly 

in Eqs. (8) – (9) and boundary conditions (10). 

 

 
Fig. 2: Variation of the Skin Friction Coefficient with s for Various Values of M. 

 

 
Fig. 3: Velocity Profiles for Various Values of M. 
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Fig. 4: Variation of the Local Nusselt Number with s for Various Values of M. 

 

 
Fig. 5: Variation of the Skin Friction Coefficient with s for Various Values of K. 

 

 
Fig. 6: Variation of the Local Nusselt Number with s for Various Values of K. 

 

 
Fig. 7: Velocity Profiles for Various Values of K. 

 

The effects of the slip parameter, K and the suction parameter, s on the skin friction coefficient and the local Nusselt number are displayed 

in Figures 5 and 6, respectively. Both the skin friction coefficient and the local Nusselt number are found to decrease as K increases. 

Physically, the increase in slip parameter has reduced the velocity gradient as displayed in Figure 7. Due to this phenomenon, this has 

decreased the fluid activity and the heat transfer rate on the surface. The changes in the heat transfer rate on the surface in Figure 6 becomes 

less significant when the value of s becomes larger. 
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Fig. 8: Velocity Profile for Various Values of s. 

 

 
Fig. 9: Temperature Profiles for Various Values of s. 

 

The effects of suction parameter s on the velocity profiles and temperature profiles are shown in Figures 8 and 9, respectively. Suction 

parameter has the effect of thinning the velocity and temperature profiles. This is due to suction reduces the fluid flow and increases 

resistance to the transport phenomena, hence thinning the profiles. Therefore, this increases the surface heat transfer, as displayed in Figure 

10. Figure 10 also shows the effect of the Eckert number, Q on the heat transfer rate at the surface with other parameters been fixed. An 

increment in Q reduces heat in the fluid flow. Consequently, the rate of heat transfer at the surface decreases with Q. 

 

 
Fig. 10: Variation of the Local Nusselt Number with s for Various Values of Q. 

4. Conclusion 

A study is performed for the problem of steady slip magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a nonlinear 

shrinking surface. The effect of all related parameters are studied numerically via bvp4c function built in MATLAB solver. The increase 

of magnetic parameter will lead to an increase of the skin friction coefficient, however, the magnetic parameter decreases the surface heat 

transfer. In this present study, the skin friction coefficient and the surface heat transfer increase with the suction parameter. When the value 

of suction parameter becomes larger, the changes in the skin friction coefficient and the surface heat transfer are not that significant as 

magnetic parameter, slip parameter and the Eckert number are applied. It is also observed that higher magnetic parameter, slip parameter 

and suction parameter has the effect of thinning the boundary layer. 
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Nomenclature  

Roman letters 

B0  = constant applied magnetic field 

B(x) = variable magnetic field 
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cp  = specific heat capacity 

f() = dimensionless stream function 

f ′′(0)
 
 = skin friction coefficient 

K = constant slip parameter 

l(x) = slip as a proportional constant of the velocity slip 

m = nonlinear shrinking parameter 

M  = magnetic parameter 

n = constant 

p = exponent 

Pr  = Prandtl number 

Q = Eckert number 

Q0 = volumetric ratio of generation of heat 

s  = suction/injection parameter 

T  = fluid temperature 

T0 = characteristic temperature 

Tw(x) = temperature of the surface 

T = uniform temperature of the ambient fluid 

u0 = constant rate parameter of the shrinking surface 

us(x)
 
 = velocity of the slip flow 

uw(x)
 
 = velocity of the shrinking surface 

u, v  = velocity components along the x and y directions, respectively 

vw(x)
 
 = mass transfer velocity  

x, y
 
 = Cartesian coordinates along the surface and normal to it, respectively 

 

Greek symbols 

 = thermal diffusivity of the fluid 


 
 = similarity variable  

() = dimensionless temperature 

−θ′(0)
 
 = local Nusselt number 

  = kinematic viscosity  


 
 = density  

  = electrical conductivity 

 

Subscripts 

w  = condition at the surface 

 = condition outside of boundary layer 

 

Superscript 

′ = differentiation with respect to  
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