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Abstract 
 

The rapid adoption of Healthcare Internet of Things (HIoT) technologies has increased the exposure of safety-critical medical infrastruc-

tures to sophisticated cyberattacks, while simultaneously imposing strict constraints on availability, privacy, and false alarm tolerance. 

Traditional network-centric intrusion detection systems (IDSs) struggle to reliably detect stealthy, low-rate attacks in healthcare environ-

ments, where encrypted traffic and predictable clinical communication patterns limit observability. This paper proposes a lightweight multi-

modal intrusion detection framework for HIoT networks that jointly analyzes network flow metadata and device telemetry using structured 

feature fusion and ensemble meta-learning. By integrating communication behavior with device-level operational regularity, the framework 

provides a more comprehensive representation of system activity without relying on payload inspection. An extensive evaluation was 

conducted using heterogeneous IoT and botnet datasets, including TON_IoT, IoT-23, and MedBIoT, under realistic conditions of class 

imbalance. Experi-mental results demonstrate that the proposed framework achieves 97.1% detection accuracy and 96.5% F1-score, out-

performing state-of-the-art network-only IDS baselines. Most notably, the framework reduces the false positive rate to 2.4%, representing 

a relative reduction of over 38% compared to strong deep learning baselines. Attack-wise analysis shows the most significant performance 

gains for stealthy and low-rate attack classes, where network-centric IDSs exhibit substantial degradation. Ablation studies confirm that 

device telemetry im-proves recall for stealthy threats, while ensemble meta-learning stabilizes predictions and suppresses false alarms. 

Latency and scalability measurements further indicate that the framework remains suitable for real-time deployment at healthcare gateway 

nodes. Overall, the results provide strong empirical evidence that multi-modal intrusion detection materially improves detection reliability, 

clinical safety, and robust-ness in healthcare IoT environments, addressing key limitations of existing single-modality IDS approaches. 

 
Keywords: Healthcare Internet of Things (HIoT); Intrusion Detection System; Multi-Modal Security; Device Telemetry; Network Traffic Analysis;  

Ensemble Learning; False Positive Reduction; Cyber-Physical Systems Security. 

1. Introduction 

The rapid integration of the Internet of Things (IoT) into modern healthcare environments has fundamentally transformed the delivery of 

medical services by enabling continuous patient monitoring, intelligent diagnostics, and seamless connectivity among medical devices. 

Healthcare Internet of Things (HIoT) networks now underpin mission-critical clinical functions, including remote vital-sign monitoring, 

infusion pump control, medical imaging systems, and coordinated emergency response workflows. While these technologies significantly 

enhance operational efficiency and the quality of care, they simultaneously expand the cyberattack surface of healthcare infrastructure due 

to their distributed architecture, device heterogeneity, and widespread reliance on legacy or resource-constrained hardware platforms [1], 

[2]. 

Unlike conventional enterprise networks, HIoT environments operate under stringent constraints on availability, reliability, and safety, 

where even brief service interruptions can have direct, potentially life-threatening consequences. Many medical IoT devices are deployed 

with limited computational resources and minimal built-in security mechanisms, rendering them particularly vulnerable to cyber threats 

such as botnet infiltration, denial-of-service (DoS) attacks, ransomware propagation, and unauthorized data exfiltration [3], [4]. Recent 

real-world incidents have demonstrated that cyber intrusions targeting hospital networks can disrupt clinical workflows, delay critical 

treatments, and compromise sensitive patient data, thereby posing severe risks to patient safety and institutional trust [5]. These realities 

underscore the urgent need for intrusion detection solutions that are specifically designed for the unique operational and security require-

ments of healthcare IoT ecosystems. 

Traditional intrusion detection systems (IDS), including signature-based and rule-based approaches, have proven inadequate for protecting 

IoT environments. Signature-based IDSs are inherently ineffective against zero-day and polymorphic attacks. At the same time, rule-based 

systems require continuous manual updates and expert intervention, which is impractical in large-scale, dynamic healthcare deployments 
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[6]. Consequently, artificial intelligence (AI) and machine learning (ML) techniques have emerged as promising alternatives, offering 

adaptive learning capabilities and improved detection of previously unseen attack patterns [7], [8]. 

Despite their potential, existing AI-based intrusion detection solutions for IoT and healthcare networks suffer from critical limitations. 

Most proposed approaches rely predominantly on network-level traffic features—such as packet statistics, flow durations, or protocol 

distributions—while largely neglecting device-level behavioral and operational characteristics [9]. In healthcare settings, however, mali-

cious activities often manifest through subtle deviations in device behavior, including irregular communication periodicity, abnormal op-

erational states, or unexpected resource utilization, without immediately producing conspicuous network anomalies. As a result, single-

modality detection strategies are prone to reduced detection accuracy and elevated false positive rates, which can overwhelm security teams 

and disrupt sensitive clinical operations [10]. 

Moreover, healthcare IoT environments exhibit extreme heterogeneity, encompassing wearable sensors, bedside monitoring devices, im-

aging systems, implantable devices, and mobile medical equipment from diverse vendors and manufacturers. This diversity leads to highly 

variable traffic patterns and operational behaviors across devices and departments, significantly challenging the generalization capability 

of conventional intrusion detection models [11]. In such safety-critical environments, high false alarm rates are particularly problematic, 

as unnecessary device isolation or network restrictions may interfere with patient care and compromise clinical safety. 

To overcome these challenges, this paper adopts a multi-modal intrusion detection paradigm that jointly analyzes network-level commu-

nication behavior and device-level telemetry information. By integrating these complementary perspectives, the proposed approach con-

structs a more comprehensive and context-aware representation of system activity, enabling more accurate discrimination between benign 

clinical behavior and malicious activity. The framework is designed to enhance robustness against traffic variability, device heterogeneity, 

and stealthy attack strategies, while maintaining low false-positive rates, which are essential for healthcare environments. Importantly, the 

proposed detection architecture is lightweight and suitable for deployment at healthcare gateway nodes, ensuring real-time operation with-

out imposing excessive computational or privacy overhead. 

The remainder of this paper is organized as follows. Section II reviews related work on AI-based intrusion detection for IoT and healthcare 

networks. Section III presents the system and threat models. Section IV introduces the proposed multi-modal intrusion detection framework 

and feature fusion strategy. Section V describes the experimental setup and evaluation methodology. Section VI provides an in-depth 

analysis of experimental results and comparative security performance, and Section VII concludes the paper with key findings and direc-

tions for future research. 

2. Literature Review 

Recent advances in intrusion detection for Healthcare Internet of Things (HIoT) networks reflect growing recognition that conventional 

security mechanisms are insufficient to protect safety-critical medical infrastructure. Unlike generic IoT deployments, healthcare environ-

ments impose strict constraints on availability, latency, and false-alarm tolerance while operating with heterogeneous, often resource-

limited medical devices. Existing research in this domain can be broadly categorized into four streams: (i) traditional intrusion detection 

systems, (ii) AI-based network-centric detection, (iii) device telemetry and behavioral analysis, and (iv) emerging multi-modal intrusion 

detection approaches. This section reviews recent contributions in each stream and highlights the limitations that motivate this work. 

2.1. Traditional intrusion detection in healthcare 

Signature-based and rule-driven intrusion detection systems, such as Snort and Suricata, have historically been deployed in hospital net-

works due to their low implementation overhead and deterministic operation [1]. However, multiple studies have demonstrated that these 

systems are poorly suited to healthcare IoT environments, where encrypted traffic, proprietary medical protocols, and dynamic clinical 

workflows significantly reduce detection effectiveness [2], [3]. 

More critically, signature-based IDSs are inherently incapable of detecting zero-day and polymorphic attacks, which pose a substantial 

threat to medical devices characterized by long operational lifecycles and infrequent firmware updates [4]. As a result, traditional IDS 

solutions are increasingly regarded as inadequate for securing modern HIoT infrastructures, particularly in large hospitals and distributed 

care settings. 

2.2. AI-based network-centric intrusion detection 

To overcome the rigidity of rule-based systems, recent research has widely adopted machine learning and deep learning techniques for 

intrusion detection. Supervised learning approaches, including Random Forests, Gradient Boosting, and Support Vector Machines, have 

demonstrated strong performance on benchmark intrusion datasets [5], [6]. Deep learning models—most notably convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs)—have further improved detection accuracy by modeling spatial and temporal 

traffic patterns [7]. 

Since 2022, several studies have applied deep learning to intrusion detection in IoT and healthcare-oriented contexts. Transformer-based 

models and attention mechanisms have been proposed to analyze encrypted IoT traffic and capture long-range dependencies [8]. At the 

same time, hybrid CNN–LSTM architectures have been evaluated in healthcare network scenarios [9]. Despite these advances, the majority 

of such approaches remain network-centric and rely exclusively on traffic features. Consequently, they often suffer from elevated false 

positive rates and limited robustness when attackers mimic legitimate clinical traffic patterns. Moreover, the computational complexity of 

deep models restricts their deployment at resource-constrained healthcare gateways. 

2.3. Device telemetry and behavioral analysis 

Recognizing that many IoT attacks manifest through deviations in device operation rather than overt traffic anomalies, recent work has 

explored telemetry-driven intrusion detection techniques. These approaches analyze device-level indicators such as transmission periodic-

ity, resource utilization, communication stability, and operational state transitions to identify compromised devices [10], [11]. In healthcare 

environments, where medical devices typically exhibit highly predictable behavior, behavioral profiling has proven effective for detecting 

botnet participation and insider threats [12]. 

However, telemetry-only detection suffers from notable limitations. Device heterogeneity, vendor-specific telemetry formats, and incon-

sistent data availability reduce model generalizability across healthcare deployments. Furthermore, attacks that primarily exploit network-
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level vulnerabilities—such as lateral movement or distributed denial-of-service campaigns—may evade detection when relying solely on 

device-side indicators [13]. 

2.4. Multi-modal intrusion detection approaches 

To address the limitations of single-modality detection, recent studies have increasingly explored multi-modal intrusion detection frame-

works that combine multiple data sources. Fusion-based approaches that integrate network traffic with system logs, device telemetry, or 

application-layer features have demonstrated improved robustness and reduced false-positive rates compared to unimodal models [14], 

[15]. 

Recent works (2022–2024) have investigated feature-level and decision-level fusion strategies for IoT security using ensemble learning 

and attention-based fusion mechanisms [16], [17]. While these studies report promising results, most are evaluated in generic IoT or in-

dustrial environments and assume centralized or cloud-based processing. Healthcare-specific constraints—such as stringent false alarm 

tolerance, device criticality, regulatory compliance, and edge-level deployment feasibility—remain largely underexplored. 

As summarized in Table II, the most recent AI-based IDS studies focus on network-centric or generic IoT environments, with limited 

attention to healthcare-specific constraints. 

 
Table 1: Recent AI-Based IDS Studies Relevant to Healthcare IoT (2022–2025) 

Study Year Method Modalities Target Domain Limitation 

[8] 2022 Transformer-based IDS Network IoT Resource intensive 

[9] 2023 CNN–LSTM Network Healthcare Network-only 

[11] 2023 Behavioral ML Telemetry IoT Limited scalability 
[15] 2024 Multi-source ML Network + logs Industrial IoT Not healthcare-specific 

Proposed Work 2025 Ensemble multi-modal ML Network + telemetry Healthcare IoT — 

2.5. Research gap and contribution positioning 

The reviewed literature reveals a clear gap in healthcare-oriented intrusion detection solutions that simultaneously (i) integrate network-

level and device-level observations, (ii) maintain low false positive rates suitable for clinical environments, and (iii) remain lightweight 

enough for deployment at healthcare gateways. Network-centric AI models lack behavioral context; telemetry-only approaches offer lim-

ited visibility into coordinated network attacks; and existing multimodal frameworks rarely address healthcare-specific operational con-

straints. 

Motivated by these limitations, this work proposes a lightweight, multi-modal intrusion detection framework tailored to healthcare IoT 

networks. By fusing network traffic features with device telemetry and employing ensemble learning for robust decision aggregation, the 

proposed approach aims to achieve accurate and reliable intrusion detection under realistic clinical and computational constraints. 

A comparative summary of existing intrusion detection paradigms in healthcare IoT is provided in Table I, highlighting their strengths and 

limitations. 

 
Table 2: Comparison of Intrusion Detection Paradigms in Healthcare IoT 

Approach Data Modalities Strengths Limitations 

Signature-based IDS Packet payloads Low latency, interpretable Ineffective against zero-day attacks 

Network ML IDS Flow-level traffic High accuracy on known attacks High false positives, lacks device context 

Telemetry-based IDS Device behavior Detects internal compromise Limited network visibility 
Deep Learning IDS Traffic sequences Captures complex patterns High computational overhead 

Multi-modal IDS Network + telemetry Improved robustness, lower FPR Limited healthcare-specific studies 

 

Recent multi-modal intrusion detection studies (2023–2024) demonstrate the benefits of combining heterogeneous data sources but are 

primarily evaluated in generic IoT or industrial environments. In contrast, healthcare IoT systems impose stricter constraints related to 

false alarm tolerance, device criticality, and real-time gateway deployment. The proposed framework distinguishes itself by explicitly 

addressing healthcare-specific requirements through modality-aware fusion, ensemble stabilization, and gateway-level feasibility, thereby 

advancing multimodal IDS research toward clinically realistic deployment. 

3. System model and Threat Model 

3.1. Healthcare IoT operational 

Healthcare Internet of Things (HIoT) environments comprise interconnected medical devices that facilitate continuous patient monitoring, 

diagnostics, and informed clinical decision-making. Unlike conventional IoT deployments, healthcare systems operate under stringent 

requirements for availability, reliability, and safety, where security incidents can directly affect patient outcomes. Medical IoT devices 

typically exhibit well-defined operational and communication patterns governed by clinical workflows, device roles, and regulatory con-

straints. Deviations from these expected patterns may therefore indicate device malfunction, misconfiguration, or malicious activity. 

The system model considered in this work assumes a hospital or clinical network in which medical IoT devices communicate through local 

healthcare gateways that aggregate traffic and relay data to backend clinical systems and electronic health record platforms. Due to privacy 

regulations and operational constraints, deep packet inspection and payload-level analysis are often restricted in healthcare environments. 

Consequently, intrusion detection mechanisms must primarily rely on communication metadata and device behavioral characteristics rather 

than content inspection, which motivates behavior-aware, metadata-driven detection strategies. 
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3.2. Multi-modal intrusion detection module 

The proposed system model incorporates a multimodal intrusion detection module deployed at the healthcare gateway, as illustrated in Fig. 

1. The module jointly monitors network-level communication behavior and device-level operational behavior to provide a unified, context-

aware view of system activity. This design enables the detection of both external network-based attacks and internal device compromise 

indicators within a single analytical framework. 

 

 
Fig. 1: Depicts the Functional Components of the Multi-Modal Intrusion Detection Module and Their Interaction within the Healthcare Gateway. 

 

The module consists of four core components: 

1) Network Feature Extraction Unit: This unit collects and processes flow-level network metadata observed at the gateway, including 

packet rates, session durations, protocol usage, flow directionality, and communication frequency. These features provide visibility 

into external attack manifestations such as scanning activity, denial-of-service attempts, and anomalous communication patterns that 

deviate from expected clinical traffic behavior. 

2) Device Telemetry Analysis Unit: This unit analyzes device-level behavioral indicators derived from communication regularity, trans-

mission periodicity, connection stability, and deviations from established operational profiles. In healthcare environments, where med-

ical devices typically operate within narrow and predictable behavioral ranges, telemetry deviations can serve as early indicators of 

compromise, misuse, or unauthorized control. 

3) Feature Integration and Detection Unit: Observations from network traffic and device telemetry are jointly analyzed to support corre-

lation between communication anomalies and device-level deviations. This integration enables more accurate discrimination between 

benign clinical behavior and malicious activity than single-modality detection approaches can achieve. The specific fusion strategies 

and learning mechanisms employed in this unit are formally defined in Section IV. 

4) Alert and Response Interface: Detection outcomes are forwarded to security management systems for alerting and response. The mod-

ule prioritizes low false positive rates to minimize unnecessary disruption to clinical workflows, device isolation, or service degradation 

in safety-critical environments. 

3.3. Threat model 

The threat model considers adversaries targeting healthcare IoT environments to disrupt clinical services, exfiltrate sensitive information, 

or leverage compromised devices for further attacks. The following threat categories are explicitly considered: 

1) Network-Oriented Attacks: External adversaries may launch denial-of-service attacks, network probing, or protocol exploitation 

against healthcare gateways and connected medical devices. 

2) Compromised Medical Devices: Medical IoT devices may be compromised through weak authentication mechanisms, outdated firm-

ware, or supply-chain vulnerabilities, resulting in abnormal communication behavior or participation in botnet activity. 

3) Lateral Movement and Internal Abuse: Attackers who gain an initial foothold may exploit trust relationships between devices and 

internal systems to propagate laterally within the healthcare network. 

4) Stealthy Behavioral Attacks: Low-rate and stealthy attacks designed to mimic legitimate clinical traffic patterns are considered, as such 

attacks are complicated to detect using network-only intrusion detection approaches. 

3.4. Adversary assumptions 

The adversary is assumed to possess the capability to generate malicious network traffic and compromise a subset of medical IoT devices. 

However, the adversary is not considered capable of bypassing cryptographic protections or gaining complete control over core clinical 

systems. The intrusion detection module operates without payload inspection and does not require access to sensitive patient data, ensuring 

compliance with healthcare privacy, confidentiality, and regulatory requirements. 

3.5. Design objectives 

Based on the defined system and threat models, the intrusion detection module is designed to achieve the following objectives: 

• Joint detection of network-based and device-based attacks 

• Low false positive rates suitable for safety-critical clinical environments 

• Robustness to heterogeneous medical devices and evolving traffic patterns 

• Efficient operation at healthcare gateway nodes with limited resources 

• Preservation of patient privacy through metadata- and behavior-based analysis 

These objectives directly guide the architectural and algorithmic design choices of the proposed multi-modal intrusion detection frame-

work. 
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4. Proposed Multi-Modal Intrusion Detection Framework 

This section presents the proposed multi-modal intrusion detection framework for healthcare IoT networks. Building on the system and 

threat models described in Section III, the framework formally defines the representation of heterogeneous data sources, the feature-fusion 

mechanisms for integrating network-level and device-level information, and the ensemble-based learning strategy for robust attack classi-

fication. The overall ensemble learning workflow and meta-classification process are illustrated in Fig. 2, while the internal feature pro-

cessing and fusion architecture are depicted in Fig. 3. 

 

 
Fig. 2: Illustrates the Ensemble Learning and Meta-Classification Architecture Used to Combine Multiple Detection Models. 

4.1. Framework overview and design rationale 

The proposed intrusion detection framework is designed for deployment at healthcare gateway nodes, where both network traffic metadata 

and device telemetry can be observed without violating privacy constraints. As illustrated in Fig. 2, the framework adopts an ensemble 

learning strategy to enhance robustness against attack variability and class imbalance. The internal handling of heterogeneous feature types 

and their integration through structured feature fusion mechanisms are depicted in Fig. 3. 

 

 
Fig. 3: Illustrates The Feature-Level Processing Pipeline for Integrating Network Traffic Features with Device Telemetry Indicators Before Classification. 

 

The framework design is motivated by three key observations derived from prior studies and practical healthcare deployments: 

1) Network-only intrusion detection fails to capture early signs of device compromise, 

2) Device telemetry alone lacks contextual visibility of coordinated external attacks, and 

3) Healthcare IoT data exhibit significant heterogeneity across devices, vendors, and communication protocols. 

These observations motivate a multi-modal architecture that jointly analyzes network behavior and device telemetry while remaining com-

putationally efficient for real-time gateway operation. 
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4.2. Feature representation and notation 

Let the labeled training dataset be defined as 

 

D =  {(Xi , Yi)}i
N = 1,   

 

Where Xi denotes the feature vector associated with the i − th observation, yi ∈  Y Represents the corresponding ground-truth class label 

(e.g., Normal, DDoS, Port Scan, Botnet), and N is the total number of observations. 

Each observation consists of two heterogeneous feature components: 

 

Xi =  [xi(n)    ∥   xi(d)],   
 

Where xi(n) represents network-level traffic features and xi(d) represents device telemetry features. 

For clarity and reproducibility, Table I summarizes the notation used throughout the framework. 

 
Table 3: Notation Used in the Proposed Framework 

Symbol Description 

N Number of observations 

xi Feature vector of observation i 

xi(n) Network traffic feature vector 

xi(d) Device telemetry feature vector 
yi Ground-truth class label 

fn(⋅) Network feature transformation function 

fd(⋅) Device feature transformation function 

Φ(⋅) Feature fusion operator 

hk(⋅) Base classifier 

g(⋅) Meta-learner 

K Number of base classifiers 

4.3. Feature transformation and fusion architecture 

Due to the heterogeneous statistical characteristics of network and device features, separate transformation functions are applied before 

fusion, as illustrated in Fig. 3. Network and device features are first mapped into latent representations: 

 

zi
(n)

=  fn ( xi
(n)

) , zi
(d)

=  fd ( xi
(d)

),  

 

Where fn  and fd Are implemented using lightweight neural layers designed for gateway-level execution. 

The transformed representations are then fused into a unified latent vector: 

 

zi =  Φ ( zi
(n)

, zi
(d)

),   

 

Where Φ (⋅) denotes the fusion operator. As shown in Fig. 3, the framework supports multiple fusion strategies: 

• Bilinear Fusion (BF): 

 

ΦBF(a, b) =  aT Wb ,  
 

• Self-Attention Fusion (SAF): 

 

∝ = softmax ( 
Q KT

√d
) , ΦSAF = = ∝ V , 

 

• Higher-Order Interaction Fusion (HIF) for modeling complex cross-modal dependencies. 

The fused representation is forwarded to a multi-layer perceptron classifier: 

 

yi
^ = softmax ( WcZi +  bc).   

4.4. Ensemble learning and meta-classification strategy 

To enhance robustness under noisy and imbalanced data distributions, the framework employs an ensemble learning strategy based on 

bagging, as illustrated in Fig. 2. Multiple bootstrap datasets are generated: 

 

Dk ~ Bootstrap (D), k = 1, … … , K.  
 

Each subset is used to train a base classifier. hk(. ). The meta-learner aggregates the individual predictions: 

 

yi
^ = g( h1 ( xi), h2(xi), … . , hK (xi)),  

 

Where g(⋅) implements weighted voting or stacking. This strategy reduces sensitivity to noise and improves generalization, particularly 

for rare and stealthy attack classes. 

To ensure reproducibility and methodological clarity, the operational workflow of the proposed multi-modal intrusion detection framework 

is formalized through four algorithms, each corresponding to a distinct functional stage of the detection pipeline. 
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Algorithm 1 defines the data acquisition and preprocessing stage, where heterogeneous raw inputs are transformed into structured feature 

representations suitable for learning. Specifically, flow-level metadata are first extracted from raw network traffic to construct network 

feature vectors. x(n), Capturing statistical and temporal characteristics of communication behavior. In parallel, device telemetry data are 

collected and processed to derive device-level feature vectors. x(d), Reflecting operational regularity and behavioral consistency. Contin-

uous features are normalized, and categorical attributes are encoded to ensure numerical stability and comparability across devices. This 

algorithm establishes a unified and noise-reduced feature space, enabling subsequent multimodal analysis. 

 
Algorithm 1: Multi-Modal Feature Acquisition and Preprocessing 

Input: Raw network traffic 𝐓, device telemetry 𝐒  

Output: 𝐗(𝐧), 𝐗(𝐝) 

Extract flow-level metadata from 𝐓 

Compute network features 𝐗(𝐧) 

Collect telemetry from 𝐒 

Compute device features 𝐗(𝐝) 

Normalize continuous attributes 

Encode discrete attributes 

 

Algorithm 2 formalizes the feature transformation and fusion process that integrates network and device information into a joint latent 

representation. Network features x(n), and device telemetry features x(d) are independently transformed using modality-specific functions 

fn(. ) and fd(. ), Producing latent vectors z(n), Respectively. A fusion strategy, Φ(⋅), is then selected to combine these representations into 

a single fused vector, z, enabling cross-modal interaction and correlation. This step is critical for capturing attack behaviors that manifest 

jointly across communication patterns and device operation, which cannot be reliably identified using unimodal features alone. 

 
Algorithm 2: Feature Transformation and Fusion 

Input: 𝐗(𝐧), 𝐗(𝐝) 

Output: Fused feature vector 𝐳 

Compute 𝐳(𝐧) =  𝐟𝐧 ( 𝐱(𝐧)) 

Compute 𝐳(𝐝) =  𝐟𝐧 ( 𝐱(𝐝)) 

Select fusion strategy 𝚽 

Fuse representations: 𝐳 =  𝚽 ( 𝐳(𝐧), 𝐳(𝐝))  

 

Algorithm 3 describes the ensemble training and meta-learning procedure used to enhance robustness in the presence of noisy and imbal-

anced data distributions. Multiple bootstrap samples are generated from the training dataset and a set of base classifiers. hk(.)is trained 

independently on each sample. The outputs of these base classifiers are then aggregated to train a meta-learner g(⋅), Hich learns to weight 

and combine individual predictions. By leveraging diversity among base learners, this algorithm reduces variance, mitigates overfitting, 

and improves generalization, particularly for rare and stealthy attack classes standard in healthcare IoT environments. 

 
Algorithm 3: Ensemble Training and Meta-Learning 

Input: Training dataset 𝐃 

Output: Ensemble classifier 𝐇 

Generate 𝐊 bootstrap samples 𝐃𝐤 

Train base classifiers 𝐡𝐤 

Collect base predictions 

Train meta-learner 𝐠(⋅) 

 

Algorithm 4 defines the online intrusion detection procedure executed at the healthcare gateway during real-time operation. Incoming 

observations are first preprocessed using the method described in Algorithm 1, followed by feature transformation and fusion as specified 

in Algorithm 2. All base classifiers then evaluate the fused representation, and their outputs are aggregated through the trained meta-learner 

to produce a final intrusion decision. This algorithm enables low-latency inference while preserving detection accuracy, making the frame-

work suitable for deployment in safety-critical healthcare settings. 

 
Algorithm 4: Online Intrusion Detection 

Input: (𝐱(𝐧), 𝐱(𝐝)) ensemble 𝐇  
Output: Predicted class 𝐲^ 

Preprocess input (Algorithm 1) 
Generate fused features (Algorithm 2) 

Obtain base classifier outputs. 

Aggregate predictions using 𝐠(⋅) 

 

By structuring the detection pipeline into modular and well-defined algorithms, the proposed framework achieves a balance between ana-

lytical rigor and operational practicality. The combination of multi-modal feature fusion and ensemble decision aggregation enables the 

system to overcome the limitations of single-modality intrusion detection approaches, resulting in improved stealthy attack detection, 

reduced false positives, and robust performance under realistic healthcare IoT constraints. 

5. Results and Analysis 

This section presents a rigorous experimental evaluation of the proposed multi-modal intrusion detection framework for Healthcare IoT 

(HIoT) environments. Beyond reporting raw performance metrics, the analysis explicitly compares the proposed approach with established, 

widely cited intrusion detection frameworks, quantifies the contribution of each algorithmic component, and evaluates clinical safety re-

quirements, such as false-alarm control and gateway-level efficiency. 

 



168 International Journal of Basic and Applied Sciences 

 
5.1. Experimental setup, datasets, and evaluation protocol 

This section describes the experimental configuration adopted to evaluate the proposed multi-modal intrusion detection framework under 

realistic Healthcare IoT (HIoT) conditions. The evaluation is designed to reflect practical deployment constraints at healthcare gateways, 

including limited observability, class imbalance, heterogeneous devices, and strict false-alarm tolerance. 

• Datasets and Data Preparation 

Experiments are conducted using publicly available IoT and IIoT datasets that provide either direct or emulated access to the two data 

modalities assumed by the system model: network flow metadata and device/host telemetry. 

1) TON_IoT Dataset: The TON_IoT dataset serves as the primary source for multimodal evaluation, as it contains synchronized network 

traffic, system logs, and telemetry features generated from realistic IoT and IIoT environments [12]. Network flow records are extracted 

to emulate gateway-observable metadata, while host-level telemetry is used to represent device behavioral signals relevant to healthcare 

deployments. The dataset encompasses diverse attack categories, including denial-of-service, scanning, backdoor activity, and data 

exfiltration, making it suitable for evaluating both high-volume and stealthy attack behaviors. 

2) IoT-23 Dataset: The IoT-23 dataset provides real network traffic captures from compromised and benign IoT devices, including mal-

ware families commonly associated with botnet activity [13]. Although IoT-23 is network-centric, it is used to evaluate the framework 

under limited telemetry availability, reflecting scenarios where only network metadata is observable. This dataset is particularly valu-

able for assessing generalization to real-world IoT malware traffic and encrypted communication patterns. 

3) MedBIoT Dataset: The MedBIoT dataset focuses on botnet behaviors across 83 IoT devices, capturing multiple stages of botnet lifecy-

cles such as infection, command-and-control communication, and attack execution [14]. MedBIoT is used to stress-test the framework’s 

ability to detect evolving compromised device behavior, a standard threat model in healthcare IoT environments where devices may 

remain infected for extended periods. 

Across all datasets, raw packet captures are converted into flow-level features (e.g., packet rate, inter-arrival time statistics, session dura-

tion). In contrast, telemetry features capture behavioral regularity, communication periodicity, and deviations in stability. All features are 

normalized using min–max scaling, and categorical attributes are encoded before model training. 

• Baselines and Comparative Models 

To ensure a fair and literature-grounded comparison, the proposed framework is evaluated against representative and widely cited intrusion 

detection approaches used in IoT security research: 

• Kitsune, an ensemble of autoencoders designed for online anomaly detection using network traffic features, represents a strong, light-

weight network-only IDS baseline. 

• Network-only Random Forest (RF), a classical machine-learning baseline commonly used in IoT IDS benchmarking for tabular flow 

features. 

• CNN–LSTM hybrid, a deep learning baseline that captures spatial and temporal dependencies in network traffic sequences, represent-

ing modern deep IDS designs. 

These baselines reflect different design philosophies (statistical, classical ML, and deep learning) and allow isolation of the benefits intro-

duced by multi-modal fusion and ensemble/meta-learning. 

• Evaluation Protocol and Metrics 

Datasets are partitioned into training, validation, and test sets using stratified sampling to preserve class imbalance. All hyperparameters 

are tuned on the validation set only. Performance is reported on held-out test data. 

Evaluation metrics include Accuracy, Precision, Recall, F1-score, False Positive Rate (FPR), and ROC–AUC. Particular emphasis is placed 

on FPR and Recall, as these metrics directly affect clinical safety: high FPR leads to alert fatigue and workflow disruption, while low recall 

risks undetected compromise of safety-critical medical devices. Latency and computational overhead are also measured to assess gateway-

level deployability. 

This experimental design enables a comprehensive assessment of detection effectiveness, robustness under imbalance, and operational 

feasibility in healthcare IoT environments. 

5.2. Detection performance: quantitative comparison 

The detection performance across datasets and models is summarized in Table III, which reports the mean Accuracy, F1-score, and False 

Positive Rate (FPR). Results are averaged across multiple cross-validation folds to ensure statistical reliability and to mitigate bias arising 

from dataset imbalance, following standard evaluation practices in IoT intrusion detection research as shown in Fig. 4. 

 
Table 4: Overall Detection Performance Comparison 

Framework Modality Accuracy (%) F1-score (%) FPR (%) Reference 

Random Forest IDS Network 92.1 91.0 5.6 [10] 
Kitsune Network 93.8 92.9 4.7 [14] 

CNN–LSTM Hybrid Network 94.6 93.8 4.2 [15] 

Attention-based IDS Network 95.2 94.6 3.9 [16] 
Proposed Framework Network + Telemetry 97.1 96.5 2.4 — 

 

As shown in Table III, the proposed multi-modal intrusion detection framework consistently outperforms all network-only baselines across 

all reported metrics. The most pronounced improvement is observed in the false-positive rate, which is reduced to 2.4%, representing a 

relative reduction of more than 38% compared to the strongest network-only baseline (an attention-based IDS). 

This reduction in FPR is particularly critical in healthcare IoT environments, where excessive false alarms can trigger unnecessary device 

isolation, disrupt clinical workflows, and increase alert fatigue among medical and security staff. Unlike conventional enterprise networks, 

healthcare systems operate under strict availability and safety constraints, making low false-positive behavior a primary design objective 

rather than a secondary optimization goal. 

While advanced deep learning approaches—such as CNN–LSTM hybrids and attention-based IDS models—demonstrate strong detection 

accuracy, their reliance on network traffic alone limits their ability to distinguish between benign clinical activity and subtle malicious 

behavior that mimics legitimate traffic patterns. The superior performance of the proposed framework indicates that device telemetry 

provides complementary behavioral context that cannot be inferred from network metadata alone. In particular, deviations in 
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communication regularity, operational stability, and behavioral periodicity enhance discrimination between regular device operation and 

compromised states. 

The observed gains over attention-based IDS models further suggest that architectural sophistication in network modeling alone is insuffi-

cient to address the inherent ambiguity of healthcare IoT traffic. Instead, integrating heterogeneous evidence sources through multi-modal 

fusion and ensemble decision-making yields a more reliable and clinically suitable detection capability. 

The quantitative results in Table III validate the central hypothesis of this work: joint analysis of network and device-level behavior leads 

to measurably improved detection performance and substantially lower false-alarm rates, which are essential requirements for real-world 

deployment in healthcare IoT settings. 

 

 
Fig. 4: Overall Detection Performance Comparison. 

5.3. Precision–recall trade-off and clinical safety 

The trade-off between precision and recall is a critical consideration for intrusion detection in healthcare IoT environments, where excessive 

false alarms may be as disruptive as missed attacks. Figure 5 illustrates trends in Precision, Recall, and F1-score across the evaluated 

models, while Figure 6 isolates the corresponding false-positive rates (FPR) to assess the clinical safety implications directly. 

As observed in Fig. 5, network-centric deep learning models—particularly the CNN–LSTM hybrid [15] and attention-based IDS [16]—

tend to prioritize recall, achieving high attack detection sensitivity at the expense of reduced precision. While such behavior may be ac-

ceptable in conventional IT environments, it poses a significant risk in healthcare settings, where traffic variability caused by legitimate 

clinical polling, device synchronization, or emergency events can trigger frequent false alerts. 

 

 
Fig. 5: Precision, Recall, and F1-Score Comparison. 

 

In contrast, the proposed multi-modal framework demonstrates a more balanced precision–recall profile, achieving high recall while main-

taining substantially higher precision than all network-only baselines. This balance is further evident in Fig. 6, where the proposed approach 

exhibits the lowest false-positive rate, indicating greater robustness to benign traffic fluctuations and heterogeneous device behavior. 

From an operational perspective, this reduction in false positives directly mitigates alarm fatigue, a well-documented risk in clinical envi-

ronments that can desensitize staff to security alerts and lead to delayed responses to genuine threats. Prior studies in cyber-physical systems 

(CPS) and healthcare security have emphasized that availability and safety constraints dominate the cost function in such environments, 

outweighing marginal gains in detection sensitivity [12]. The observed precision–recall behavior of the proposed framework aligns closely 

with these recommendations. 

The improved balance achieved by the proposed approach can be attributed to two architectural factors: 

1) The inclusion of device telemetry, which provides behavioral context that helps disambiguate benign clinical activity from malicious 

patterns, and 

2) The ensemble/meta-learning strategy, which stabilizes decision boundaries under noisy or bursty traffic conditions. 
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The results in Figs. 5 and 6 demonstrate that the proposed framework offers a clinically safer detection profile, achieving strong attack 

detection capability without compromising operational reliability—an essential requirement for practical deployment in healthcare IoT 

infrastructures. 

 
Fig. 6: False Positive Rate Comparison Across Representative Intrusion Detection Frameworks. 

 

As shown in Fig. 6, the proposed multimodal framework achieves a consistently lower false-positive rate than network-only IDS ap-

proaches. This reduction is critical for healthcare settings, where excessive alerts can contribute to alarm fatigue and negatively impact 

clinical operations. 

5.4. Threshold robustness and ROC analysis 

Receiver Operating Characteristic (ROC) curves for the evaluated intrusion detection models are presented in Fig. 7, with the corresponding 

Area Under the Curve (AUC) values used as a threshold-independent measure of detection robustness. The proposed multi-modal frame-

work achieves the highest AUC, indicating superior class separability across a broad range of decision thresholds. 

High AUC performance is critical in healthcare IoT deployments, where operational thresholds cannot be fixed globally. Different hospital 

units (e.g., intensive care units versus general wards), device criticality levels, and institutional security policies often require adaptive 

threshold tuning to balance sensitivity and operational risk. Models whose performance degrades rapidly under threshold shifts may there-

fore become unreliable in real-world clinical settings. 

As shown in Fig. 7, network-only IDS frameworks—including Kitsune-style autoencoder ensembles [14] and deep traffic-based classifi-

ers—exhibit steeper ROC curvature, indicating reduced robustness when detection thresholds deviate from their optimal operating point. 

This behavior is consistent with prior findings that network-centric detectors are sensitive to benign traffic variability and encrypted or 

mimicked attack patterns, which can distort score distributions and impair threshold stability. 

In contrast, the proposed framework maintains strong ROC performance even when one input modality becomes partially noisy or less 

informative. The integration of device telemetry provides an additional, orthogonal signal that stabilizes decision boundaries when network 

traffic alone is ambiguous. Moreover, the ensemble/meta-learning strategy further smooths classifier outputs, reducing score volatility and 

preserving separability under realistic deployment conditions. 

Overall, the ROC–AUC results in Fig. 7 demonstrate that the proposed detector is more resilient to threshold selection, making it better 

suited for heterogeneous and policy-driven healthcare environments than existing network-only intrusion detection approaches. 

 

 
Fig. 7: ROC Curve Comparison Across IDS Frameworks. 

5.5. Attack-wise detection capability 

Attack-wise detection performance across the evaluated intrusion categories is summarized in Fig. 8, highlighting the operating conditions 

under which multi-modal analysis delivers the greatest benefits. As expected, all considered frameworks achieve high detection rates for 
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volumetric and overt attacks such as distributed denial-of-service (DDoS), where abnormal traffic intensity and flow characteristics are 

readily distinguishable at the network level. 

However, network-only IDS frameworks exhibit substantial performance degradation when confronted with stealthy and low-rate attack 

behaviors, including slow data exfiltration, command-and-control beaconing, and protocol mimicry. These attack classes are deliberately 

engineered to blend into legitimate traffic patterns, rendering purely network-centric features insufficient for reliable discrimination. This 

limitation has been consistently reported in cyber-physical and IoT intrusion detection literature, particularly in environments where ad-

versaries exploit encryption and predictable traffic baselines [12], [19]. 

 

 
Fig. 8: Attack-Wise Detection Rate Across IDS Frameworks. 

 

Fig. 8 illustrates that incorporating device telemetry alongside network flow features significantly improves detection performance across 

stealthy and low-rate attacks. The improvement is particularly evident for attacks that generate minimal network anomalies, confirming 

the importance of behavioral signals in healthcare IoT environments. 

To provide deeper insight beyond aggregate attack categories, Fig. 9 presents a fine-grained breakdown of detection performance across 

individual attack types. This detailed view reveals that the proposed framework consistently maintains higher detection rates across all 

stealth-oriented subclasses. In contrast, network-only models exhibit uneven sensitivity, depending on traffic volume and temporal char-

acteristics. The additional resolution offered by Fig. 11 confirms that the observed gains are not confined to a single attack family but 

extend across diverse low-rate and persistent threat behaviors. 

The proposed framework demonstrates its most considerable relative improvements precisely for these stealth-oriented attacks. By incor-

porating device telemetry, the detector captures deviations in operational regularity, state transition frequency, and communication perio-

dicity—behavioral dimensions that are significantly harder for adversaries to replicate consistently across heterogeneous medical devices. 

Even when network flows appear statistically benign, compromised devices often exhibit subtle yet persistent anomalies in execution 

rhythm or resource utilization that become observable through telemetry-aware analysis. 

From a security perspective, this result is particularly significant for healthcare IoT environments, where low-rate, persistent threats pose 

greater long-term clinical risk than short-lived, volumetric attacks. The combined attack-wise results reported in Figs. 8 and 9, therefore, 

demonstrate that multi-modal intrusion detection materially improves resilience against the most clinically dangerous attack categories, 

reinforcing the argument that single-source audit data is insufficient for reliable intrusion detection in safety-critical cyber-physical systems 

[12], [19]. 

 

 
Fig. 8: Attack-Wise Detection Rate Across IDS Frameworks. 

5.6. Robustness under class imbalance 

Healthcare IoT (HIoT) traffic is inherently highly imbalanced, as malicious events occur far less frequently than benign clinical commu-

nications. This imbalance poses a significant challenge for intrusion detection systems, particularly those based on deep learning, which 

tend to bias their decision boundaries toward the majority class. The impact of class imbalance on detection performance is illustrated in 

Fig. 10, where several network-centric deep models exhibit noticeable degradation as the ratio of attack to benign traffic decreases. 



172 International Journal of Basic and Applied Sciences 

 
Consistent with prior IoT IDS benchmarking studies [20], deep network-only models demonstrate reduced recall for minority attack classes 

under extreme imbalance, even when overall accuracy remains superficially high. This behavior is problematic in healthcare settings, as 

rare but critical attack events—such as stealthy device compromise or low-rate data exfiltration—are precisely the threats that must be 

detected reliably. 

In contrast, the proposed framework maintains stable detection performance across varying imbalance levels, owing to the combined effect 

of multi-modal feature fusion and ensemble-based meta-learning. Feature fusion mitigates imbalance sensitivity by incorporating comple-

mentary device telemetry signals that are less dominated by benign traffic volume. At the same time, ensemble meta-learning reduces 

variance and prevents overfitting to the majority class. Together, these mechanisms yield more resilient decision boundaries that preserve 

minority-class sensitivity without inflating false positive rates. 

From an operational standpoint, robustness under class imbalance is essential for real-world HIoT deployment, where labeled attack data 

are scarce, evolving, and costly to obtain. The results in Fig. 10 therefore demonstrate that the proposed framework is better aligned with 

realistic healthcare traffic conditions than conventional network-centric IDS approaches, reinforcing its suitability for continuous, safety-

critical monitoring in clinical environments. 

 

 
Fig. 10: Robustness Under Class Imbalance. 

 

Fig. 10 demonstrates that the proposed framework maintains stable detection performance under severe class imbalance. This robustness 

indicates suitability for real-world healthcare deployments, where attack traffic is sparse relative to normal device behavior. 

5.7. Ablation study: algorithmic contribution analysis 

To ensure that the observed performance improvements result from intentional architectural design choices rather than incidental model 

capacity, an ablation study was conducted. The results are summarized quantitatively in Table IV and illustrated visually in Fig. 11, where 

individual components of the proposed framework are selectively disabled to assess their isolated impact on detection performance. 

 

 
Fig. 11: Ablation Study: Contribution of Framework Components. 

 

Table IV compares four configurations: a network-only baseline, a telemetry-enabled model without fusion, a fused model without ensem-

ble learning, and the complete framework. The reported F1-score and false positive rate (FPR) are averaged across datasets and validation 

folds to ensure statistical reliability. 

 
Table 5: Ablation Study Results 

Configuration Telemetry Fusion Ensemble F1-score (%) FPR (%) 

Network-only ✗ ✗ ✗ 93.2 4.9 

No Fusion ✓ ✗ ✓ 94.1 3.8 

No Ensemble ✓ ✓ ✗ 94.6 3.6 

Full Model ✓ ✓ ✓ 96.5 2.4 
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The ablation results demonstrate that each architectural component contributes a distinct and complementary role: 

• Telemetry removal (Network-only) leads to a marked reduction in F1-score and an increase in FPR, confirming that network features 

alone are insufficient for reliably detecting stealthy or low-rate attacks that preserve statistically benign traffic patterns. 

• Disabling feature fusion (No Fusion) limits the model’s ability to correlate network anomalies with device-level behavioral deviations, 

resulting in reduced discriminative power and higher residual false alarms. 

• Removing ensemble/meta-learning (No Ensemble) preserves reasonable detection accuracy but noticeably increases the false positive 

rate, indicating higher sensitivity to noise and benign traffic variability. 

• The complete model, which integrates telemetry, fusion, and ensemble learning, achieves the highest F1-score and lowest FPR, con-

firming that robustness arises from the interaction of these components rather than from any single element in isolation. 

These findings validate the algorithmic design rationale presented in Section IV: telemetry enhances sensitivity to subtle compromises, 

fusion enables cross-modal contextualization, and ensemble/meta-learning stabilizes predictions under noisy, imbalanced traffic condi-

tions. Together, they form a cohesive detection pipeline suitable for healthcare IoT environments, where both accuracy and operational 

safety are critical. 

5.8. Comparative analysis with existing studies 

To position the proposed framework within the broader intrusion detection literature, a comparative analysis is conducted against repre-

sentative and widely cited IDS approaches in the fields of IoT and healthcare security research. These studies were selected because they 

exemplify dominant design paradigms, including network-only learning, deep spatiotemporal modeling, attention mechanisms, and telem-

etry-based behavioral analysis. The comparison focuses not only on raw accuracy but also on structural limitations and operational suita-

bility for Healthcare IoT (HIoT) environments. 

 
Table 6: Comparison of the Proposed Framework with Representative IDS Studies 

Study 
Target Do-
main 

Data Modality Reported Limitation Relative Advantage of Proposed Framework 

Kitsune [14] IoT Network 
Network-only observability; reduced 

stealth detection 

Lower FPR and improved detection of low-rate at-

tacks via telemetry fusion 

CNN–LSTM [15] Healthcare Network 
Sensitivity to traffic distribution 

shifts 

Telemetry-anchored robustness under evolving 

clinical traffic 

Attention-based 
IDS [16] 

IoT Network 
Elevated false alarms under benign 
variability 

More stable precision–recall balance through en-
semble meta-learning 

Behavioral IDS 

[19] 
IoT Telemetry 

Limited visibility of coordinated net-

work attacks 

Joint network–device context enables broader at-

tack coverage 
Proposed Frame-

work 

Healthcare 

IoT 

Network + Te-

lemetry 
Requires telemetry availability 

Balanced detection, lowest FPR, improved stealth 

robustness 

 

As summarized in Table V, existing IDS frameworks typically emphasize a single dominant data source, either network traffic or device 

behavior. Network-centric models such as Kitsune [14] and CNN–LSTM hybrids [15] demonstrate strong performance under known traffic 

conditions but struggle with stealthy attacks, encrypted communication, or benign traffic shifts—a common occurrence in healthcare en-

vironments. Attention-based models [16] enhance representation learning but remain susceptible to false alarms as traffic variability in-

creases. 

Conversely, telemetry-driven approaches [19] effectively detect internal device compromise but lack situational awareness of coordinated 

or network-level attacks. The proposed framework directly addresses these recurring limitations by integrating complementary audit 

sources, enabling correlation between communication anomalies and device behavioral deviations. 

Unlike prior studies that rely on increasingly complex single-modality models, the proposed design enhances robustness through multi-

modal fusion and ensemble learning, yielding lower false positive rates and stronger stealth attack detection without compromising 

healthcare privacy constraints. This comparative analysis demonstrates that the performance gains observed in Figs. 4–10 are not incre-

mental improvements over existing models, but rather stem from a fundamentally more informative detection strategy aligned with the 

operational realities of HIoT systems. 

5.9. Efficiency and gateway deployment suitability 

Beyond detection accuracy, practical deployment in healthcare IoT environments requires strict guarantees on latency, scalability, and 

computational overhead. Figures 12 and 13 report detection latency and scalability behavior, respectively, as the number of connected 

devices and traffic volume increase. 

As shown in Fig. 12, the proposed framework maintains a low, stable detection latency comparable to network-only IDS baselines, despite 

incorporating multimodal analysis. This is achieved by leveraging flow-level metadata and compact telemetry summaries, rather than 

payload inspection or deep packet inspection. Such a design is crucial in healthcare settings, where privacy regulations prohibit deep packet 

inspection, and gateway nodes often operate under limited computational resources. 
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Fig. 12: Detection Latency Comparison at Gateway. 

 

The scalability behavior is illustrated in Fig. 13, which shows that the computational overhead grows approximately linearly with the 

number of devices and observed flows. Notably, the slope remains moderate because lightweight feature transformations and ensemble 

learning are applied to low-dimensional fused representations rather than high-dimensional raw traffic sequences. These results confirm 

that the proposed framework satisfies the real-time processing requirements expected of healthcare gateways, aligning with deployment 

constraints emphasized in IoT and cyber-physical system (CPS) security surveys [12], [23]. 

Overall, the efficiency results demonstrate that the performance gains reported in earlier sections do not come at the expense of deploya-

bility, making the framework suitable for continuous operation in clinical networks. 

 

 
Fig. 13: Computational Overhead and Scalability Comparison. 

5.10. Security robustness and adversarial cost 

Security robustness is summarized in Fig. 14, which qualitatively compares the resistance of different IDS designs across multiple evasion 

dimensions. Unlike network-only intrusion detection systems, the proposed framework significantly increases adversarial cost by forcing 

attackers to satisfy constraints at both the network and device levels simultaneously. 

Specifically, an adversary attempting to evade detection must not only generate statistically benign-looking network traffic, but also pre-

serve device-level behavioral regularity, including communication periodicity, operational stability, and state consistency. Achieving such 

coordinated evasion across heterogeneous medical devices is substantially more difficult than bypassing a single-modality detector. This 

property directly follows from the fusion-based architecture and the ensemble decision process, as validated in Figs. 8–10. 

This finding aligns with established CPS security principles, which argue that resilient intrusion detection requires multi-source audit 

material to raise the effort required of attackers and reduce the feasibility of stealthy compromise [12], [20]. In the context of healthcare 

IoT, where attackers often exploit encrypted channels or low-rate exfiltration to avoid network-level detection, the inclusion of telemetry-

based behavioral signals provides a critical defensive advantage. 

Taken together, the robustness analysis demonstrates that the proposed framework not only improves detection metrics but also fundamen-

tally alters the attacker–defender asymmetry, making sustained and stealthy intrusions more costly and less reliable in real-world HIoT 

deployments. 

 



International Journal of Basic and Applied Sciences 175 

 

 
Fig. 14: Security Robustness Evaluation of IDS Frameworks. 

6. Conclusion and Discussions 

This study investigated whether multi-modal intrusion detection can meaningfully improve security outcomes in Healthcare Internet of 

Things (HIoT) environments beyond what is achievable with network-only intrusion detection systems. Through extensive experimentation 

across heterogeneous IoT and botnet datasets, the results provide clear, consistent evidence that jointly analyzing network flow metadata 

and device telemetry yields superior detection performance under clinically realistic conditions. 

The proposed framework is designed for deployment at healthcare gateway nodes, enabling seamless integration with existing hospital 

Security Operations Center (SOC) infrastructures. By operating on network metadata and device telemetry rather than payload inspection, 

the system preserves patient privacy while remaining compatible with current monitoring pipelines. Importantly, the low false positive rate 

directly addresses alarm fatigue, a critical challenge in clinical SOC environments, allowing security teams to prioritize actionable alerts 

without disrupting healthcare delivery. 

Quantitative evaluation demonstrated that the proposed framework achieves the highest overall detection accuracy and F1-score while 

simultaneously reducing false positive rates relative to established network-centric baselines, including deep learning–based models. The 

reduction in false alarms is particularly significant in healthcare settings, where excessive alerts can disrupt clinical workflows and under-

mine system trust. These findings confirm that improvements are not achieved by trading precision for recall but by increasing discrimi-

native power through complementary behavioral evidence. 

Attack-wise analysis further showed that the performance gains are concentrated where they matter most for healthcare security. While all 

evaluated models performed well on high-volume and overt attacks, network-only IDS frameworks exhibited notable degradation when 

confronted with stealthy and low-rate attack behaviors. In contrast, the proposed multi-modal detector maintained high detection rates for 

these attack classes by leveraging deviations in device operational regularity and communication periodicity—signals that remain observ-

able even when network traffic appears statistically benign. This result directly supports the argument that single-source audit data is 

insufficient for reliable intrusion detection in cyber-physical medical systems. 

Robustness experiments under severe class imbalance revealed that the proposed framework remains stable as attack prevalence decreases, 

whereas network-centric deep models showed increasing sensitivity to skewed class distributions. The ablation study confirmed the causal 

contribution of each architectural component: device telemetry improves recall for stealth-oriented threats, while ensemble and meta-

learning substantially reduce false positive rates by smoothing decision boundaries under benign traffic variability. These results demon-

strate that the framework’s performance gains arise from structured design choices rather than increased model complexity alone. 

From a deployment perspective, latency and scalability measurements indicate that the framework is suitable for real-time operation at 

healthcare gateway nodes. By relying on metadata and telemetry summaries rather than deep packet inspection, the system preserves patient 

privacy, adheres to regulatory constraints, and maintains computational efficiency. Security robustness analysis further showed that the 

multi-modal design increases adversarial cost by requiring simultaneous evasion at both the network and device-behavior levels, thereby 

strengthening resistance to mimicry and low-rate attacks. 

The experimental evidence confirms that multi-modal intrusion detection provides a practical and effective security enhancement for 

healthcare IoT infrastructures. By improving detection reliability, reducing false alarms, and maintaining gateway-level feasibility, the 

proposed framework addresses critical limitations repeatedly identified in the existing IDS literature. Future work will focus on adaptive 

fusion under concept drift, device-criticality-aware response strategies, and long-term validation in live healthcare environments. 

Although the framework leverages ensemble and meta-learning techniques, interpretability remains an important design consideration for 

healthcare security operations. Separating feature modalities (network traffic features versus device telemetry) provides intuitive explana-

tions for alerts by highlighting whether anomalous behavior originates in communication patterns or device activity. Furthermore, ablation 

and attack-wise analyses offer transparency into the contribution of each modality, supporting analyst trust and facilitating informed inci-

dent response decisions. 

In the near term, future work will focus on adaptive fusion strategies that dynamically weight feature modalities and on mechanisms for 

handling concept drift in evolving healthcare environments. In the longer term, live hospital deployment and longitudinal evaluation will 

be essential to assess operational resilience and integration with clinical workflows. Future extensions may also consider regulatory and 

compliance aspects, including alignment with healthcare cybersecurity standards and privacy-preserving monitoring requirements. 
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