Analysis and cloning of CP 1102 gene isolated from a medicinal plant

  • Authors

    • Hira Mubeen University of South Asia, Lahore, Pakistan
    • Shahid Raza University of South Asia, Lahore, Pakistan
    2017-05-12
    https://doi.org/10.14419/ijbr.v5i1.6361
  • Pdnor, Latex, Terminator, Expression Vector.
  • Calotropis procera is a common medicinal plant with various properties related with its latex which functions as a rich source of biologically active compounds. Latex is chemically diverse and the chemical and biochemical differences are considerable for different plant fluids. This plant can produce large quantity of latex. The study was performed to clone the CP1102 terminator region of gene in general expression vector PTZ57R/T. The objective was to make a variant of pJITT166 (size ~5.8kb) containing CP1102 terminator sequence to study different expression levels in future. The fragment of 341bp size was isolated. The pDNOR vector containing CP1102 terminator sequence was isolated and amplified by PCR. The forward and reverse primer specific to CP1102 terminator sequence which can amplify this sequence are designed by using bioinformatics tools.

  • References

    1. [1] Goyal, M., & Mathur, R. (2011). Antimicrobial potential and phytochemical analysis of plant extracts of Calotropis procera. International journal of drug discovery and herbal research, 1(3), 138-143.

      [2] Shivkar, Y. M., & Kumar, V. L. (2003). Anthelmintic activity of latex of Calotropis procera. Pharmaceutical biology, 41(4), 263-265. http://dx.doi.org/10.1076/phbi.41.4.263.15666.

      [3] Kumar, V. L., & Basu, N. (1994). Anti-inflammatory activity of the latex of Calotropis procera. Journal of Ethnopharmacology, 44(2), 123-125. http://dx.doi.org/10.1016/0378-8741(94)90078-7.

      [4] Kumar, V. L., & Roy, S. (2007). Calotropis procera latex extract affords protection against inflammation and oxidative stress in Freund's complete adjuvant-induced monoarthritis in rats. Mediators of inflammation, 2007. http://dx.doi.org/10.1155/2007/47523.

      [5] Choedon, T., Mathan, G., Kumar, V., Arya, S., & Kumar, V. L. (2006). Citation of This Article. World J Gastroenterol, 12(16), 2517-2522. http://dx.doi.org/10.3748/wjg.v12.i16.2517.

      [6] Dewan, S. O. N. E. E. R. A., Kumar, S. U. R. E. S. H., & Kumar, V. L. (2000). Antipyretic effect of latex of Calotropis procera. Indian Journal of Pharmacology, 32(3), 252-252.

      [7] Shrivastava, A., Singh, S., & Singh, S. (2013). Phytochemical investigation of different plant parts of Calotropis procera. International Journal of Scientific and Research Publications, 3(3).

      [8] Cox, P. A., & Balick, M. J. (1994). The ethnobotanical approach to drug discovery. Scientific American (June), 60-65.

      [9] Mukherjee, B., Bose, S., & Dutta, S. K. (2010). Phytochemical and pharmacological investigation of fresh flower extract of Calotropis procera Linn. International Journal of Pharmaceutical Sciences and Research (IJPSR), 1(12), 182-187.

      [10] Oh, S. K., Kang, H., Shin, D. H., Yang, J., & Han, K. H. (2000). Molecular cloning and characterization of a functional cDNA clone encoding isopentenyl diphosphate isomerase from Hevea brasiliensis. Journal of plant physiology, 157(5), 549-557. http://dx.doi.org/10.1016/S0176-1617(00)80111-X.

      [11] Van Parijs, J., Broekaert, W. F., Goldstein, I. J., & Peumans, W. J. (1991). Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183(2), 258-264. http://dx.doi.org/10.1007/BF00197797.

      [12] Elgamal, M. H. A., Hanna, A. G., Morsy, N. A., Duddeck, H., Simon, A., Gáti, T., & Tóth, G. (1999). Complete 1H and 13C signal assignments of 5α-cardenolides isolated from Calotropis procera R. BR. Journal of molecular structure, 477(1), 201-208. http://dx.doi.org/10.1016/S0022-2860(98)00615-2.

      [13] De Freitas, C. D. T., Nogueira, F. C. S., Vasconcelos, I. M., Oliveira, J. T. A., Domont, G. B., & Ramos, M. V. (2011). Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense. Plant Physiology and Biochemistry, 49(7), 738-743. http://dx.doi.org/10.1016/j.plaphy.2011.01.027.

      [14] Ramos, M. V., Grangeiro, T. B., Freire, E. A., Sales, M. P., Souza, D. P., Araújo, E. S., & Freitas, C. D. (2010). The defensive role of latex in plants: detrimental effects on insects. Arthropod-Plant Interactions, 4(1), 57-67. http://dx.doi.org/10.1007/s11829-010-9084-5.

      [15] Abbas, B., El Tayeb, A. E., & Sulleiman, Y. R. (1992). Calotropis procera: feed potential for arid zones. Veterinary Record, 131(6), 132-132. http://dx.doi.org/10.1136/vr.131.6.132-a.

      [16] Varshney, A. C., & Bhoi, K. L. (1988). Cloth from bast fibre of the Calotropis procera (Aak) plant. Biological wastes, 26(3), 229-232. http://dx.doi.org/10.1016/0269-7483(88)90168-1.

      [17] Sakthivel, J. C., Mukhopadhyay, S., & Palanisamy, N. K. (2005). Some studies on Mudar fibers. Journal of industrial textiles, 35(1), 63-76. http://dx.doi.org/10.1177/1528083705053390.

      [18] Li, X. B., Fan, X. P., Wang, X. L., Cai, L., & Yang, W. C. (2005). The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. The Plant Cell, 17(3), 859-875. http://dx.doi.org/10.1105/tpc.104.029629.

      [19] Pu, L., Li, Q., Fan, X., Yang, W., & Xue, Y. (2008). The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics, 180(2), 811-820. http://dx.doi.org/10.1534/genetics.108.093070.

      [20] Wang, H. Y., Wang, J., Gao, P., Jiao, G. L., Zhao, P. M., Li, Y., & Xia, G. X. (2009). Downâ€regulation of GhADF1 gene expression affects cotton fibre properties. Plant biotechnology journal, 7(1), 13-23. http://dx.doi.org/10.1111/j.1467-7652.2008.00367.x.

  • Downloads

  • How to Cite

    Mubeen, H., & Raza, S. (2017). Analysis and cloning of CP 1102 gene isolated from a medicinal plant. International Journal of Biological Research, 5(1), 26-29. https://doi.org/10.14419/ijbr.v5i1.6361