Multidrug resistant *Salmonella* sp isolated from chicken

Atere *, Ayowole Victor

Department of Microbiology, Ekiti State University, P. M. B. 5363, Ado-Ekiti, Nigeria

*Corresponding author E-mail: victor_efosa001@yahoo.com

Abstract

Antibiotic resistance has been a major problem in combating *Salmonella* in poultry, this research was designed to determine the antibiotic resistance level of *Salmonella* isolated from freshly dead chicken. A total of 107 freshly dead chicken were collected from 23 different farms, birds were necropsied, liver and trachea were collected, *Salmonella* were recovered from the samples using peptone water, Rappaport-Vassiliadis R10 Broth and *Salmonella-Shigella* agar. Pure culture was identified using cultural, morphological and biochemical characteristics. The pure isolates were subjected to antibiotic test using disc diffusion method. Sixteen isolates of *Salmonella* were recovered, 3 of which were from the trachea while 13 were recovered from the liver. All of the *Salmonella* isolates were resistant to Ampicillin 100% while Nitrofuratoin was least resisted with only 37.5% of the *Salmonella* isolates showing resistance. The antibiotic resistant pattern often observed in this study were AMP, AUG, TLY with 75% (12); AMP, AUG, TLY, CPR, ENR, 50% (8); while 6.3% (1) was resistant to all of the antibiotics tested. This result showed that there is an emergence of multi-resistance *Salmonella* in poultry, therefore it is important to carry out sensitivity test before administration of antibiotics in order to control poultry salmonellosis.

Keywords: *Salmonella*; Poultry Feed; Resistance; Salmonellosis.

1. Introduction

In animal production systems, antibiotics are used for both therapeutic and non-therapeutic purposes. Non-therapeutically, antibiotics are used as growth promoters in livestock and poultry (Johnson, 2001; McEwen and Fedorka-Cray, 2002). Antibiotics are also used to improve the general hygiene in barns. This non-therapeutic use of antibiotics in feed may lead to increased levels of antibiotic resistance in both the pathogens and fecal micro flora of poultry (Witte 2000; Van-Veen et al., 2001). The development of resistance in poultry pathogens may undermine the efficacy and utility of antibiotics used to control these infections. Infections of domestic poultry with *Salmonella* are expensive both for the poultry industry and for society as a whole (Amand et al., 2013). Some *Salmonella* serovars can affect multiple host species and it makes a serious problem according to the food chain (Jung et al., 2011). There is evidence that eggs and poultry meat are two of the most important sources of *Salmonella* associated with human infection (Arsenal et al., 2007). *Salmonella* species isolated from clinical and environmental sources has shown an increased resistance to antibiotics since it has developed a number of elaborate mechanisms for acquiring and disseminating plasmids, transposons, plagues, and other genetic determinants (Harts and Kaariuki, 1998). Therefore, this study focuses on the resistance of *Salmonella* species isolated from freshly dead chicken.

2. Materials and methods

2.1. Sample collection

One hundred and seven (107) freshly dead chicken were collected from 23 different farms in Ondo and Ekiti State (South Western, Nigeria) between January and June 2015. The samples were conveyed to the laboratory for analysis within 2 hours of collection.

2.2. Bacteriology

The freshly dead chicken were necropsied, the liver and trachea were collected. Swabs were collected aseptically from the trachea and the liver for bacteria isolation. The swabs collected was activated in buffered peptone water for 1 hour at 37°C. A loop full of the activated organisms in the buffered peptone water was inoculated into a selective enrichment medium Rappapport-Vassiliadis R10 Broth. Thereafter, a loop full of the activated organism in the Rappaport-Vassiliadis broth was inoculated on *Salmonella-Shigella* agar and nutrient agar (Biomark) and incubated for 24 hours at 37°C temperature in an incubator (Royalcare England. DNP 9022A) (Ramya et al., 2012). Further confirmation of *Salmonella* was done by Gram reaction, motility, catalase, oxidase, nitrate, urease, indole, methyl red, Voges-Proskauer, and citrate tests (Atere et al., 2015a).

2.3. Antibiotic Susceptibility test

In vitro susceptibility of the identified *Salmonella* isolates against antimicrobial agents was determined by the standard disk diffusion procedure. The organisms were standardized using McFarland standard at the absorbance of 450nm. The samples were inoculated on Muller-Hinton agar. The following antimicrobial agents were tested: Cefazidime (CAZ 30μg), Cefuroxime (CRX 30μg), Gentamicin (GEN 10μg), Ciprofloxacin (CPR 5μg), Ofloxacin (OFL 5μg), Nitrofurantoin (NIT 300μg), Ampicillin (AMP 10μg), Amoxicillin/Clavulinate (AUG 30μg), Enrofloxacin (ENR 10μg), Furasol (FUR 10μg), Tylosin (TLY 10μg) and Doxycycline (DOX 10μg). Following the application of antimicrobial discs, the plates were incubated at 37 °C for 24 h in an incubator (Royalcare England. DNP 9022A). The diameters of the zones of inhibition (DPI) were measured in millimeters.
were measured (millimetres) and were compared to internationally accepted standard to determine the susceptibility or resistance of the isolate (Atere et al., 2015a).

3. Results

Salmonella was recovered from 12 of the 23 farms. A total of 16 Salmonella isolates were recovered, 3 of the isolates was isolated from the trachea while 13 were from the liver of the birds. The cultural characteristics of the isolates were small round pale convex colony on nutrient agar and black spot colony on Salmonella-Shigella agar. They are gram negative rods, catalase positive, methylred positive and are motile. The isolates were negative to indole, citrate, oxidase, urease and voges-proskauer.

The antibiotic diagrams of the Salmonella isolates showed that all showed 100% resistance to Amoxicillin while Nitrofurantoin was least resisted with only 37.5% of the Salmonella isolates showing resistance (Table 1). All the isolates of Salmonella recovered in this study were resistant to at least four antibiotic. Only one of the isolates showed resistance to only 4 antibiotics while all others were resistant to between 5 and 12 antibiotics. One of the Salmonella isolates showed resistance to all the antibiotics used in this research (Table 2). The pattern of antibiotic resistance showed that 75% of the isolates had resistance pattern AMP, AUG, TLY, CPR, ENR pattern.

Table 1: Percentage (%) Antibiotic Resistant of Salmonella Sp. Isolated from Chicken

<table>
<thead>
<tr>
<th>Isolates</th>
<th>AMP</th>
<th>AUG</th>
<th>OFL</th>
<th>TLY</th>
<th>CPR</th>
<th>ENR</th>
<th>DOX</th>
<th>FUR</th>
<th>GEN</th>
<th>NIT</th>
<th>CAZ</th>
<th>CRX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trachea</td>
<td>100</td>
<td>100</td>
<td>33.3</td>
<td>100</td>
<td>100</td>
<td>33.3</td>
<td>66.7</td>
<td>66.7</td>
<td>33.3</td>
<td>33.3</td>
<td>100</td>
<td>66.7</td>
</tr>
<tr>
<td>Liver</td>
<td>92.3</td>
<td>100</td>
<td>76.9</td>
<td>76.9</td>
<td>61.5</td>
<td>92.3</td>
<td>92.3</td>
<td>61.5</td>
<td>84.6</td>
<td>38.5</td>
<td>53.8</td>
<td>53.8</td>
</tr>
<tr>
<td>Total</td>
<td>93.8</td>
<td>100</td>
<td>68.8</td>
<td>68.8</td>
<td>68.8</td>
<td>81.2</td>
<td>87.5</td>
<td>62.5</td>
<td>75.0</td>
<td>37.5</td>
<td>62.5</td>
<td>56.3</td>
</tr>
<tr>
<td>n=15</td>
<td>100</td>
<td>100</td>
<td>33.3</td>
<td>100</td>
<td>100</td>
<td>33.3</td>
<td>66.7</td>
<td>66.7</td>
<td>33.3</td>
<td>33.3</td>
<td>100</td>
<td>66.7</td>
</tr>
</tbody>
</table>

Key: Ampicillin (AMP), Amoxicillin/Clavulinate (AUG), Ofloxacin (OFL), Tylosin (TLY), Ciprofloxacin (CPR), Enrofloxacin (ENR), Doxycycline (DOX), Fursol (FUR), Gentamicin (GEN), Nitrofurantoin (NIT), Cefazidime (CAZ) and Cefuroxime (CRX).

Table 2: Pattern of Antibiotic Resistance in Salmonella Isolates

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>No of Isolates</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP, AUG, TLY</td>
<td>12</td>
<td>75.0</td>
</tr>
<tr>
<td>CAZ, CRX, GEN</td>
<td>6</td>
<td>37.5</td>
</tr>
<tr>
<td>NIT, OFL, GEN</td>
<td>4</td>
<td>25.0</td>
</tr>
<tr>
<td>DOX, FUR, ENR, TLY</td>
<td>5</td>
<td>31.3</td>
</tr>
<tr>
<td>AMP, AUG, TLY, CPR, ENR</td>
<td>8</td>
<td>50.0</td>
</tr>
<tr>
<td>FUR, ENR, CPR, TLY</td>
<td>4</td>
<td>25.0</td>
</tr>
<tr>
<td>GEN, CRX, NIT, CAZ</td>
<td>3</td>
<td>18.8</td>
</tr>
<tr>
<td>AMP, AUG, OFL, TLY, CPR, ENR, NIT, GEN, CRX, DOX, CAZ, FUR</td>
<td>1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Key: Ampicillin (AMP), Amoxicillin/Clavulinate (AUG), Ofloxacin (OFL), Tylosin (TLY), Ciprofloxacin (CPR), Enrofloxacin (ENR), Doxycycline (DOX), Fursol (FUR), Gentamicin (GEN), Nitrofurantoin (NIT), Cefazidime (CAZ) and Cefuroxime (CRX).

4. Discussion

Salmonellosis is an infectious disease of humans and animals caused by Salmonella sp a facultative intracellular pathogen causing localized or systemic infections, in addition to a chronic asymptomatic carrier state. Infection of Salmonella in poultry is often referred to as fowl typhoid, which affects birds of all ages (Ramya et al., 2012). Salmonella is most found in the gastro intestinal tract of birds, however, because of their invasive mechanism, they get their way into tissues of the host. In infected birds, the liver serves as the resting place for the organism (Johnston, 2001). Since Salmonella infection could be systemic, isolating Salmonella from the trachea of the birds is possible. In previous reports Salmonella had been isolated from the tissue, lungs, liver gastro-intestinal tract of the infected birds (Hernandez et al., 2005).

Salmonella in poultry is traceable to the poultry feeds and water, as well as the hygiene of the poultry (environmental factor) and sometimes from humans (Roy et al., 2006). Atere et al. (2015a) reported isolating Salmonella from the poultry feeds, this is an indication that the type of feed or the hygiene of the feeds can have a great effect on the microbial contamination of the poultry which can later transfer an effect of economic importance on the farmer.

The antibiotic susceptibility of the isolates of Salmonella in this research showed multiple resistance where they resist at least four antibiotics. In other research where samples are collected from poultry, the resistance is not as high as observed in this study. Nchawa and Bassey (2015) reported the antibiotic susceptibility of Salmonella isolates in poultry where it was found that 72.9% resisted AMP, AUG, 29.4% and CAZ 19.5%, this result is lower to what was observed for this study. Oluyede and Oyiolye (2013) also reported the antibiotic resistance of Salmonella isolated from poultry as AUG 73.5%, OFL 20.9% and CPR 35.3% which is also lower compare to what was observed in this research. The high level of resistance observed in this research may have been as a result of the type of sample collected and the effect of misuse of antibiotics by the farmer. Another possible reason for the multiple resistance of Salmonella could be attributed to the proliferation of fake or sub-standard drug in Nigeria (Dashe et al., 2013). The high sensitivity of the isolated organisms to Nitrofurantoin, could be related to less frequent usage of this drug for therapeutic purposes, therefore reducing the chance of resistance to develop (Mohammad et al., 2012).

The major factors responsible for antimicrobial resistance in bacteria is misuse of antibiotic, crowding and poor sanitation. These factors are typical of intensive poultry farming and explain the high prevalence and degree of resistance in Salmonella of poultry origin (Van-den Bogaard et al., 2000). The source of the resistance may also have come from the poultry feeds consumed, since antibiotics are used as feed additives to improve feed efficiency and weight gain (Tabatabaei and Nasirian, 2003; Helmuth and Hensel, 2004). Many antibiotics are also used in feed and water to control disease. Indiscriminate use of antibiotics has provided selective pressure for the emergence of drug resistant strains of bacteria associated with poultry products. In a research carried out by Atere et al. (2015b), a similar report was given on the antibiotic susceptibility of Escherichia coli which is far higher in poultry (freshly dead chicken) than in the samples isolated from environment. The reason for the high level of antibiotic resistance was attributed to misuse of antibiotics before clinical reports.

In conclusion, there is a need to create more awareness among the poultry farmers in Nigerian about the proper use of antibiotics, importance of clinical and laboratory test before a decision is made to prescribe antibiotics, proper hygiene and efficient use of feed. Since Salmonella is zoonotic, it is of public health importance because these resistance gene can easily be transferred to human population.
Acknowledgements

The Author appreciate the assistance received from Dr. O. S Ayo, Dr. O. A. Ajurojo and Mr. O. J. Bello of Metrovet Veterinary Hospital Ado-Ekiti, Ekiti State for their assistance during collection of samples.

References

