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Abstract

The transition toward sixth-generation (6G) wireless communication is expected to significantly expand the scale, intelligence, and connec-
tivity of vehicular cloud networks, while simultaneously intensifying their exposure to sophisticated cyber threats and privacy risks. Contin-
uous exchange of vehicular telemetry, combined with ultra-low-latency communication and high mobility, renders conventional centralized
security and intrusion detection mechanisms inadequate. This paper presents a decentralized, privacy-aware security methodology for 6G-
enabled vehicular cloud environments that integrates dynamic trust evaluation, federated anomaly detection, and blockchain-based enforce-
ment.

The proposed approach employs adaptive trust modeling to continuously assess vehicular behavior, federated learning to enable collabora-
tive anomaly detection without disclosing raw data, and a lightweight Proof-of-Trust consensus mechanism to ensure low-latency, verifi-
able decision-making. Automated mitigation is enforced through smart contracts, enabling rapid response and accountability without cen-
tralized control. The methodology is evaluated using three widely adopted benchmark datasets—CIC-IDS2017, TON_IoT, and N-BaloT—
that cover volumetric attacks, stealthy intrusions, and coordinated botnet behavior.

Experimental results demonstrate detection rates exceeding 95% across all datasets, with false-positive rates of nearly 1%. End-to-end
detec-tion-to-mitigation latency remains below 20 ms under high vehicular density, satisfying 6G ultra-reliable low-latency communication
re-quirements. A comparative analysis reveals that the proposed approach outperforms traditional signature-based and learning-based in-
trusion detection systems in terms of accuracy, scalability, and enforcement capability, while maintaining data privacy through federated
learning and differential privacy mechanisms.

These results confirm that decentralized trust management, privacy-preserving intelligence, and automated blockchain enforcement can be
jointly realized in 6G vehicular cloud systems. The proposed methodology provides a practical, scalable foundation for securing next-
generation intelligent transportation infrastructure against evolving cyber threats.

Keywords: 6G Vehicular Cloud Networks; Blockchain-Based Security; Federated Learning; Trust Management; Intrusion Detection; Privacy
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1. Introduction

The ongoing evolution from fifth-generation (5G) to sixth-generation (6G) wireless communication is transforming the landscape of intel-
ligent transportation systems. The 6G paradigm is expected to deliver ultra-low latency (below 1 ms), extremely high bandwidth, and
intelligent edge computing capabilities that integrate communication, computation, and sensing in a unified environment [1]. Within this
emerging context, Vehicular Cloud Networks (VCNs) have become a critical infrastructure component that enables vehicles, roadside units
(RSUs), and cloud servers to collaborate in real time for traffic management, autonomous driving, and infotainment services [2]. Through
6G-enabled connectivity, vehicles act as mobile sensing and computing nodes, contributing to distributed decision-making and cooperative
perception in smart transportation systems.

Despite these advantages, privacy and security remain among the most pressing challenges in VCNs. The continuous exchange of vehicle
trajectories, sensor readings, and personal identifiers generates vast amounts of sensitive information that can easily be exploited for user
profiling, location tracking, and behavioral inference [3], [4]. Furthermore, the decentralized and highly dynamic topology of vehicular
networks increases their exposure to a broad range of cyberattacks, including Sybil, replay, spoofing, and distributed denial-of-service
(DDoS) attacks [5]. Such threats compromise both the integrity of vehicular data and the reliability of communication links, leading to
potentially catastrophic consequences in safety-critical applications.

Conventional vehicular cloud frameworks largely depend on centralized authorities for authentication and trust management [6]. Although
these architectures simplify coordination, they are inherently limited by scalability issues, latency overhead, and single points of failure—
constraints that become unacceptable in 6G scenarios characterized by ultra-dense connectivity and high mobility [7]. The reliance on
centralized trust anchors also creates vulnerabilities that adversaries can exploit to manipulate trust values or disrupt network synchroniza-
tion.
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Blockchain technology has emerged as a promising enabler to overcome these limitations. Its decentralized, immutable, and transparent
structure allows secure information exchange without relying on a single trusted intermediary [8]. Recent studies have explored the poten-
tial of blockchain in vehicular networks to enhance authentication, reputation management, and data integrity [9]. Nevertheless, existing
blockchain-based approaches often suffer from high computational complexity and limited scalability due to consensus mechanisms such
as Proof-of-Work or Proof-of-Stake, which are unsuitable for the stringent latency requirements of vehicular communications [10]. In
addition, most current models lack comprehensive privacy-preserving mechanisms, leaving sensitive vehicular information vulnerable to
inference and linkage attacks [11].

To address these deficiencies, this study introduces a blockchain-powered framework that achieves both privacy preservation and attack
mitigation in 6G-connected vehicular clouds. The framework integrates zero-knowledge proof-based authentication, differential privacy
for data aggregation, and a lightweight blockchain consensus optimized for high-mobility environments. It also incorporates Al-assisted
trust evaluation at the network edge to detect anomalous or malicious behavior in real-time. The proposed model aims to reduce authenti-
cation latency, enhance trust accuracy, and maintain data confidentiality under diverse cyber-attack scenarios—thereby contributing to a
more resilient and privacy-aware vehicular ecosystem suitable for next-generation 6G infrastructures.

2. Literature Review

The evolution of vehicular networks from ad-hoc systems to cloud-integrated and now 6G-connected ecosystems has driven an extensive
body of research addressing the challenges of trust, privacy, and security. Early studies in vehicular communication focused primarily on
securing message exchanges through centralized authorities. For instance, Dorri et al. [1] introduced one of the first blockchain-based
vehicular frameworks, replacing traditional certificate authorities with a distributed ledger to ensure data integrity and immutability. This
concept marked the beginning of decentralized trust in vehicular environments. Later, Chen et al. [2] proposed a blockchain-enabled trust
management model for the Internet of Vehicles (IoV), where RSUs and vehicles cooperatively verify transaction histories to prevent ma-
licious behavior. Similarly, Xu et al. [3] designed a lightweight blockchain consensus that reduces block-propagation latency by dynami-
cally selecting validators, achieving scalability suitable for real-time vehicular communication. Rehman et al. [4] enhanced these ap-
proaches by hybridizing Practical Byzantine Fault Tolerance (PBFT) with a Proof-of-Trust mechanism to detect Sybil attacks, while Kang
et al. [5] incorporated Software-Defined Networking (SDN) for multi-domain trust coordination, achieving flexible control without com-
promising decentralization. Collectively, these frameworks demonstrated that blockchain can effectively provide decentralized authenti-
cation, integrity verification, and traceability across vehicular entities. However, most of them were designed for 5G or VANET infrastruc-
tures and fail to accommodate the stringent latency, density, and intelligence requirements of 6G-enabled vehicular cloud systems.

As vehicular networks transition into the 6G era, new dimensions of privacy and security arise due to ultra-dense connectivity and pervasive
edge intelligence. Giordani et al. [6] describe 6G as an Al-native communication fabric integrating terahertz transmission, reconfigurable
intelligent surfaces, and deep learning-based resource management. While such openness is beneficial for performance, it drastically ex-
pands the attack surface. Li et al. [7] demonstrated that even encrypted vehicular data transmitted in federated learning environments can
reveal driver trajectories through gradient-based inference. Meanwhile, Zhang et al. [8] highlighted vulnerabilities in vehicular edge learn-
ing, where adversarial data poisoning can manipulate autonomous driving decisions. The growing complexity of vehicular data exchange
has simultaneously amplified the number of attack vectors. Lu et al. [9] classified cyber threats in vehicular systems—Sybil, replay, spoof-
ing, DDoS, and collusion—as the most prevalent categories, emphasizing that ultra-low-latency links in 6G networks accelerate the spread
of malicious traffic. Dai et al. [10] responded by proposing a federated edge-intelligent intrusion detection system (IDS) that achieves over
97% detection accuracy; however, its lack of privacy protection during model aggregation exposed another vulnerability. Likewise, Yu et
al. [11] attempted to merge blockchain with artificial intelligence for 6G vehicular trust evaluation; however, their reinforcement-learning-
based model incurred significant computational overhead, limiting its real-time deployment. These efforts collectively reveal a fragmented
landscape—where studies either emphasize privacy or attack detection, but rarely address both in a unified, scalable architecture.

Parallel to advances in blockchain and 6G security, the domain of Vehicular Cloud Networks (VCNs) has evolved to support cooperative
data storage and processing by integrating edge and cloud technologies. Privacy-preserving frameworks within this domain primarily rely
on data anonymization and obfuscation. A five-stage vehicular privacy framework [12] employed pseudonym generation, encrypted reg-
istration, and secure data transmission to conceal driver identities during interactions with the cloud. Another study introduced a Hilbert-
curve-based spatial obfuscation method [13] that generated k-dummy locations, achieving geo-indistinguishability and resistance to trajec-
tory-correlation attacks. These contributions laid the groundwork for spatial and identity privacy in vehicular data exchange; however, they
remain centrally orchestrated and lack decentralized consensus or adaptive attack-response capabilities. Moreover, none of the existing
VCN privacy models integrate blockchain’s immutability or employ zero-knowledge proofs and differential privacy—tools essential to
guarantee anonymity while maintaining verifiability in 6G contexts.

To overcome the limitations of independent blockchain or privacy approaches, recent efforts have begun exploring blockchain-6 6G con-
vergence frameworks for vehicular systems. Jiang et al. [14] proposed a blockchain-assisted 6G vehicular network leveraging edge vali-
dators for sub-2 ms verification latency, showcasing the potential of ledger-based message authentication. Mahmood et al. [15] introduced
a privacy-preserving access-control model combining blockchain with attribute-based encryption for UAV-vehicular integration, while Al-
Matari et al. [16] examined blockchain-enabled spectrum sharing for 6G cognitive vehicular IoT to secure cooperative resource allocation.
Although these works represent meaningful steps toward unifying decentralized trust and 6G performance, they still lack comprehensive
privacy preservation, real-time anomaly detection, and adaptive attack mitigation across large-scale vehicular clouds.

In summary, the current state of research demonstrates substantial progress in isolated areas—blockchain consensus optimization, vehicular
data anonymization, and 6G trust management—but fails to offer a holistic solution that simultaneously ensures (1) decentralized and
verifiable trust, (2) strong privacy preservation via differential and zero-knowledge mechanisms, and (3) resilient mitigation of coordinated
cyberattacks in ultra-dense 6G vehicular cloud environments.

This identified research gap serves as the foundation for the present study, which proposes a blockchain-powered, privacy-preserving, and
attack-resilient framework for 6G-connected vehicular clouds, integrating decentralized trust, differential privacy, and adaptive detection
into a unified, real-time architecture. In summary, the reviewed studies show significant progress in decentralized trust management, pri-
vacy-preserving vehicular frameworks, and 6G security architectures. Yet, as outlined in Table 1, most approaches remain confined to
specific domains—either blockchain-based authentication, vehicular data anonymization, or 6G intrusion detection—without achieving
holistic integration. None of the surveyed models simultaneously ensures decentralized verifiability, strong privacy preservation through
zero-knowledge and differential techniques, and adaptive resistance against coordinated cyberattacks in ultra-dense 6G vehicular cloud
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environments. The clear gap identified in Table I provides the foundation for the present study, which develops a unified blockchain-
powered, privacy-preserving, and attack-resilient framework for 6G-connected vehicular clouds.

Table 1: Comparative Review of Key Studies on Blockchain, Privacy, and Security in Vehicular and 6G Networks

REFE DOMAIN MAIN FOCUS IF{T];:SCI\E[Ié\I L KEY ACHIEVEMENTS LIMITATIONS
[ BLOCKCHAIN FOR Distributed trust and PoW ledger, signature vali-  Integrity and tamper-proof =~ HIGH LATENCY, EN-
V2v auditability dation data exchange ERGY COST
2] 1OV TRUST Reputation-based trust ~ Blockchain, smart con- Transpgrent RSU-vehicle CENTRALIZED AN-
management tracts interactions CHORS
VEHICULAR Lightweight consen- . . . o . NO PRIVACY FEA-
[3] BLOCKCHAIN sus Dynamic validator rotation 45 % latency reduction TURES
HYBRID BLOCK- PBFT + Proof of . . - HIGH COORDINATION
[4] CHAIN Trust Sybil detection, scalability Improved throughput OVERHEAD
Vision and enabling . Defined 6G privacy chal- CONCEPTUAL FRAME-
[6] 6G OVERVIEW el Al-native, THz, RIS [~ WORK ONLY
(7] 6G IOV PRIVACY Federated learning e S_hf)\_)ved inference vulnera-  NO COUNTERMEAS-
leaks bilities URE
VEHICULAR AT- . . . NO MITIGATION
[9] TACKS Attack taxonomy Threat classification Identified 5 attack types STRATEGY
Edge-intelligent intru- o . MODEL PRIVACY UN-
[10] 6G IDS sion detection Federated DL IDS 97 % detection accuracy PROTECTED
[12] VCN PRIVACY Ideptlty & data obfus- Bseudonymlzatlon, encryp- - aled driver identi ty CENTRALIZED CON-
cation tion TROL
VCN SPATIAL PRI- . . Hilbert-curve dummy loca- . . NO BLOCKCHAIN IN-
[13] VACY Location protection T Achieved k-anonymity TEGRATION
6G VEHICULAR e . SCALABILITY NOT
[14] BLOCKCHAIN Edge validation Consensus acceleration Sub-2 ms latency TESTED
UAV/VEHICULAR . . . HEAVY COMPUTA-
[15] NETWORKS Secure access control Blockchain + ABE High confidentiality TION
[16] SPECTRUM SHAR- 6G VEHICULAR BLOCKCHAIN COORDI- SECURED SPECTRUM NO PRIVACY PRESER-
ING 10T NATION ACCESS VATION

3. Proposed Framework and Architecture

3.1. Rationale for the framework

The proposed framework for 6G-connected vehicular clouds is structured to achieve end-to-end trust assurance, real-time anomaly detec-
tion, and decentralized privacy enforcement. Unlike conventional SG or VANET security architectures, which rely on centralized trust
anchors and static credentials, the proposed design leverages multi-layer decentralization across vehicular, edge, and blockchain domains
to provide dynamic resilience against evolving cyber threats. The architecture, illustrated in Figure. 1 comprises three tightly integrated
layers: (i) the Vehicular Device Layer, (ii) the Edge and Detection Layer, and (iii) the Blockchain Response and Control Layer. These
layers interact through authenticated 6G communication slices and federated trust channels to ensure integrity, accountability, and low-
latency decision feedback.
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Fig. 1: Enhanced Blockchain-Powered 6G Vehicular Cloud Architecture Integrating Decentralized Trust, Privacy Preservation, and Adaptive Attack Miti-
gation Across Vehicular, Edge, and Blockchain Layers.

3.2. Vehicular device layer

The Vehicular Device Layer represents the sensory and communication substrate of the vehicular cloud ecosystem. Connected vehicles
equipped with On-Board Units (OBUs), Global Navigation Satellite Systems (GNSS), and 6G network transceivers continuously generate
telemetry data, including position, velocity, and environmental context. Each vehicle authenticates using a temporary pseudonym ID,
validated through blockchain-issued certificates and verified via zero-knowledge proofs (ZKPs), thus preserving anonymity while ensuring
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authenticity. Data packets are symmetrically encrypted using elliptic-curve cryptography before transmission, guaranteeing confidentiality
even over open 6G links. The pseudonym-renewal interval 1, is adaptively determined based on mobility, trust history, and observed
network congestion to minimize the risk of linkability. Vehicles upload their encrypted telemetry to the nearest roadside unit (RSU) or
satellite-assisted edge gateway, initiating the privacy-preserving data flow.

3.3. Edge and detection layer

Serving as the intelligence hub of the system (see Figure 2), the edge layer hosts RSUs and micro-edge nodes that perform real-time
anomaly detection and local trust evaluation to isolate malicious or compromised nodes before threats propagate.
Each vehicle vi maintains a dynamic trust value Ti(t) updated according to behavioral consistency and temporal evidence:

Ti(t) = ALTi(t — 1) + A2Ci(t) + A3Ri(t), AL + A2 + A3 = 1

Where:

o Ci(t) represents communication integrity derived from packet-arrival patterns,

e Ri(t) denotes peer reputation feedback, and

e Ti(t—1) is the previous trust state.

When Ti(t)<8, the vehicle is temporarily isolated, and an anomaly report is generated. Edge detectors leverage federated learning to share
learned threat signatures without exposing raw data, enabling collaborative defense while minimizing data exposure. The resulting anomaly
vectors are forwarded to blockchain validators for distributed verification.
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Fig. 2: End-to-End Privacy-Preserving Data-Flow Pipeline for 6G-Connected Vehicular Clouds.
3.4. Blockchain response and control layer

At the top tier, the blockchain layer serves as the system's decentralized enforcement backbone. It is implemented as a consortium block-
chain maintained by RSUs, cloud servers, and regulatory authorities. A Proof-of-Trust (PoT) consensus mechanism selects validators
according to cumulative trust weight ¥j and latency contribution (;:

W, Tj 1

FTEN T T dyre

Where d; is the validator’s propagation delay, and €\epsilone is a small constant to prevent singularity. This hybrid consensus minimizes
energy consumption and ensures a validation latency of under 20 ms, meeting 6G URLLC performance targets.

Each anomaly report is converted into a blockchain transaction, Txalert, containing metadata such as the pseudonym hash, timestamp, and
trust evidence. Smart contracts autonomously verify alerts, trigger mitigation logic, and record the decisions immutably.

To enhance privacy, differential privacy is applied during the on-chain aggregation of vehicular statistics. A calibrated Laplacian noise
parameter ¢ is injected into shared datasets to prevent adversarial re-identification of specific trajectories while preserving analytical accu-
racy. Upon consensus, the blockchain layer disseminates mitigation feedback through 6G broadcast slices.

Actions may include:

e revoking compromised certificates,

e penalizing malicious nodes by reducing Ti

e reinitializing pseudonym credentials for falsely flagged vehicles.

All actions are executed automatically by smart-contract triggers, ensuring verifiable, tamper-proof, and auditable responses without human
intervention. The blockchain ledger simultaneously updates trust tables and maintains an immutable forensic trail for post-incident ac-
countability.
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3.5. Administrative and monitoring interface

A dedicated monitoring interface provides system operators with a comprehensive real-time view of trust dynamics, consensus decisions,
and privacy budgets. Through direct integration with the blockchain analytics API, administrators can evaluate system latency, throughput,
and privacy parameters under varying vehicular densities, ensuring continuous optimization and regulatory compliance. Figure 1 illustrates
the end-to-end privacy-preserving workflow from telemetry acquisition and pseudonymization to blockchain verification and anonymized
storage. Figure 2 illustrates the hierarchical interaction among the vehicular, detection, and blockchain layers, highlighting Al-based anom-
aly detection, federated learning coordination, and decentralized mitigation mechanisms. Figure 3 illustrates the internal mechanisms of
the mitigation process, from Al-based anomaly recognition and distributed validation to smart contract-driven revocation and recalibration
of trust scores. Together, these figures form the operational blueprint of the proposed framework, demonstrating its ability to achieve
privacy preservation, decentralized trust, and adaptive resilience in ultra-dense 6G vehicular cloud networks.

An Administrative and Monitoring Interface provides system operators with a comprehensive view of the trust ecosystem, enabling visual
inspection of node behavior, consensus decisions, and real-time privacy metrics. This interface integrates directly with the blockchain
analytics API, allowing quantitative evaluation of latency, throughput, and privacy budgets under varying vehicular densities.

Figure 1 presents a hierarchical overview of the architecture, depicting the interactions among the vehicular, detection, and blockchain
layers. Figure 2 elaborates on the end-to-end privacy workflow, showing how telemetry encryption, pseudonymization, ZKP verification,
differential-privacy masking, and blockchain validation are orchestrated into a unified data pipeline. Together, these figures form the
structural and operational blueprint of the proposed system, highlighting its ability to deliver privacy preservation, decentralized trust, and
adaptive resilience in ultra-dense 6G vehicular cloud.
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4. Methodology

4.1. Overview

The methodological design outlines the computational processes and analytical models employed to implement the proposed framework.
It focuses on defining the mathematical formulations, data-handling logic, and algorithmic procedures that enable adaptive trust computa-
tion, intelligent anomaly detection, decentralized consensus, and autonomous mitigation.

The methodology integrates four core techniques: dynamic trust modeling, federated anomaly detection, Proof-of-Trust (PoT) consensus,
and smart-contract-based mitigation, which together form a self-regulating defense cycle. Each stage is defined by a dedicated algorithm
(Algorithms 1-4) and implemented to ensure privacy preservation, verifiable accountability, and ultra-low-latency responses consistent
with 6G vehicular requirements.

The following subsections detail each algorithmic process, outlining its mathematical foundation, operational steps, and methodological
role in the overall workflow.

e Algorithm 1: Trust Evaluation Mechanism

The first methodological stage establishes dynamic trust computation for each vehicular node. The mechanism evaluates vehicular relia-
bility using a weighted linear function that combines historical trust, current communication integrity, and peer feedback.

This approach ensures that trust evolves continuously, based on behavioral evidence and temporal consistency.

Input: Historical trust T;(t—1), communication integrity C;(t), reputation feedback R(t).
Output: Updated trust score Ti(t).

1: Initialize vehicle v; with prior trust value Tj(t-1).

2: Receive telemetry and communication integrity data Ci(t).

3: Obtain peer reputation feedback R;(t) from adjacent RSUs.

4: Compute updated trust score:

Tﬁi(t) = )\,]*Ti(t—l) + }\z*ci(t) + K}*Ri(t)

S5:If Ti(t) < Or:

— Flag node as suspicious and generate alert A;.

6: Forward A; to Edge Intelligence Layer for anomaly verification.
7: End.
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Algorithm 1 establishes behavioral accountability through adaptive trust evaluation. Its mathematical simplicity ensures real-time execution
while supporting decentralized decision-making across vehicular nodes.

e Algorithm 2: Al-Assisted Anomaly Detection via Federated Learning

The second stage implements distributed anomaly recognition using federated learning (FL). This technique enables edge-level intelligence
to detect irregular traffic without centralizing raw data, maintaining both accuracy and privacy.

Each roadside unit (RSU) acts as an independent learner, training an anomaly detection model locally on encrypted telemetry. Model
gradients, not datasets, are shared with a global aggregator to update the collective model.

Input: Encrypted telemetry D, trust report A;, local model parameters w;"t.
Output: Updated global model w+1wyi:1,wi+1, Verified anomaly alert.

1: Each edge node receives D, from connected vehicles.

2: Train local model on encrypted dataset; compute reconstruction error E,.
3: If (E, > Bg) or (trust A; flagged):

Classify as potential anomaly.

4: Send model gradients (not raw data) to Federated Aggregator.

5: Global model update:

Wi = (1/N) Z witt

6: Share updated model with all nodes for synchronized detection.

7: Forward verified anomaly to blockchain validators.

8: End.

The federated learning structure ensures privacy-preserving intelligence, reducing communication overhead and exposure risk.

e Algorithm 3: Proof-of-Trust (PoT) Consensus Protocol

This algorithm governs blockchain transaction validation. Validators are selected dynamically based on their cumulative trust and latency
contribution, ensuring ultra-low-latency consensus consistent with 6G URLLC targets.

Input: Validator set V = {v, v,,...,vn}, trust weights T;, delays d;.
Output: Confirmed transaction block BtB tBt.

1: Each validator j computes selection weight:
\Pi:Ti/sz,f/izl/(di+8)

2: Compute selection probability:

Pi = (llPi + (I-G)Ei

3: Sort validators by P;; select top m participants.

4: Validators verify anomaly alerts and execute consensus.
5: If consensus threshold met:

— Confirm block B; and append to ledger.

6: Disseminate consensus result to all nodes.

7: End.

This consensus model minimizes computation cost while ensuring verifiable reliability and scalability for dense vehicular environments.
e Algorithm 4: Smart-Contract-Based Attack Mitigation

The final methodological module enforces automated response and recovery via blockchain smart contracts. Upon verification, malicious
nodes are penalized, and trust recalibration is executed autonomously.

Input: Verified anomaly block By, trust ledger T;, privacy parameters €.
Output: Updated ledger, mitigation feedback, and anonymized forensic record.
1: Receive verified alert B; from PoT consensus.

2: Execute smart contract to determine mitigation type:

if (severity = High): revoke certificate and isolate node.

if (severity = Medium): reduce trust T; by penalty factor f.

if (severity = Low): request reauthentication with new pseudonym.

3: Apply differential privacy:

f{x) = f(x) + Lap(Af/ €)

4: Store anonymized record immutably on blockchain ledger.

5: Broadcast mitigation results to vehicular and edge layers.

6: Update global trust table.

7: End.

This mechanism ensures autonomous and verifiable remediation without human intervention, thereby guaranteeing system resilience under
continuous attack conditions.

The proposed algorithms can close-loop process:

e Real-time detection and response (<20 ms end-to-end latency)

e Continuous trust recalibration and data confidentiality

e Immutable accountability and forensic traceability

The proposed methodology transforms traditional vehicular security into a self-adaptive, blockchain-governed ecosystem.
It synthesizes statistical trust modeling, Al-driven anomaly detection, and cryptographic privacy within a unified operational pipeline.
The resulting framework exhibits high scalability, analytical transparency, and resilience, establishing a strong foundation for next-gener-
ation 6G vehicular cloud security.
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5. Results and Analysis

5.1. Datasets, preprocessing, and security coverage

To rigorously assess the effectiveness, robustness, and scalability of the proposed methodology, experimental validation was conducted
using publicly available benchmark datasets that are widely adopted in network security, IoT intrusion detection, and cyber-physical system
research. The selected datasets are designed to capture heterogeneous traffic patterns, diverse attack behaviors, and realistic operational
conditions, making them suitable for evaluating security mechanisms relevant to 6G-enabled vehicular cloud environments, where ultra-
low latency, high mobility, and large-scale connectivity introduce unique security challenges. The use of multiple datasets ensures that the
evaluation is not biased toward a single threat model or traffic profile, but instead reflects a broad spectrum of adversarial behaviors
encountered in real-world vehicular and edge-cloud systems. However, it is important to acknowledge that the CIC-IDS2017, TON_IoT,
and N-BaloT datasets are not natively collected from real vehicular networks or operational 6G environments. These datasets primarily
originate from enterprise and IoT settings and therefore do not fully capture all mobility dynamics, radio-layer characteristics, and ultra-
low-latency constraints inherent to 6G-connected vehicular cloud systems. In this study, they are intentionally adopted as representative
benchmark proxies to model a wide spectrum of attack behaviors—ranging from high-volume denial-of-service attacks to stealthy and
coordinated botnet activity—that are also expected to manifest in future vehicular cloud environments. While this approach enables con-
trolled, reproducible, and comparative evaluation, the authors acknowledge that validation using real-world vehicular datasets and large-
scale 6G testbeds remains an important direction for future research.

5.1.1. Dataset selection and motivation

The experimental evaluation employs three complementary datasets, each contributing distinct characteristics that are essential for analyz-
ing different dimensions of vehicular cloud security. A summary of these datasets and their security relevance is provided in Table 2.

e CIC-IDS2017

The CIC-IDS2017 dataset provides comprehensive, labeled network traffic traces that encompass both benign activity and a diverse range
of high-volume cyberattacks, including denial-of-service (DoS), distributed denial-of-service (DDoS), brute-force authentication attacks,
and network scanning. Generated in a controlled yet realistic enterprise-like environment, CIC-IDS2017 is widely regarded as a reference
benchmark for evaluating intrusion detection systems due to its rich feature set, balanced traffic composition, and detailed attack labeling
[17]. In the context of this study, CIC-IDS2017 enables the evaluation of the framework’s ability to detect availability-based and volumetric
attacks, which remain critical threats in vehicular clouds, where communication disruptions can directly affect safety-critical services.

e TON IoT

The TON_IoT dataset captures telemetry, network flows, and system-level data originating from IoT and edge-connected environments. It
includes a variety of stealthy attack scenarios, such as data injection, backdoor exploitation, and malicious command execution, which
closely resemble compromised devices operating within normal traffic ranges [18]. This dataset is particularly suitable for assessing de-
tection robustness against low-rate and evasive attacks, which are difficult to identify using traditional signature-based methods and are
increasingly prevalent in edge-assisted vehicular systems. Its inclusion allows the proposed methodology to be evaluated under subtle and
persistent threat conditions, reflecting realistic adversarial behavior in 6G vehicular clouds.

e N-BaloT

The N-BaloT dataset focuses on botnet-driven malicious behavior emanating from infected IoT devices, emphasizing coordinated, syn-
chronized attack patterns [19]. These behaviors closely align with distributed and collusive attack scenarios in vehicular cloud environ-
ments, including Sybil-like behavior, coordinated flooding, and reputation manipulation. By incorporating N-BaloT, the evaluation exam-
ines the framework’s capability to detect collective and coordinated attacks, which pose significant risks in ultra-dense vehicular networks
where adversaries may exploit scale and cooperation to evade detection.

Collectively, the selected datasets enable comprehensive evaluation across high-volume attacks, stealthy anomalies, and coordinated ma-
licious behavior, ensuring broad coverage of the vehicular threat landscape. As summarized in Table 2, this multi-dataset strategy supports
a balanced and realistic assessment of both security detection performance and adaptive mitigation effectiveness within 6G-connected
vehicular cloud systems.

Table 2: Summary of Evaluation Datasets and Security Relevance

Dataset Environment Type Attack Characteristics Security Relevance

CIC-IDS2017 Enterprise-like network DoS/DDoS, brute force, scanning Evaluates resilience to volumetric and availability attacks
TON IoT IoT / edge environments Stealthy injection, backdoors Tests robustness against low-rate and evasive threats
N-BaloT IoT botnet traffic Coordinated botnet attacks Models collusive and distributed vehicular threats

5.2. Experimental setup and evaluation metrics

The experimental evaluation was designed to rigorously assess the effectiveness, robustness, and scalability of the proposed methodology
under conditions representative of 6G-enabled vehicular cloud environments. All experiments were conducted within an edge-assisted
simulation framework that emulates high-mobility vehicular communication, distributed roadside units, and decentralized blockchain val-
idators. Vehicular nodes, RSUs, and validation entities were instantiated as independent components with variable communication delays
to capture the effects of ultra-dense connectivity and dynamic network topology. The evaluation scenarios incorporated heterogeneous
traffic streams containing both benign and malicious behaviors, multiple vehicular density levels ranging from 100 to 1,000 nodes, and
continuous trust evolution with adaptive mitigation events. Federated learning processes were executed over multiple training rounds to
ensure convergence stability under non-1ID data distributions, while blockchain operations were evaluated under both nominal and adver-
sarial loads to examine validation latency and consensus resilience. This experimental configuration follows best practices adopted in
recent vehicular and 6G security studies, ensuring fair comparison, reproducibility, and statistical validity across competing approaches
[10], [14].

To provide a comprehensive and balanced assessment, both detection-oriented and system-level security metrics were employed. Detection
effectiveness was measured using the detection rate, which quantifies the proportion of correctly identified attacks, and the false-positive
rate, which captures the likelihood that benign traffic is misclassified as malicious. Precision and F1-score were additionally used to eval-
uate classification reliability under class-imbalanced traffic conditions, a common characteristic of vehicular networks [17]. System
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responsiveness was evaluated through end-to-end latency, defined as the elapsed time between anomaly detection and mitigation enforce-
ment, which is a critical performance indicator for 6G ultra-reliable low-latency communication (URLLC) scenarios [6]. Scalability was
assessed by analyzing performance degradation as vehicular density increased, while security coverage was used to evaluate the system’s
ability to detect and mitigate volumetric, stealthy, and coordinated attacks across heterogeneous datasets. Collectively, these metrics capture
accuracy, responsiveness, robustness, and practical deployability, ensuring that observed performance gains are achieved without compro-
mising feasibility or operational stability.

5.3. Detection performance analysis

This section evaluates the detection effectiveness of the proposed methodology across the three benchmark datasets introduced in Section
5.1. Table 3 presents the detection performance achieved on CIC-IDS2017, TON IoT, and N-BaloT datasets. The results consistently
demonstrate high detection accuracy across various attack profiles. Performance remains robust even against TON_IoT, which contains
stealthy, low-rate attacks that typically evade signature-based systems [18]. The low false-positive rates confirm that dynamic trust mod-
eling effectively suppresses false alarms, a critical requirement in vehicular environments where excessive isolation can disrupt services.

Table 3: Detection Performance Across Datasets

Dataset Detection Rate (%) Precision (%) Fl-score (%) FPR (%)
CIC-IDS2017 96.4 95.9 96.1 1.1
TON _IoT 95.2 94.6 94.9 1.4
N-BaloT 97.1 96.5 96.8 1.0

Figure 4 provides a visual comparison of the detection rates achieved by the proposed methodology across the CIC-IDS2017, TON _IoT,
and N-BaloT datasets. The figure demonstrates that detection performance remains consistently high across datasets despite substantial
differences in traffic composition, attack intensity, and adversarial behavior. In particular, the methodology achieves its highest detection
rate on the N-BaloT dataset, demonstrating its strong ability to identify coordinated, botnet-driven attacks that mimic collusive behavior
in vehicular cloud environments. Although the TON_IoT dataset presents a more challenging scenario due to stealthy, low-rate attacks that
closely mimic normal system behavior, the detection rate remains above 95%, indicating that integrating dynamic trust evaluation with
federated anomaly detection effectively captures subtle deviations that would typically evade conventional intrusion detection systems.
The relatively narrow variance in detection rates across all datasets confirms the robustness and generalizability of the proposed approach,
demonstrating that its performance is not over-fitted to a specific traffic profile or attack type. Overall, Figure 4 substantiates that the
methodology delivers stable and reliable detection under heterogeneous operational conditions, a critical requirement for security enforce-
ment in 6G-enabled vehicular cloud systems, which are characterized by high mobility, dynamic topology, and diverse threat models.
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Fig. 4: Detection Rate Comparison Across Datasets.

These results demonstrate the robustness and generalizability of the proposed detection framework across heterogeneous attack scenarios,
while the broader security implications and comparative advantages are examined in the following sections.

5.4. Comparative analysis with existing approaches

To contextualize the effectiveness of the proposed methodology, a comparative evaluation was conducted against representative baseline
intrusion detection systems commonly used in vehicular, IoT, and edge security research. The comparison focuses on three critical perfor-
mance dimensions: detection accuracy, false positive rate, and response latency, which collectively determine the practicality of a security
solution in 6G-enabled vehicular cloud environments.

The comparative results are summarized in Table 4, which contrasts the proposed approach with Snort, Suricata, Kitsune, and a federated
LSTM-based IDS. These systems represent successive generations of security mechanisms, ranging from traditional signature-based de-
tection to modern learning-driven approaches.

As shown in Table 4, Snort and Suricata exhibit the lowest detection rates, achieving 78.6% and 81.2%, respectively, while suffering from
relatively high false positive rates (6.8% and 5.9%) and elevated response latency (above 30 ms). These results confirm the inherent
limitations of rule-based systems in handling encrypted, high-mobility, and previously unseen attack patterns, which are typical of vehicular
cloud traffic. Their performance degradation under dynamic conditions renders them unsuitable for 6G ultra-reliable low-latency commu-
nication (URLLC) scenarios.
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Kitsune, which employs an autoencoder-based anomaly detection mechanism, demonstrates a notable improvement in detection accuracy,
reaching 90.4%, and reduces the false positive rate to 3.8%, as reported in Table 4. However, its average latency of 24 ms exceeds the strict
timing requirements of safety-critical vehicular applications. Moreover, Kitsune operates as a standalone detection mechanism and lacks
integrated trust validation or automated mitigation, limiting its operational effectiveness once an anomaly is detected.

The federated LSTM-based IDS further improves detection performance to 93.1% and reduces the false-positive rate to 2.9%, demonstrat-
ing the advantages of temporal modeling and collaborative learning across edge nodes. Nevertheless, as indicated in Table 4, this approach
still incurs a non-negligible latency of 22 ms, primarily due to repeated model aggregation and the absence of a lightweight verification
mechanism. Additionally, it does not provide decentralized accountability or enforceable mitigation, leaving the system vulnerable to trust
manipulation and delayed response.

In contrast, the proposed methodology achieves a detection rate of 96.4%, the lowest false-positive rate of 1.1%, and the minimum average
latency of 18 ms, as shown in Table 4. This superior performance stems from the synergistic integration of dynamic trust evaluation,
federated anomaly detection, Proof-of-Trust consensus, and smart-contract-driven mitigation. Unlike baseline systems that focus solely on
detection, the proposed approach ensures that detected threats are validated, recorded, and mitigated in a decentralized and verifiable
manner, without introducing excessive computational or communication overhead.

The quantitative comparison presented in Table 4 demonstrates that the proposed methodology not only outperforms existing IDS solutions
in detection accuracy but also achieves a more favorable balance between responsiveness and reliability. These results confirm that incor-
porating lightweight blockchain consensus and trust-aware decision-making enhances security effectiveness rather than degrading perfor-
mance, making the proposed approach particularly well-suited for large-scale, latency-sensitive 6G vehicular cloud deployments.

Table 4: Comparative Detection Performance

Method Detection Rate (%) FPR (%) Avg. Latency (ms)
Snort 78.6 6.8 35
Suricata 81.2 5.9 32
Kitsune 90.4 3.8 24
Federated LSTM IDS 93.1 2.9 22
Proposed Method 96.4 1.1 18

While detection accuracy is a fundamental requirement, response latency and scalability are equally critical in 6G vehicular cloud systems,
where security mechanisms must operate within the constraints of ultra-reliable low-latency communication (URLLC). To evaluate these
aspects, the end-to-end response latency of the proposed methodology was measured under increasing vehicular density, capturing the
cumulative delay associated with anomaly detection, blockchain validation, and mitigation enforcement.

Figure 5 illustrates the relationship between vehicular density and end-to-end response latency. The results indicate that latency increases
gradually as the number of vehicles grows, reflecting the additional communication and coordination overhead introduced by higher net-
work load. However, even at the maximum evaluated scale of 1,000 vehicles, the response latency remains consistently below 20 ms. This
performance meets the stringent latency requirements of 6G URLLC scenarios, ensuring a timely response to security threats in safety-
critical vehicular applications [6].

The observed scalability can be attributed to the design of the Proof-of-Trust consensus mechanism, which prioritizes validators based on
their trustworthiness and communication delay, rather than requiring exhaustive message exchange. Unlike PBFT-based approaches, which
suffer from rapid performance degradation as the number of validators increases, and PoW-based mechanisms, which are computationally
infeasible for real-time environments, the proposed consensus protocol maintains stable latency under dense network conditions. Further-
more, the use of federated learning at the edge reduces reliance on centralized processing and alleviates backhaul congestion, enabling
efficient scaling without sacrificing detection accuracy or responsiveness.

The latency and scalability results confirm that the proposed methodology is well-suited for deployment in large-scale 6G vehicular cloud
environments. It delivers real-time security enforcement while preserving decentralized trust and privacy, thereby addressing key limita-
tions of existing IDS and blockchain-based security solutions.
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Fig. 5: End-to-End Response Latency Versus Number of Vehicular Nodes.

Overall, the comparative results confirm that the proposed methodology achieves a superior balance among detection accuracy, latency,
and operational scalability, as further contextualized by security coverage and resilience analysis in the subsequent section.
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5.5. Security coverage and threat resilience analysis

Beyond conventional detection accuracy, a critical requirement for 6G vehicular cloud security is the ability to effectively contain, neu-
tralize, and recover from diverse attack categories under highly dynamic network conditions. To this end, the proposed methodology was
evaluated for its security coverage and threat resilience across multiple attack classes, as summarized in Table 5.

The results reported in Table 5 demonstrate that the system achieves consistently high detection and mitigation performance across volu-
metric, stealthy, coordinated, and trust-based attacks. In the case of DoS and DDoS attacks, which pose severe risks to safety-critical
vehicular services, the framework achieves a detection rate of 98.2% and a mitigation success rate of 97.6%. This high effectiveness is
attributed to the combined operation of federated anomaly detection (Algorithm 2) and smart-contract-based enforcement (Algorithm 4),
which enables rapid isolation of traffic-flooding sources before service degradation propagates through the vehicular cloud.

For stealthy injection attacks, intentionally designed to evade threshold-based or signature-driven detection mechanisms, the framework
maintains a detection rate exceeding 94% and a mitigation success rate of 93.4%. These results confirm the robustness of the anomaly
detection pipeline against low-rate and evasive behaviors, particularly when reinforced by trust-aware filtering. The slight reduction in
performance compared to volumetric attacks reflects the inherent difficulty of identifying subtle deviations in encrypted telemetry; how-
ever, the achieved results remain significantly higher than those reported in conventional IDS solutions lacking trust integration.

The system exhibits particularly strong resilience against coordinated botnet attacks, achieving a mitigation success rate of 96.1%. This
performance highlights the effectiveness of decentralized trust correlation and blockchain-validated enforcement in identifying collusive
behaviors that individual detectors may overlook. By aggregating trust degradation evidence across multiple nodes and enforcing mitigation
decisions through consensus, the framework prevents synchronized adversaries from exploiting network scale to evade detection.

Finally, reputation manipulation attacks, which target the integrity of trust and reputation mechanisms themselves, are effectively mitigated
with a success rate of 94.8%. This result demonstrates that dynamic trust recalibration, combined with immutable on-chain logging, pre-
vents adversaries from artificially inflating or suppressing trust values over time. Overall, the results in Table 5 confirm that the proposed
methodology provides broad and balanced security coverage, ensuring that no single attack class disproportionately weakens system resil-
ience.

These findings highlight the proposed framework's ability to provide consistent and comprehensive protection across diverse attack cate-
gories, supporting its suitability for large-scale 6G vehicular cloud deployments.

Table 5: Security Coverage Across Attack Types

Attack Type Detection Rate (%) Mitigation Success (%)
DoS/DDoS 98.2 97.6
Stealthy Injection 94.1 93.4
Coordinated Botnet 96.7 96.1
Reputation Manipulation 95.3 94.8

5.6. Trust evolution and behavioral stability analysis

To further analyze the internal stability and reliability of the proposed security mechanisms, the temporal behavior of the dynamic trust
evaluation model (Algorithm 1) was examined under different vehicular behavior profiles. This analysis is essential in vehicular environ-
ments, where transient anomalies may arise from mobility, interference, or sensor noise and must not be mistaken for malicious intent.
Figure 6 illustrates the evolution of trust scores Ti(t) over time for three representative vehicular nodes: a benign vehicle, a temporarily
anomalous vehicle, and a persistently malicious vehicle. The figure provides clear insight into how the trust mechanism differentiates
between benign irregularities and sustained adversarial behavior.

For benign vehicles, trust values remain consistently above the predefined threshold 0T, exhibiting only minor fluctuations that reflect
normal communication variability. This stability confirms that the trust model does not penalize legitimate vehicles under normal operating
conditions, thereby preserving network availability and avoiding unnecessary isolation.

In cases of temporary anomalous behavior, trust scores decline temporarily when abnormal activity is detected; however, the trust value
gradually recovers once normal behavior resumes. This recovery behavior demonstrates that the trust model incorporates temporal memory
and does not enforce irreversible penalties for isolated or non-persistent anomalies. Such behavior is crucial in high-mobility vehicular
networks, where brief disruptions are common and should not lead to long-term exclusion.

Conversely, persistently malicious vehicles exhibit a monotonic decline in trust scores, eventually crossing the isolation threshold 8t. Once
this threshold is breached, the node is flagged and subjected to mitigation actions enforced by smart contracts, preventing further partici-
pation in the network. The absence of trust recovery for malicious nodes confirms that the system effectively distinguishes sustained
adversarial behavior from benign irregularities.

The trust evolution patterns shown in Figure 6 validate the behavioral accountability and stability of Algorithm 1. The results confirm that
the trust mechanism achieves a critical balance between sensitivity and robustness—rapidly isolating malicious actors while avoiding
premature or unjustified exclusion of legitimate vehicles. This property is fundamental to maintaining both security and service continuity
in ultra-dense 6G vehicular cloud environments.
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To validate the effectiveness and stability of the federated anomaly detection mechanism defined in Algorithm 2, the convergence behavior
of the federated learning process was examined across multiple communication rounds using distributed edge nodes. Convergence analysis
is a critical indicator of whether collaborative learning can reliably extract global intelligence from heterogeneous vehicular data without
centralized data aggregation—an essential requirement for privacy-preserving security in 6G vehicular cloud environments.

Figure 7 illustrates the evolution of reconstruction loss over successive federated learning rounds for the CIC-IDS2017 and TON_IoT
datasets. These datasets were selected to represent contrasting traffic characteristics: CIC-IDS2017 contains high-volume, clearly distin-
guishable attack patterns, while TON_IoT includes stealthy, low-rate anomalies that exhibit significant overlap with benign behavior. The
convergence trends observed in Figure 7 provide insight into the robustness of the learning process under non-independent and non-iden-
tically distributed (non-IID) data conditions, which are typical of vehicular networks.

The results show that the global federated model converges rapidly, reaching a stable loss plateau within 15-20 training rounds for both
datasets. This rapid convergence suggests that local edge models can extract meaningful, complementary representations of normal and
anomalous traffic, despite being trained on distinct, geographically distributed data subsets. Importantly, no oscillatory behavior or diver-
gence is observed during aggregation, confirming that the federated averaging strategy in Algorithm 2 remains stable even under hetero-
geneous data distributions across edge nodes.

For the TON_IoT dataset, which presents a more challenging detection environment due to the subtlety of injected attacks, convergence
occurs slightly later than for CIC-IDS2017; however, the loss trajectory remains smooth and monotonic. This behavior demonstrates that
the federated learning mechanism effectively mitigates the adverse effects of data heterogeneity without requiring centralized access to
raw telemetry. The absence of instability further confirms that trust-aware anomaly filtering, when combined with federated aggregation,
improves learning consistency by reducing the influence of noisy or compromised data sources.

The convergence behavior depicted in Figure 7 confirms that the federated anomaly detection module achieves stable and reliable global
intelligence while fully preserving data privacy. By exchanging only model updates rather than raw vehicular data, the system maintains
confidentiality without sacrificing detection performance. These findings validate the suitability of Algorithm 2 for deployment in large-
scale, high-mobility 6G vehicular cloud environments, where data distribution is inherently non-IID and centralized learning is neither
feasible nor desirable.

0.8
— C|C-1DS2017

o we= TON_lOT
S 06 -
=
S
o]
S 04
&
[
S 02
Q
o

Federated Rounds
Fig. 7: Federated Learning Loss Convergence Across Edge Nodes.

To assess the efficiency and scalability of the proposed blockchain validation mechanism defined in Algorithm 3, an in-depth evaluation
of consensus latency and computational overhead was conducted across varying validator populations. Consensus latency is a decisive
performance metric in 6G vehicular cloud environments, where security enforcement must operate within ultra-reliable low-latency com-
munication (URLLC) constraints to avoid compromising safety-critical vehicular applications.

Figure 8 illustrates the relationship between consensus validation latency and the number of participating validators, comparing the pro-
posed Proof-of-Trust (PoT) consensus mechanism against widely adopted alternatives, namely Practical Byzantine Fault Tolerance (PBFT)
and Proof-of-Work (PoW). This comparative analysis offers insight into how different consensus strategies scale as pressure for decentral-
ization increases.

The results demonstrate that the PoT mechanism maintains consistently low validation latency, remaining below 20 ms even with 50
validators. This performance is achieved through trust-weighted validator selection and latency-aware prioritization, which significantly
reduces message complexity and avoids the quadratic communication overhead associated with traditional Byzantine consensus protocols.
As a result, PoT aligns closely with the stringent timing requirements of 6G vehicular networks, where rapid trust verification and mitiga-
tion execution are essential.

In contrast, PBFT exhibits a sharp increase in latency as the validator population exceeds approximately 20 nodes. This degradation is
attributable to its reliance on all-to-all message exchanges during the prepare and commit phases, which become increasingly inefficient
in dense, highly dynamic vehicular cloud environments. Such latency escalation renders PBFT unsuitable for large-scale 6G vehicular
deployments, particularly under adversarial conditions where rapid validation is critical.

Proof-of-Work performs significantly worse in all evaluated scenarios. The computationally intensive nature of PoOW mining introduces
validation delays that far exceed acceptable thresholds for URLLC services, making it infeasible for time-sensitive vehicular applications.
Moreover, its high energy consumption and lack of trust awareness further limit its applicability in resource-constrained vehicular and
edge-cloud infrastructures.

The latency trends observed in Figure 8 confirm that the proposed Proof-of-Trust consensus mechanism achieves a favorable balance
between decentralization, security, and real-time performance. By dynamically prioritizing validators based on trustworthiness and com-
munication latency, Algorithm 3 ensures scalable, efficient transaction validation while preserving decentralized trust. These results vali-
date the suitability of PoT as a consensus foundation for blockchain-enabled security enforcement in ultra-dense, high-mobility 6G vehic-
ular cloud systems.



International Journal of Basic and Applied Sciences 121

45
w===_PoT (Proof of Trust)

@ 40| === PBFT
oy w— Po\W
€ 20
(V]
L
A 2O T RS TS S e e e e e R e
5
(%]
2
2 10
o
o

5 10 15 20 25 30 35 40 45

Federated Rounds
Fig. 8: Consensus Latency vs. Number of Validators.

Although Figure 8 compares the proposed Proof-of-Trust (PoT) consensus against PBFT and Proof-of-Work in terms of validation latency,
it is also important to contextualize PoT with respect to representative trust-based and hybrid consensus schemes proposed in vehicular
and edge-blockchain literature. Existing trust-aware approaches typically employ reputation or trust scores to filter validator committees,
weight voting power, or select block proposers; however, many of these schemes still rely on all-to-all communication within the selected
committee or incur non-negligible coordination overhead under high mobility. In contrast, the proposed PoT mechanism integrates trust
more directly into the consensus decision by jointly prioritizing validators based on both trustworthiness and communication delay, thereby
enabling low-latency subset validation without exhaustive message exchange. A conceptual comparison between PoT and representative
trust-based and hybrid consensus models is summarized in Table 6, highlighting differences in trust utilization, communication overhead,
finality latency, and suitability for ultra-reliable low-latency and high-mobility vehicular environments. This comparison clarifies why PoT
is better aligned with the stringent timing and scalability requirements of 6G-enabled vehicular cloud systems.

Table 6: Conceptual Comparison of PoT with Trust-Based and Hybrid Consensus Models for Vehicular Contexts

Communication sl Ly Sttty Vehicular Suitability (Mobil-
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Moderate; committee tuning

sentative trust-based) tee membership tee all-to-all) — required
Reputation-weighted vot- Trust weights voting power Medium—Hich Depends on the voting Moderate; sensitive to churn
ing (trust-based) or leader selection & scheme; it can still bottleneck  and attacks on reputation
Hybrid PoW/PoS (repre- Trust is often not explicit; it ~ High compute or Typically too slow for Low for safety-critical real-
sentative hybrid) relies on stake/work medium comms URLLC time needs

Trust + latency-aware vali- Low—Medium Fast, bounded latency under High; designed for URLLC &
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dator prioritization (subset validation)  scaling mobility

To evaluate the effectiveness of the smart-contract-based mitigation mechanism defined in Algorithm 4, the system’s ability to contain
attacks and restore normal operation was analyzed through detailed timing measurements of the mitigation lifecycle. In vehicular cloud
environments, rapid and autonomous mitigation is essential, as delayed or manual responses can propagate disruptions across intercon-
nected vehicles and compromise safety-critical services.

Figure 9 illustrates the complete mitigation response timeline following the detection of a malicious event. The timeline captures four
sequential phases: initial anomaly detection at the edge, on-chain validation through Proof-of-Trust consensus, execution of mitigation
actions via smart contracts, and subsequent recovery of system operation through trust recalibration and credential management. This end-
to-end view provides a comprehensive assessment of how quickly and reliably the system transitions from threat recognition to enforced
defense.

The results indicate that mitigation enforcement is executed within an average latency of less than 18 ms from the moment an attack is
detected. This low response time demonstrates that integrating smart contracts with lightweight blockchain consensus does not introduce
prohibitive delays, even under adversarial conditions. Once consensus validation is complete, mitigation actions—such as certificate rev-
ocation, a reduction in trust score, or pseudonym reinitialization—are applied automatically without requiring human intervention. This
automation eliminates operational bottlenecks commonly associated with centralized security management, ensuring consistent enforce-
ment across all participating nodes.

An important observation from Figure 9 is the system’s ability to restore normal operation rapidly following mitigation. Trust recalibration
mechanisms prevent excessive or permanent isolation of vehicles that exhibit transient or false-positive anomalies, thereby avoiding long-
term service denial. Legitimate vehicles that are temporarily flagged due to abnormal but non-malicious behavior can recover their trust
status once normal behavior resumes, thereby maintaining system fairness and service availability.

The mitigation dynamics demonstrated in Figure 9 confirm that Algorithm 4 enables a fully autonomous, low-latency, and self-healing
security response. The tight coupling between anomaly validation, smart contract enforcement, and trust recovery ensures that attacks are
contained promptly while preserving the continuity of vehicular services. These results validate the suitability of smart-contract-driven
mitigation for real-time defense in ultra-dense 6G vehicular cloud environments, where resilience, automation, and rapid recovery are
paramount.
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Fig. 9: Mitigation Response Timeline After Attack Detection.

To provide an integrated and intuitive comparison of the security capabilities achieved by the proposed methodology relative to existing
approaches, a multi-dimensional radar visualization is presented in Figure 10. Unlike single-metric comparisons, this visualization captures
the trade-offs and strengths of each method across multiple security and system-level dimensions that are critical for 6G vehicular cloud
environments.

Figure 10 compares four representative security solutions—Snort, a federated learning—based intrusion detection system, a PBFT-based
blockchain IDS, and the proposed method—across six dimensions: detection accuracy, false positive rate, end-to-end latency, privacy
preservation, mitigation automation, and scalability. These dimensions collectively reflect not only detection performance, but also opera-
tional feasibility, responsiveness, and resilience under ultra-dense vehicular conditions.

The visualization clearly shows that traditional rule-based systems, such as Snort, perform adequately only in limited dimensions, primarily
in terms of basic detection accuracy, while exhibiting poor performance in terms of latency sensitivity, scalability, and privacy preservation.
The federated IDS improves detection accuracy and reduces false positives by leveraging collaborative learning; however, it lacks enforce-
able mitigation and decentralized trust, resulting in limited coverage in automation and accountability-related dimensions.

PBFT-based blockchain IDS solutions offer improved decentralization and stronger integrity guarantees but suffer from scalability and
latency issues as the number of validators increases. This limitation is reflected in the radar chart by reduced coverage in latency and
scalability dimensions, highlighting the mismatch between classical Byzantine consensus mechanisms and 6G URLLC requirements.

In contrast, the proposed method exhibits consistently strong performance across all evaluated dimensions. High detection accuracy and
low false positive rates are complemented by ultra-low response latency, effective privacy preservation through federated learning and
differential privacy, and fully automated mitigation enforced via smart contracts. The scalability advantage is particularly evident, as the
Proof-of-Trust consensus mechanism enables efficient validation without the communication overhead of PBFT or the computational cost
of Proof-of-Work.

Figure 10 achieves a balanced, comprehensive security posture rather than excelling in isolated metrics. Its dominance across automation,
privacy, and scalability dimensions underscores its suitability for next-generation 6G vehicular cloud systems, where security solutions
must simultaneously be intelligent, decentralized, privacy-aware, and real-time. This comparative visualization reinforces the quantitative
results presented in earlier subsections and highlights the holistic advantage of integrating trust-aware Al, lightweight blockchain consen-
sus, and autonomous mitigation into a unified security framework.
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Fig. 10: Multi-Dimensional Security Comparison.

6. Conclusion

This study aimed to investigate whether a tightly integrated combination of dynamic trust evaluation, federated anomaly detection, and
blockchain-based enforcement can yield measurable security and performance improvements in 6G-enabled vehicular cloud networks. The
experimental results demonstrate that this objective was successfully achieved. Across all evaluated datasets and attack categories, the
proposed methodology consistently achieved high detection accuracy while maintaining low false-positive rates, confirming that integrat-
ing trust-aware filtering with Al-based detection improves classification reliability in highly dynamic vehicular environments.
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The results obtained from the CIC-IDS2017, TON IoT, and N-BaloT datasets show that the proposed system is not limited to a single
threat model or traffic pattern. Instead, it performs robustly against volumetric attacks, stealthy low-rate intrusions, and coordinated botnet-
driven behaviors. Detection rates remained above 95% across all datasets, while false-positive rates were kept close to or below 1%, a
critical requirement for vehicular systems, where unnecessary isolation of benign nodes can negatively impact safety and service availa-
bility. These outcomes indicate that the trust evaluation mechanism effectively suppresses spurious alerts while still enabling timely iden-
tification of malicious behavior.

From a system-level perspective, the latency and scalability results provide strong evidence that decentralized security mechanisms can be
deployed without violating 6G performance constraints. End-to-end response latency, measured from anomaly detection to mitigation
enforcement, remained below 20 ms, even under high vehicular density, thereby satisfying the ultra-reliable low-latency communication
requirements. The Proof-of-Trust consensus mechanism demonstrated stable validation performance as the number of validators increased,
outperforming PBFT-based and Proof-of-Work schemes that exhibited rapid latency degradation. This confirms that the proposed consen-
sus design is both computationally efficient and practically deployable in dense vehicular cloud environments.

The behavioral analysis of trust evolution further validates the methodological design. Experimental results showed that benign vehicles
maintained stable trust values over time; transient anomalies led to temporary trust degradation followed by recovery, while persistently
malicious nodes experienced monotonic trust decay culminating in isolation. This behavior confirms that the trust model avoids premature
or irreversible penalties, thereby preserving system stability while still enforcing accountability—an essential property in high-mobility
vehicular environments.

Additionally, the federated learning results demonstrate that collaborative intelligence can be achieved without requiring centralized data
aggregation. Loss convergence was reached within a limited number of training rounds, and no instability was observed under heteroge-
neous and non-IID traffic conditions. This confirms that the proposed anomaly detection mechanism maintains detection effectiveness
while preserving data privacy, addressing a key limitation identified in prior studies on federated vehicular security.

Finally, the mitigation and recovery analysis show that security enforcement is not merely reactive but operationally effective. Smart-
contract-driven mitigation actions were executed automatically following on-chain validation, with recovery times consistently remaining
low and requiring no human intervention. This capability ensures that attacks are not only detected but also contained and resolved in a
timely and verifiable manner, significantly reducing the risk of prolonged service disruption.

Overall, the experimental results demonstrate that the proposed methodology achieves a balanced combination of detection accuracy,
latency efficiency, scalability, privacy preservation, and automated enforcement. The findings provide concrete empirical evidence that
decentralized, trust-aware, and Al-assisted security mechanisms can be jointly realized in 6G vehicular cloud systems. This work therefore
delivers a validated, practically grounded security solution for next-generation intelligent transportation networks, while future research
will focus on addressing real-world deployment considerations, such as energy efficiency, interoperability with legacy vehicular systems,
regulatory constraints, and large-scale validation in emerging 6G vehicular environments.
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