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Abstract 
 

The transition toward sixth-generation (6G) wireless communication is expected to significantly expand the scale, intelligence, and connec-

tivity of vehicular cloud networks, while simultaneously intensifying their exposure to sophisticated cyber threats and privacy risks. Contin-

uous exchange of vehicular telemetry, combined with ultra-low-latency communication and high mobility, renders conventional centralized 

security and intrusion detection mechanisms inadequate. This paper presents a decentralized, privacy-aware security methodology for 6G-

enabled vehicular cloud environments that integrates dynamic trust evaluation, federated anomaly detection, and blockchain-based enforce-

ment. 

The proposed approach employs adaptive trust modeling to continuously assess vehicular behavior, federated learning to enable collabora-

tive anomaly detection without disclosing raw data, and a lightweight Proof-of-Trust consensus mechanism to ensure low-latency, verifi-

able decision-making. Automated mitigation is enforced through smart contracts, enabling rapid response and accountability without cen-

tralized control. The methodology is evaluated using three widely adopted benchmark datasets—CIC-IDS2017, TON_IoT, and N-BaIoT—

that cover volumetric attacks, stealthy intrusions, and coordinated botnet behavior. 

Experimental results demonstrate detection rates exceeding 95% across all datasets, with false-positive rates of nearly 1%. End-to-end 

detec-tion-to-mitigation latency remains below 20 ms under high vehicular density, satisfying 6G ultra-reliable low-latency communication 

re-quirements. A comparative analysis reveals that the proposed approach outperforms traditional signature-based and learning-based in-

trusion detection systems in terms of accuracy, scalability, and enforcement capability, while maintaining data privacy through federated 

learning and differential privacy mechanisms. 

These results confirm that decentralized trust management, privacy-preserving intelligence, and automated blockchain enforcement can be 

jointly realized in 6G vehicular cloud systems. The proposed methodology provides a practical, scalable foundation for securing next-

generation intelligent transportation infrastructure against evolving cyber threats. 

 
Keywords: 6G Vehicular Cloud Networks; Blockchain-Based Security; Federated Learning; Trust Management; Intrusion Detection; Privacy 

Preservation; Smart Contracts; Proof-of-Trust Consensus; Intelligent Transportation Systems. 

1. Introduction 

The ongoing evolution from fifth-generation (5G) to sixth-generation (6G) wireless communication is transforming the landscape of intel-

ligent transportation systems. The 6G paradigm is expected to deliver ultra-low latency (below 1 ms), extremely high bandwidth, and 

intelligent edge computing capabilities that integrate communication, computation, and sensing in a unified environment [1]. Within this 

emerging context, Vehicular Cloud Networks (VCNs) have become a critical infrastructure component that enables vehicles, roadside units 

(RSUs), and cloud servers to collaborate in real time for traffic management, autonomous driving, and infotainment services [2]. Through 

6G-enabled connectivity, vehicles act as mobile sensing and computing nodes, contributing to distributed decision-making and cooperative 

perception in smart transportation systems. 

Despite these advantages, privacy and security remain among the most pressing challenges in VCNs. The continuous exchange of vehicle 

trajectories, sensor readings, and personal identifiers generates vast amounts of sensitive information that can easily be exploited for user 

profiling, location tracking, and behavioral inference [3], [4]. Furthermore, the decentralized and highly dynamic topology of vehicular 

networks increases their exposure to a broad range of cyberattacks, including Sybil, replay, spoofing, and distributed denial-of-service 

(DDoS) attacks [5]. Such threats compromise both the integrity of vehicular data and the reliability of communication links, leading to 

potentially catastrophic consequences in safety-critical applications. 

Conventional vehicular cloud frameworks largely depend on centralized authorities for authentication and trust management [6]. Although 

these architectures simplify coordination, they are inherently limited by scalability issues, latency overhead, and single points of failure—

constraints that become unacceptable in 6G scenarios characterized by ultra-dense connectivity and high mobility [7]. The reliance on 

centralized trust anchors also creates vulnerabilities that adversaries can exploit to manipulate trust values or disrupt network synchroniza-

tion. 

http://creativecommons.org/licenses/by/3.0/
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Blockchain technology has emerged as a promising enabler to overcome these limitations. Its decentralized, immutable, and transparent 

structure allows secure information exchange without relying on a single trusted intermediary [8]. Recent studies have explored the poten-

tial of blockchain in vehicular networks to enhance authentication, reputation management, and data integrity [9]. Nevertheless, existing 

blockchain-based approaches often suffer from high computational complexity and limited scalability due to consensus mechanisms such 

as Proof-of-Work or Proof-of-Stake, which are unsuitable for the stringent latency requirements of vehicular communications [10]. In 

addition, most current models lack comprehensive privacy-preserving mechanisms, leaving sensitive vehicular information vulnerable to 

inference and linkage attacks [11]. 

To address these deficiencies, this study introduces a blockchain-powered framework that achieves both privacy preservation and attack 

mitigation in 6G-connected vehicular clouds. The framework integrates zero-knowledge proof-based authentication, differential privacy 

for data aggregation, and a lightweight blockchain consensus optimized for high-mobility environments. It also incorporates AI-assisted 

trust evaluation at the network edge to detect anomalous or malicious behavior in real-time. The proposed model aims to reduce authenti-

cation latency, enhance trust accuracy, and maintain data confidentiality under diverse cyber-attack scenarios—thereby contributing to a 

more resilient and privacy-aware vehicular ecosystem suitable for next-generation 6G infrastructures. 

2. Literature Review 

The evolution of vehicular networks from ad-hoc systems to cloud-integrated and now 6G-connected ecosystems has driven an extensive 

body of research addressing the challenges of trust, privacy, and security. Early studies in vehicular communication focused primarily on 

securing message exchanges through centralized authorities. For instance, Dorri et al. [1] introduced one of the first blockchain-based 

vehicular frameworks, replacing traditional certificate authorities with a distributed ledger to ensure data integrity and immutability. This 

concept marked the beginning of decentralized trust in vehicular environments. Later, Chen et al. [2] proposed a blockchain-enabled trust 

management model for the Internet of Vehicles (IoV), where RSUs and vehicles cooperatively verify transaction histories to prevent ma-

licious behavior. Similarly, Xu et al. [3] designed a lightweight blockchain consensus that reduces block-propagation latency by dynami-

cally selecting validators, achieving scalability suitable for real-time vehicular communication. Rehman et al. [4] enhanced these ap-

proaches by hybridizing Practical Byzantine Fault Tolerance (PBFT) with a Proof-of-Trust mechanism to detect Sybil attacks, while Kang 

et al. [5] incorporated Software-Defined Networking (SDN) for multi-domain trust coordination, achieving flexible control without com-

promising decentralization. Collectively, these frameworks demonstrated that blockchain can effectively provide decentralized authenti-

cation, integrity verification, and traceability across vehicular entities. However, most of them were designed for 5G or VANET infrastruc-

tures and fail to accommodate the stringent latency, density, and intelligence requirements of 6G-enabled vehicular cloud systems. 

As vehicular networks transition into the 6G era, new dimensions of privacy and security arise due to ultra-dense connectivity and pervasive 

edge intelligence. Giordani et al. [6] describe 6G as an AI-native communication fabric integrating terahertz transmission, reconfigurable 

intelligent surfaces, and deep learning-based resource management. While such openness is beneficial for performance, it drastically ex-

pands the attack surface. Li et al. [7] demonstrated that even encrypted vehicular data transmitted in federated learning environments can 

reveal driver trajectories through gradient-based inference. Meanwhile, Zhang et al. [8] highlighted vulnerabilities in vehicular edge learn-

ing, where adversarial data poisoning can manipulate autonomous driving decisions. The growing complexity of vehicular data exchange 

has simultaneously amplified the number of attack vectors. Lu et al. [9] classified cyber threats in vehicular systems—Sybil, replay, spoof-

ing, DDoS, and collusion—as the most prevalent categories, emphasizing that ultra-low-latency links in 6G networks accelerate the spread 

of malicious traffic. Dai et al. [10] responded by proposing a federated edge-intelligent intrusion detection system (IDS) that achieves over 

97% detection accuracy; however, its lack of privacy protection during model aggregation exposed another vulnerability. Likewise, Yu et 

al. [11] attempted to merge blockchain with artificial intelligence for 6G vehicular trust evaluation; however, their reinforcement-learning-

based model incurred significant computational overhead, limiting its real-time deployment. These efforts collectively reveal a fragmented 

landscape—where studies either emphasize privacy or attack detection, but rarely address both in a unified, scalable architecture. 

Parallel to advances in blockchain and 6G security, the domain of Vehicular Cloud Networks (VCNs) has evolved to support cooperative 

data storage and processing by integrating edge and cloud technologies. Privacy-preserving frameworks within this domain primarily rely 

on data anonymization and obfuscation. A five-stage vehicular privacy framework [12] employed pseudonym generation, encrypted reg-

istration, and secure data transmission to conceal driver identities during interactions with the cloud. Another study introduced a Hilbert-

curve-based spatial obfuscation method [13] that generated k-dummy locations, achieving geo-indistinguishability and resistance to trajec-

tory-correlation attacks. These contributions laid the groundwork for spatial and identity privacy in vehicular data exchange; however, they 

remain centrally orchestrated and lack decentralized consensus or adaptive attack-response capabilities. Moreover, none of the existing 

VCN privacy models integrate blockchain’s immutability or employ zero-knowledge proofs and differential privacy—tools essential to 

guarantee anonymity while maintaining verifiability in 6G contexts. 

To overcome the limitations of independent blockchain or privacy approaches, recent efforts have begun exploring blockchain-6 6G con-

vergence frameworks for vehicular systems. Jiang et al. [14] proposed a blockchain-assisted 6G vehicular network leveraging edge vali-

dators for sub-2 ms verification latency, showcasing the potential of ledger-based message authentication. Mahmood et al. [15] introduced 

a privacy-preserving access-control model combining blockchain with attribute-based encryption for UAV-vehicular integration, while Al-

Matari et al. [16] examined blockchain-enabled spectrum sharing for 6G cognitive vehicular IoT to secure cooperative resource allocation. 

Although these works represent meaningful steps toward unifying decentralized trust and 6G performance, they still lack comprehensive 

privacy preservation, real-time anomaly detection, and adaptive attack mitigation across large-scale vehicular clouds. 

In summary, the current state of research demonstrates substantial progress in isolated areas—blockchain consensus optimization, vehicular 

data anonymization, and 6G trust management—but fails to offer a holistic solution that simultaneously ensures (1) decentralized and 

verifiable trust, (2) strong privacy preservation via differential and zero-knowledge mechanisms, and (3) resilient mitigation of coordinated 

cyberattacks in ultra-dense 6G vehicular cloud environments. 

This identified research gap serves as the foundation for the present study, which proposes a blockchain-powered, privacy-preserving, and 

attack-resilient framework for 6G-connected vehicular clouds, integrating decentralized trust, differential privacy, and adaptive detection 

into a unified, real-time architecture. In summary, the reviewed studies show significant progress in decentralized trust management, pri-

vacy-preserving vehicular frameworks, and 6G security architectures. Yet, as outlined in Table 1, most approaches remain confined to 

specific domains—either blockchain-based authentication, vehicular data anonymization, or 6G intrusion detection—without achieving 

holistic integration. None of the surveyed models simultaneously ensures decentralized verifiability, strong privacy preservation through 

zero-knowledge and differential techniques, and adaptive resistance against coordinated cyberattacks in ultra-dense 6G vehicular cloud 
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environments. The clear gap identified in Table I provides the foundation for the present study, which develops a unified blockchain-

powered, privacy-preserving, and attack-resilient framework for 6G-connected vehicular clouds. 

 
Table 1: Comparative Review of Key Studies on Blockchain, Privacy, and Security in Vehicular and 6G Networks 

REFE DOMAIN MAIN FOCUS 
TECHNIQUES/MECHA-

NISMS 
KEY ACHIEVEMENTS LIMITATIONS 

[1] 
BLOCKCHAIN FOR 

V2V 

Distributed trust and 

auditability 

PoW ledger, signature vali-

dation 

Integrity and tamper-proof 

data exchange 

HIGH LATENCY, EN-

ERGY COST 

[2] IOV TRUST 
Reputation-based trust 

management 

Blockchain, smart con-

tracts 

Transparent RSU–vehicle 

interactions 

CENTRALIZED AN-

CHORS 

[3] 
VEHICULAR 
BLOCKCHAIN 

Lightweight consen-
sus 

Dynamic validator rotation 45 % latency reduction 
NO PRIVACY FEA-
TURES 

[4] 
HYBRID BLOCK-

CHAIN 

PBFT + Proof of 

Trust 
Sybil detection, scalability Improved throughput 

HIGH COORDINATION 

OVERHEAD 

[6] 6G OVERVIEW 
Vision and enabling 

technologies 
AI-native, THz, RIS 

Defined 6G privacy chal-

lenges 

CONCEPTUAL FRAME-

WORK ONLY 

[7] 6G IOV PRIVACY 
Federated learning 
leaks 

Gradient analysis 
Showed inference vulnera-
bilities 

NO COUNTERMEAS-
URE 

[9] 
VEHICULAR AT-

TACKS 
Attack taxonomy Threat classification Identified 5 attack types 

NO MITIGATION 

STRATEGY 

[10] 6G IDS 
Edge-intelligent intru-

sion detection 
Federated DL IDS 97 % detection accuracy 

MODEL PRIVACY UN-

PROTECTED 

[12] VCN PRIVACY 
Identity & data obfus-

cation 

Pseudonymization, encryp-

tion 
Concealed driver identity 

CENTRALIZED CON-

TROL 

[13] 
VCN SPATIAL PRI-
VACY 

Location protection 
Hilbert-curve dummy loca-
tions 

Achieved k-anonymity 
NO BLOCKCHAIN IN-
TEGRATION 

[14] 
6G VEHICULAR 

BLOCKCHAIN 
Edge validation Consensus acceleration Sub-2 ms latency 

SCALABILITY NOT 

TESTED 

[15] 
UAV/VEHICULAR 

NETWORKS 
Secure access control Blockchain + ABE High confidentiality 

HEAVY COMPUTA-

TION 

[16] 
SPECTRUM SHAR-
ING 

6G VEHICULAR 
IOT 

BLOCKCHAIN COORDI-
NATION 

SECURED SPECTRUM 
ACCESS 

NO PRIVACY PRESER-
VATION 

3. Proposed Framework and Architecture 

3.1. Rationale for the framework 

The proposed framework for 6G-connected vehicular clouds is structured to achieve end-to-end trust assurance, real-time anomaly detec-

tion, and decentralized privacy enforcement. Unlike conventional 5G or VANET security architectures, which rely on centralized trust 

anchors and static credentials, the proposed design leverages multi-layer decentralization across vehicular, edge, and blockchain domains 

to provide dynamic resilience against evolving cyber threats. The architecture, illustrated in Figure. 1 comprises three tightly integrated 

layers: (i) the Vehicular Device Layer, (ii) the Edge and Detection Layer, and (iii) the Blockchain Response and Control Layer. These 

layers interact through authenticated 6G communication slices and federated trust channels to ensure integrity, accountability, and low-

latency decision feedback. 

 

 
Fig. 1: Enhanced Blockchain-Powered 6G Vehicular Cloud Architecture Integrating Decentralized Trust, Privacy Preservation, and Adaptive Attack Miti-

gation Across Vehicular, Edge, and Blockchain Layers. 

3.2. Vehicular device layer 

The Vehicular Device Layer represents the sensory and communication substrate of the vehicular cloud ecosystem. Connected vehicles 

equipped with On-Board Units (OBUs), Global Navigation Satellite Systems (GNSS), and 6G network transceivers continuously generate 

telemetry data, including position, velocity, and environmental context. Each vehicle authenticates using a temporary pseudonym IDp 

validated through blockchain-issued certificates and verified via zero-knowledge proofs (ZKPs), thus preserving anonymity while ensuring 
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authenticity. Data packets are symmetrically encrypted using elliptic-curve cryptography before transmission, guaranteeing confidentiality 

even over open 6G links. The pseudonym-renewal interval τp is adaptively determined based on mobility, trust history, and observed 

network congestion to minimize the risk of linkability. Vehicles upload their encrypted telemetry to the nearest roadside unit (RSU) or 

satellite-assisted edge gateway, initiating the privacy-preserving data flow. 

3.3. Edge and detection layer 

Serving as the intelligence hub of the system (see Figure 2), the edge layer hosts RSUs and micro-edge nodes that perform real-time 

anomaly detection and local trust evaluation to isolate malicious or compromised nodes before threats propagate. 

Each vehicle vi maintains a dynamic trust value Ti(t) updated according to behavioral consistency and temporal evidence: 

 

Ti(t) = λ1Ti(t − 1) + λ2Ci(t) + λ3Ri(t), λ1 + λ2 + λ3 = 1  

 

Where: 

• Ci(t) represents communication integrity derived from packet-arrival patterns, 

• Ri(t) denotes peer reputation feedback, and 

• Ti(t−1) is the previous trust state. 

When Ti(t)<θ, the vehicle is temporarily isolated, and an anomaly report is generated. Edge detectors leverage federated learning to share 

learned threat signatures without exposing raw data, enabling collaborative defense while minimizing data exposure. The resulting anomaly 

vectors are forwarded to blockchain validators for distributed verification. 

 

 
Fig. 2: End-to-End Privacy-Preserving Data-Flow Pipeline for 6G-Connected Vehicular Clouds. 

3.4. Blockchain response and control layer 

At the top tier, the blockchain layer serves as the system's decentralized enforcement backbone. It is implemented as a consortium block-

chain maintained by RSUs, cloud servers, and regulatory authorities. A Proof-of-Trust (PoT) consensus mechanism selects validators 

according to cumulative trust weight Ψj and latency contribution ℓj: 

 

Ψj =
Tj

∑ Tk
N
k=1

 , lj =
1

dj+ϵ
 

 

Where dj is the validator’s propagation delay, and ϵ\epsilonϵ is a small constant to prevent singularity. This hybrid consensus minimizes 

energy consumption and ensures a validation latency of under 20 ms, meeting 6G URLLC performance targets. 

Each anomaly report is converted into a blockchain transaction, Txalert, containing metadata such as the pseudonym hash, timestamp, and 

trust evidence. Smart contracts autonomously verify alerts, trigger mitigation logic, and record the decisions immutably. 

To enhance privacy, differential privacy is applied during the on-chain aggregation of vehicular statistics. A calibrated Laplacian noise 

parameter ε is injected into shared datasets to prevent adversarial re-identification of specific trajectories while preserving analytical accu-

racy. Upon consensus, the blockchain layer disseminates mitigation feedback through 6G broadcast slices. 

Actions may include: 

• revoking compromised certificates, 

• penalizing malicious nodes by reducing Ti 

• reinitializing pseudonym credentials for falsely flagged vehicles. 

All actions are executed automatically by smart-contract triggers, ensuring verifiable, tamper-proof, and auditable responses without human 

intervention. The blockchain ledger simultaneously updates trust tables and maintains an immutable forensic trail for post-incident ac-

countability. 
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3.5. Administrative and monitoring interface 

A dedicated monitoring interface provides system operators with a comprehensive real-time view of trust dynamics, consensus decisions, 

and privacy budgets. Through direct integration with the blockchain analytics API, administrators can evaluate system latency, throughput, 

and privacy parameters under varying vehicular densities, ensuring continuous optimization and regulatory compliance. Figure 1 illustrates 

the end-to-end privacy-preserving workflow from telemetry acquisition and pseudonymization to blockchain verification and anonymized 

storage. Figure 2 illustrates the hierarchical interaction among the vehicular, detection, and blockchain layers, highlighting AI-based anom-

aly detection, federated learning coordination, and decentralized mitigation mechanisms. Figure 3 illustrates the internal mechanisms of 

the mitigation process, from AI-based anomaly recognition and distributed validation to smart contract-driven revocation and recalibration 

of trust scores. Together, these figures form the operational blueprint of the proposed framework, demonstrating its ability to achieve 

privacy preservation, decentralized trust, and adaptive resilience in ultra-dense 6G vehicular cloud networks. 

An Administrative and Monitoring Interface provides system operators with a comprehensive view of the trust ecosystem, enabling visual 

inspection of node behavior, consensus decisions, and real-time privacy metrics. This interface integrates directly with the blockchain 

analytics API, allowing quantitative evaluation of latency, throughput, and privacy budgets under varying vehicular densities. 

Figure 1 presents a hierarchical overview of the architecture, depicting the interactions among the vehicular, detection, and blockchain 

layers. Figure 2 elaborates on the end-to-end privacy workflow, showing how telemetry encryption, pseudonymization, ZKP verification, 

differential-privacy masking, and blockchain validation are orchestrated into a unified data pipeline. Together, these figures form the 

structural and operational blueprint of the proposed system, highlighting its ability to deliver privacy preservation, decentralized trust, and 

adaptive resilience in ultra-dense 6G vehicular cloud. 

 

 
Fig. 3: Blockchain-Enabled Attack-Mitigation and Trust-Update Mechanism. 

4. Methodology 

4.1. Overview 

The methodological design outlines the computational processes and analytical models employed to implement the proposed framework. 

It focuses on defining the mathematical formulations, data-handling logic, and algorithmic procedures that enable adaptive trust computa-

tion, intelligent anomaly detection, decentralized consensus, and autonomous mitigation. 

The methodology integrates four core techniques: dynamic trust modeling, federated anomaly detection, Proof-of-Trust (PoT) consensus, 

and smart-contract-based mitigation, which together form a self-regulating defense cycle. Each stage is defined by a dedicated algorithm 

(Algorithms 1–4) and implemented to ensure privacy preservation, verifiable accountability, and ultra-low-latency responses consistent 

with 6G vehicular requirements. 

The following subsections detail each algorithmic process, outlining its mathematical foundation, operational steps, and methodological 

role in the overall workflow. 

• Algorithm 1: Trust Evaluation Mechanism 

The first methodological stage establishes dynamic trust computation for each vehicular node. The mechanism evaluates vehicular relia-

bility using a weighted linear function that combines historical trust, current communication integrity, and peer feedback. 

This approach ensures that trust evolves continuously, based on behavioral evidence and temporal consistency. 

 
Input: Historical trust Ti(t−1), communication integrity Ci(t), reputation feedback Ri(t). 
Output: Updated trust score Ti(t). 

1: Initialize vehicle vi with prior trust value Ti(t-1). 

2: Receive telemetry and communication integrity data Ci(t). 
3: Obtain peer reputation feedback Ri(t) from adjacent RSUs. 

4: Compute updated trust score: 

 T_i(t) = λ1*Ti(t-1) + λ2*Ci(t) + λ3*Ri(t) 

5: If Ti(t) < θT: 

 → Flag node as suspicious and generate alert Ai. 

6: Forward Ai to Edge Intelligence Layer for anomaly verification. 
7: End. 
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Algorithm 1 establishes behavioral accountability through adaptive trust evaluation. Its mathematical simplicity ensures real-time execution 

while supporting decentralized decision-making across vehicular nodes. 

• Algorithm 2: AI-Assisted Anomaly Detection via Federated Learning 

The second stage implements distributed anomaly recognition using federated learning (FL). This technique enables edge-level intelligence 

to detect irregular traffic without centralizing raw data, maintaining both accuracy and privacy. 

Each roadside unit (RSU) acts as an independent learner, training an anomaly detection model locally on encrypted telemetry. Model 

gradients, not datasets, are shared with a global aggregator to update the collective model. 

 
Input: Encrypted telemetry Dv, trust report Ai, local model parameters wi^t. 

Output: Updated global model wt+1w{t+1}wt+1, verified anomaly alert. 

1: Each edge node receives Dv from connected vehicles. 

2: Train local model on encrypted dataset; compute reconstruction error Er. 
3: If (Er > θE) or (trust Ai flagged): 

 Classify as potential anomaly. 

4: Send model gradients (not raw data) to Federated Aggregator. 
5: Global model update: 

 w{t+1} = (1/N) Σ wi^t  
6: Share updated model with all nodes for synchronized detection. 

7: Forward verified anomaly to blockchain validators. 

8: End. 

 

The federated learning structure ensures privacy-preserving intelligence, reducing communication overhead and exposure risk. 

• Algorithm 3: Proof-of-Trust (PoT) Consensus Protocol 

This algorithm governs blockchain transaction validation. Validators are selected dynamically based on their cumulative trust and latency 

contribution, ensuring ultra-low-latency consensus consistent with 6G URLLC targets. 

 
Input: Validator set V = {v1, v2,…,vN}, trust weights Tj, delays dj. 
Output: Confirmed transaction block BtB_tBt. 

1: Each validator j computes selection weight: 

 Ψj = Tj / Σ Tk , ℓj = 1 / (dj + ε) 
2: Compute selection probability: 

 Pj = αΨj + (1-α)ℓj 

3: Sort validators by Pj; select top m participants. 
4: Validators verify anomaly alerts and execute consensus. 

5: If consensus threshold met: 

 → Confirm block Bt and append to ledger. 

6: Disseminate consensus result to all nodes. 

7: End. 

 

This consensus model minimizes computation cost while ensuring verifiable reliability and scalability for dense vehicular environments. 

• Algorithm 4: Smart-Contract-Based Attack Mitigation 

The final methodological module enforces automated response and recovery via blockchain smart contracts. Upon verification, malicious 

nodes are penalized, and trust recalibration is executed autonomously. 

 
Input: Verified anomaly block Bt, trust ledger Ti, privacy parameters ε. 

Output: Updated ledger, mitigation feedback, and anonymized forensic record. 

1: Receive verified alert Bt from PoT consensus. 

2: Execute smart contract to determine mitigation type: 

 if (severity = High): revoke certificate and isolate node. 
 if (severity = Medium): reduce trust Ti by penalty factor β. 

 if (severity = Low): request reauthentication with new pseudonym. 

3: Apply differential privacy: 
 f(̃x) = f(x) + Lap(Δf / ε) 

4: Store anonymized record immutably on blockchain ledger. 

5: Broadcast mitigation results to vehicular and edge layers. 
6: Update global trust table. 

7: End. 

 

This mechanism ensures autonomous and verifiable remediation without human intervention, thereby guaranteeing system resilience under 

continuous attack conditions. 

The proposed algorithms can close-loop process: 

• Real-time detection and response (<20 ms end-to-end latency) 

• Continuous trust recalibration and data confidentiality 

• Immutable accountability and forensic traceability 

The proposed methodology transforms traditional vehicular security into a self-adaptive, blockchain-governed ecosystem. 

It synthesizes statistical trust modeling, AI-driven anomaly detection, and cryptographic privacy within a unified operational pipeline. 

The resulting framework exhibits high scalability, analytical transparency, and resilience, establishing a strong foundation for next-gener-

ation 6G vehicular cloud security. 
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5. Results and Analysis 

5.1. Datasets, preprocessing, and security coverage 

To rigorously assess the effectiveness, robustness, and scalability of the proposed methodology, experimental validation was conducted 

using publicly available benchmark datasets that are widely adopted in network security, IoT intrusion detection, and cyber-physical system 

research. The selected datasets are designed to capture heterogeneous traffic patterns, diverse attack behaviors, and realistic operational 

conditions, making them suitable for evaluating security mechanisms relevant to 6G-enabled vehicular cloud environments, where ultra-

low latency, high mobility, and large-scale connectivity introduce unique security challenges. The use of multiple datasets ensures that the 

evaluation is not biased toward a single threat model or traffic profile, but instead reflects a broad spectrum of adversarial behaviors 

encountered in real-world vehicular and edge-cloud systems. However, it is important to acknowledge that the CIC-IDS2017, TON_IoT, 

and N-BaIoT datasets are not natively collected from real vehicular networks or operational 6G environments. These datasets primarily 

originate from enterprise and IoT settings and therefore do not fully capture all mobility dynamics, radio-layer characteristics, and ultra-

low-latency constraints inherent to 6G-connected vehicular cloud systems. In this study, they are intentionally adopted as representative 

benchmark proxies to model a wide spectrum of attack behaviors—ranging from high-volume denial-of-service attacks to stealthy and 

coordinated botnet activity—that are also expected to manifest in future vehicular cloud environments. While this approach enables con-

trolled, reproducible, and comparative evaluation, the authors acknowledge that validation using real-world vehicular datasets and large-

scale 6G testbeds remains an important direction for future research. 

5.1.1. Dataset selection and motivation 

The experimental evaluation employs three complementary datasets, each contributing distinct characteristics that are essential for analyz-

ing different dimensions of vehicular cloud security. A summary of these datasets and their security relevance is provided in Table 2. 

• CIC-IDS2017 

The CIC-IDS2017 dataset provides comprehensive, labeled network traffic traces that encompass both benign activity and a diverse range 

of high-volume cyberattacks, including denial-of-service (DoS), distributed denial-of-service (DDoS), brute-force authentication attacks, 

and network scanning. Generated in a controlled yet realistic enterprise-like environment, CIC-IDS2017 is widely regarded as a reference 

benchmark for evaluating intrusion detection systems due to its rich feature set, balanced traffic composition, and detailed attack labeling 

[17]. In the context of this study, CIC-IDS2017 enables the evaluation of the framework’s ability to detect availability-based and volumetric 

attacks, which remain critical threats in vehicular clouds, where communication disruptions can directly affect safety-critical services. 

• TON_IoT 

The TON_IoT dataset captures telemetry, network flows, and system-level data originating from IoT and edge-connected environments. It 

includes a variety of stealthy attack scenarios, such as data injection, backdoor exploitation, and malicious command execution, which 

closely resemble compromised devices operating within normal traffic ranges [18]. This dataset is particularly suitable for assessing de-

tection robustness against low-rate and evasive attacks, which are difficult to identify using traditional signature-based methods and are 

increasingly prevalent in edge-assisted vehicular systems. Its inclusion allows the proposed methodology to be evaluated under subtle and 

persistent threat conditions, reflecting realistic adversarial behavior in 6G vehicular clouds. 

• N-BaIoT 

The N-BaIoT dataset focuses on botnet-driven malicious behavior emanating from infected IoT devices, emphasizing coordinated, syn-

chronized attack patterns [19]. These behaviors closely align with distributed and collusive attack scenarios in vehicular cloud environ-

ments, including Sybil-like behavior, coordinated flooding, and reputation manipulation. By incorporating N-BaIoT, the evaluation exam-

ines the framework’s capability to detect collective and coordinated attacks, which pose significant risks in ultra-dense vehicular networks 

where adversaries may exploit scale and cooperation to evade detection. 

Collectively, the selected datasets enable comprehensive evaluation across high-volume attacks, stealthy anomalies, and coordinated ma-

licious behavior, ensuring broad coverage of the vehicular threat landscape. As summarized in Table 2, this multi-dataset strategy supports 

a balanced and realistic assessment of both security detection performance and adaptive mitigation effectiveness within 6G-connected 

vehicular cloud systems. 

 
Table 2: Summary of Evaluation Datasets and Security Relevance 

Dataset Environment Type Attack Characteristics Security Relevance 

CIC-IDS2017 Enterprise-like network DoS/DDoS, brute force, scanning Evaluates resilience to volumetric and availability attacks 

TON_IoT IoT / edge environments Stealthy injection, backdoors Tests robustness against low-rate and evasive threats 
N-BaIoT IoT botnet traffic Coordinated botnet attacks Models collusive and distributed vehicular threats 

5.2. Experimental setup and evaluation metrics 

The experimental evaluation was designed to rigorously assess the effectiveness, robustness, and scalability of the proposed methodology 

under conditions representative of 6G-enabled vehicular cloud environments. All experiments were conducted within an edge-assisted 

simulation framework that emulates high-mobility vehicular communication, distributed roadside units, and decentralized blockchain val-

idators. Vehicular nodes, RSUs, and validation entities were instantiated as independent components with variable communication delays 

to capture the effects of ultra-dense connectivity and dynamic network topology. The evaluation scenarios incorporated heterogeneous 

traffic streams containing both benign and malicious behaviors, multiple vehicular density levels ranging from 100 to 1,000 nodes, and 

continuous trust evolution with adaptive mitigation events. Federated learning processes were executed over multiple training rounds to 

ensure convergence stability under non-IID data distributions, while blockchain operations were evaluated under both nominal and adver-

sarial loads to examine validation latency and consensus resilience. This experimental configuration follows best practices adopted in 

recent vehicular and 6G security studies, ensuring fair comparison, reproducibility, and statistical validity across competing approaches 

[10], [14]. 

To provide a comprehensive and balanced assessment, both detection-oriented and system-level security metrics were employed. Detection 

effectiveness was measured using the detection rate, which quantifies the proportion of correctly identified attacks, and the false-positive 

rate, which captures the likelihood that benign traffic is misclassified as malicious. Precision and F1-score were additionally used to eval-

uate classification reliability under class-imbalanced traffic conditions, a common characteristic of vehicular networks [17]. System 
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responsiveness was evaluated through end-to-end latency, defined as the elapsed time between anomaly detection and mitigation enforce-

ment, which is a critical performance indicator for 6G ultra-reliable low-latency communication (URLLC) scenarios [6]. Scalability was 

assessed by analyzing performance degradation as vehicular density increased, while security coverage was used to evaluate the system’s 

ability to detect and mitigate volumetric, stealthy, and coordinated attacks across heterogeneous datasets. Collectively, these metrics capture 

accuracy, responsiveness, robustness, and practical deployability, ensuring that observed performance gains are achieved without compro-

mising feasibility or operational stability. 

5.3. Detection performance analysis 

This section evaluates the detection effectiveness of the proposed methodology across the three benchmark datasets introduced in Section 

5.1. Table 3 presents the detection performance achieved on CIC-IDS2017, TON_IoT, and N-BaIoT datasets. The results consistently 

demonstrate high detection accuracy across various attack profiles. Performance remains robust even against TON_IoT, which contains 

stealthy, low-rate attacks that typically evade signature-based systems [18]. The low false-positive rates confirm that dynamic trust mod-

eling effectively suppresses false alarms, a critical requirement in vehicular environments where excessive isolation can disrupt services. 

 
Table 3: Detection Performance Across Datasets 

Dataset Detection Rate (%) Precision (%) F1-score (%) FPR (%) 

CIC-IDS2017 96.4 95.9 96.1 1.1 

TON_IoT 95.2 94.6 94.9 1.4 
N-BaIoT 97.1 96.5 96.8 1.0 

 

Figure 4 provides a visual comparison of the detection rates achieved by the proposed methodology across the CIC-IDS2017, TON_IoT, 

and N-BaIoT datasets. The figure demonstrates that detection performance remains consistently high across datasets despite substantial 

differences in traffic composition, attack intensity, and adversarial behavior. In particular, the methodology achieves its highest detection 

rate on the N-BaIoT dataset, demonstrating its strong ability to identify coordinated, botnet-driven attacks that mimic collusive behavior 

in vehicular cloud environments. Although the TON_IoT dataset presents a more challenging scenario due to stealthy, low-rate attacks that 

closely mimic normal system behavior, the detection rate remains above 95%, indicating that integrating dynamic trust evaluation with 

federated anomaly detection effectively captures subtle deviations that would typically evade conventional intrusion detection systems. 

The relatively narrow variance in detection rates across all datasets confirms the robustness and generalizability of the proposed approach, 

demonstrating that its performance is not over-fitted to a specific traffic profile or attack type. Overall, Figure 4 substantiates that the 

methodology delivers stable and reliable detection under heterogeneous operational conditions, a critical requirement for security enforce-

ment in 6G-enabled vehicular cloud systems, which are characterized by high mobility, dynamic topology, and diverse threat models. 

 

 
Fig. 4: Detection Rate Comparison Across Datasets. 

 

These results demonstrate the robustness and generalizability of the proposed detection framework across heterogeneous attack scenarios, 

while the broader security implications and comparative advantages are examined in the following sections. 

5.4. Comparative analysis with existing approaches 

To contextualize the effectiveness of the proposed methodology, a comparative evaluation was conducted against representative baseline 

intrusion detection systems commonly used in vehicular, IoT, and edge security research. The comparison focuses on three critical perfor-

mance dimensions: detection accuracy, false positive rate, and response latency, which collectively determine the practicality of a security 

solution in 6G-enabled vehicular cloud environments. 

The comparative results are summarized in Table 4, which contrasts the proposed approach with Snort, Suricata, Kitsune, and a federated 

LSTM-based IDS. These systems represent successive generations of security mechanisms, ranging from traditional signature-based de-

tection to modern learning-driven approaches. 

As shown in Table 4, Snort and Suricata exhibit the lowest detection rates, achieving 78.6% and 81.2%, respectively, while suffering from 

relatively high false positive rates (6.8% and 5.9%) and elevated response latency (above 30 ms). These results confirm the inherent 

limitations of rule-based systems in handling encrypted, high-mobility, and previously unseen attack patterns, which are typical of vehicular 

cloud traffic. Their performance degradation under dynamic conditions renders them unsuitable for 6G ultra-reliable low-latency commu-

nication (URLLC) scenarios. 
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Kitsune, which employs an autoencoder-based anomaly detection mechanism, demonstrates a notable improvement in detection accuracy, 

reaching 90.4%, and reduces the false positive rate to 3.8%, as reported in Table 4. However, its average latency of 24 ms exceeds the strict 

timing requirements of safety-critical vehicular applications. Moreover, Kitsune operates as a standalone detection mechanism and lacks 

integrated trust validation or automated mitigation, limiting its operational effectiveness once an anomaly is detected. 

The federated LSTM-based IDS further improves detection performance to 93.1% and reduces the false-positive rate to 2.9%, demonstrat-

ing the advantages of temporal modeling and collaborative learning across edge nodes. Nevertheless, as indicated in Table 4, this approach 

still incurs a non-negligible latency of 22 ms, primarily due to repeated model aggregation and the absence of a lightweight verification 

mechanism. Additionally, it does not provide decentralized accountability or enforceable mitigation, leaving the system vulnerable to trust 

manipulation and delayed response. 

In contrast, the proposed methodology achieves a detection rate of 96.4%, the lowest false-positive rate of 1.1%, and the minimum average 

latency of 18 ms, as shown in Table 4. This superior performance stems from the synergistic integration of dynamic trust evaluation, 

federated anomaly detection, Proof-of-Trust consensus, and smart-contract-driven mitigation. Unlike baseline systems that focus solely on 

detection, the proposed approach ensures that detected threats are validated, recorded, and mitigated in a decentralized and verifiable 

manner, without introducing excessive computational or communication overhead. 

The quantitative comparison presented in Table 4 demonstrates that the proposed methodology not only outperforms existing IDS solutions 

in detection accuracy but also achieves a more favorable balance between responsiveness and reliability. These results confirm that incor-

porating lightweight blockchain consensus and trust-aware decision-making enhances security effectiveness rather than degrading perfor-

mance, making the proposed approach particularly well-suited for large-scale, latency-sensitive 6G vehicular cloud deployments. 

 
Table 4: Comparative Detection Performance 

Method Detection Rate (%) FPR (%) Avg. Latency (ms) 

Snort 78.6 6.8 35 

Suricata 81.2 5.9 32 
Kitsune 90.4 3.8 24 

Federated LSTM IDS 93.1 2.9 22 

Proposed Method 96.4 1.1 18 

 

While detection accuracy is a fundamental requirement, response latency and scalability are equally critical in 6G vehicular cloud systems, 

where security mechanisms must operate within the constraints of ultra-reliable low-latency communication (URLLC). To evaluate these 

aspects, the end-to-end response latency of the proposed methodology was measured under increasing vehicular density, capturing the 

cumulative delay associated with anomaly detection, blockchain validation, and mitigation enforcement. 

Figure 5 illustrates the relationship between vehicular density and end-to-end response latency. The results indicate that latency increases 

gradually as the number of vehicles grows, reflecting the additional communication and coordination overhead introduced by higher net-

work load. However, even at the maximum evaluated scale of 1,000 vehicles, the response latency remains consistently below 20 ms. This 

performance meets the stringent latency requirements of 6G URLLC scenarios, ensuring a timely response to security threats in safety-

critical vehicular applications [6]. 

The observed scalability can be attributed to the design of the Proof-of-Trust consensus mechanism, which prioritizes validators based on 

their trustworthiness and communication delay, rather than requiring exhaustive message exchange. Unlike PBFT-based approaches, which 

suffer from rapid performance degradation as the number of validators increases, and PoW-based mechanisms, which are computationally 

infeasible for real-time environments, the proposed consensus protocol maintains stable latency under dense network conditions. Further-

more, the use of federated learning at the edge reduces reliance on centralized processing and alleviates backhaul congestion, enabling 

efficient scaling without sacrificing detection accuracy or responsiveness. 

The latency and scalability results confirm that the proposed methodology is well-suited for deployment in large-scale 6G vehicular cloud 

environments. It delivers real-time security enforcement while preserving decentralized trust and privacy, thereby addressing key limita-

tions of existing IDS and blockchain-based security solutions. 

 

 
Fig. 5: End-to-End Response Latency Versus Number of Vehicular Nodes. 

 

Overall, the comparative results confirm that the proposed methodology achieves a superior balance among detection accuracy, latency, 

and operational scalability, as further contextualized by security coverage and resilience analysis in the subsequent section. 
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5.5. Security coverage and threat resilience analysis 

Beyond conventional detection accuracy, a critical requirement for 6G vehicular cloud security is the ability to effectively contain, neu-

tralize, and recover from diverse attack categories under highly dynamic network conditions. To this end, the proposed methodology was 

evaluated for its security coverage and threat resilience across multiple attack classes, as summarized in Table 5. 

The results reported in Table 5 demonstrate that the system achieves consistently high detection and mitigation performance across volu-

metric, stealthy, coordinated, and trust-based attacks. In the case of DoS and DDoS attacks, which pose severe risks to safety-critical 

vehicular services, the framework achieves a detection rate of 98.2% and a mitigation success rate of 97.6%. This high effectiveness is 

attributed to the combined operation of federated anomaly detection (Algorithm 2) and smart-contract-based enforcement (Algorithm 4), 

which enables rapid isolation of traffic-flooding sources before service degradation propagates through the vehicular cloud. 

For stealthy injection attacks, intentionally designed to evade threshold-based or signature-driven detection mechanisms, the framework 

maintains a detection rate exceeding 94% and a mitigation success rate of 93.4%. These results confirm the robustness of the anomaly 

detection pipeline against low-rate and evasive behaviors, particularly when reinforced by trust-aware filtering. The slight reduction in 

performance compared to volumetric attacks reflects the inherent difficulty of identifying subtle deviations in encrypted telemetry; how-

ever, the achieved results remain significantly higher than those reported in conventional IDS solutions lacking trust integration. 

The system exhibits particularly strong resilience against coordinated botnet attacks, achieving a mitigation success rate of 96.1%. This 

performance highlights the effectiveness of decentralized trust correlation and blockchain-validated enforcement in identifying collusive 

behaviors that individual detectors may overlook. By aggregating trust degradation evidence across multiple nodes and enforcing mitigation 

decisions through consensus, the framework prevents synchronized adversaries from exploiting network scale to evade detection. 

Finally, reputation manipulation attacks, which target the integrity of trust and reputation mechanisms themselves, are effectively mitigated 

with a success rate of 94.8%. This result demonstrates that dynamic trust recalibration, combined with immutable on-chain logging, pre-

vents adversaries from artificially inflating or suppressing trust values over time. Overall, the results in Table 5 confirm that the proposed 

methodology provides broad and balanced security coverage, ensuring that no single attack class disproportionately weakens system resil-

ience. 

These findings highlight the proposed framework's ability to provide consistent and comprehensive protection across diverse attack cate-

gories, supporting its suitability for large-scale 6G vehicular cloud deployments. 

 
Table 5: Security Coverage Across Attack Types 

Attack Type Detection Rate (%) Mitigation Success (%) 

DoS/DDoS 98.2 97.6 
Stealthy Injection 94.1 93.4 

Coordinated Botnet 96.7 96.1 

Reputation Manipulation 95.3 94.8 

5.6. Trust evolution and behavioral stability analysis 

To further analyze the internal stability and reliability of the proposed security mechanisms, the temporal behavior of the dynamic trust 

evaluation model (Algorithm 1) was examined under different vehicular behavior profiles. This analysis is essential in vehicular environ-

ments, where transient anomalies may arise from mobility, interference, or sensor noise and must not be mistaken for malicious intent. 

Figure 6 illustrates the evolution of trust scores Ti(t) over time for three representative vehicular nodes: a benign vehicle, a temporarily 

anomalous vehicle, and a persistently malicious vehicle. The figure provides clear insight into how the trust mechanism differentiates 

between benign irregularities and sustained adversarial behavior. 

For benign vehicles, trust values remain consistently above the predefined threshold θT, exhibiting only minor fluctuations that reflect 

normal communication variability. This stability confirms that the trust model does not penalize legitimate vehicles under normal operating 

conditions, thereby preserving network availability and avoiding unnecessary isolation. 

In cases of temporary anomalous behavior, trust scores decline temporarily when abnormal activity is detected; however, the trust value 

gradually recovers once normal behavior resumes. This recovery behavior demonstrates that the trust model incorporates temporal memory 

and does not enforce irreversible penalties for isolated or non-persistent anomalies. Such behavior is crucial in high-mobility vehicular 

networks, where brief disruptions are common and should not lead to long-term exclusion. 

Conversely, persistently malicious vehicles exhibit a monotonic decline in trust scores, eventually crossing the isolation threshold θT. Once 

this threshold is breached, the node is flagged and subjected to mitigation actions enforced by smart contracts, preventing further partici-

pation in the network. The absence of trust recovery for malicious nodes confirms that the system effectively distinguishes sustained 

adversarial behavior from benign irregularities. 

The trust evolution patterns shown in Figure 6 validate the behavioral accountability and stability of Algorithm 1. The results confirm that 

the trust mechanism achieves a critical balance between sensitivity and robustness—rapidly isolating malicious actors while avoiding 

premature or unjustified exclusion of legitimate vehicles. This property is fundamental to maintaining both security and service continuity 

in ultra-dense 6G vehicular cloud environments. 

 

 
Fig. 6: Temporal Trust Score Evolution Under Different Behaviors. 



120 International Journal of Basic and Applied Sciences 

 
To validate the effectiveness and stability of the federated anomaly detection mechanism defined in Algorithm 2, the convergence behavior 

of the federated learning process was examined across multiple communication rounds using distributed edge nodes. Convergence analysis 

is a critical indicator of whether collaborative learning can reliably extract global intelligence from heterogeneous vehicular data without 

centralized data aggregation—an essential requirement for privacy-preserving security in 6G vehicular cloud environments. 

Figure 7 illustrates the evolution of reconstruction loss over successive federated learning rounds for the CIC-IDS2017 and TON_IoT 

datasets. These datasets were selected to represent contrasting traffic characteristics: CIC-IDS2017 contains high-volume, clearly distin-

guishable attack patterns, while TON_IoT includes stealthy, low-rate anomalies that exhibit significant overlap with benign behavior. The 

convergence trends observed in Figure 7 provide insight into the robustness of the learning process under non-independent and non-iden-

tically distributed (non-IID) data conditions, which are typical of vehicular networks. 

The results show that the global federated model converges rapidly, reaching a stable loss plateau within 15-20 training rounds for both 

datasets. This rapid convergence suggests that local edge models can extract meaningful, complementary representations of normal and 

anomalous traffic, despite being trained on distinct, geographically distributed data subsets. Importantly, no oscillatory behavior or diver-

gence is observed during aggregation, confirming that the federated averaging strategy in Algorithm 2 remains stable even under hetero-

geneous data distributions across edge nodes. 

For the TON_IoT dataset, which presents a more challenging detection environment due to the subtlety of injected attacks, convergence 

occurs slightly later than for CIC-IDS2017; however, the loss trajectory remains smooth and monotonic. This behavior demonstrates that 

the federated learning mechanism effectively mitigates the adverse effects of data heterogeneity without requiring centralized access to 

raw telemetry. The absence of instability further confirms that trust-aware anomaly filtering, when combined with federated aggregation, 

improves learning consistency by reducing the influence of noisy or compromised data sources. 

The convergence behavior depicted in Figure 7 confirms that the federated anomaly detection module achieves stable and reliable global 

intelligence while fully preserving data privacy. By exchanging only model updates rather than raw vehicular data, the system maintains 

confidentiality without sacrificing detection performance. These findings validate the suitability of Algorithm 2 for deployment in large-

scale, high-mobility 6G vehicular cloud environments, where data distribution is inherently non-IID and centralized learning is neither 

feasible nor desirable. 

 

 
Fig. 7: Federated Learning Loss Convergence Across Edge Nodes. 

 

To assess the efficiency and scalability of the proposed blockchain validation mechanism defined in Algorithm 3, an in-depth evaluation 

of consensus latency and computational overhead was conducted across varying validator populations. Consensus latency is a decisive 

performance metric in 6G vehicular cloud environments, where security enforcement must operate within ultra-reliable low-latency com-

munication (URLLC) constraints to avoid compromising safety-critical vehicular applications. 

Figure 8 illustrates the relationship between consensus validation latency and the number of participating validators, comparing the pro-

posed Proof-of-Trust (PoT) consensus mechanism against widely adopted alternatives, namely Practical Byzantine Fault Tolerance (PBFT) 

and Proof-of-Work (PoW). This comparative analysis offers insight into how different consensus strategies scale as pressure for decentral-

ization increases. 

The results demonstrate that the PoT mechanism maintains consistently low validation latency, remaining below 20 ms even with 50 

validators. This performance is achieved through trust-weighted validator selection and latency-aware prioritization, which significantly 

reduces message complexity and avoids the quadratic communication overhead associated with traditional Byzantine consensus protocols. 

As a result, PoT aligns closely with the stringent timing requirements of 6G vehicular networks, where rapid trust verification and mitiga-

tion execution are essential. 

In contrast, PBFT exhibits a sharp increase in latency as the validator population exceeds approximately 20 nodes. This degradation is 

attributable to its reliance on all-to-all message exchanges during the prepare and commit phases, which become increasingly inefficient 

in dense, highly dynamic vehicular cloud environments. Such latency escalation renders PBFT unsuitable for large-scale 6G vehicular 

deployments, particularly under adversarial conditions where rapid validation is critical. 

Proof-of-Work performs significantly worse in all evaluated scenarios. The computationally intensive nature of PoW mining introduces 

validation delays that far exceed acceptable thresholds for URLLC services, making it infeasible for time-sensitive vehicular applications. 

Moreover, its high energy consumption and lack of trust awareness further limit its applicability in resource-constrained vehicular and 

edge-cloud infrastructures. 

The latency trends observed in Figure 8 confirm that the proposed Proof-of-Trust consensus mechanism achieves a favorable balance 

between decentralization, security, and real-time performance. By dynamically prioritizing validators based on trustworthiness and com-

munication latency, Algorithm 3 ensures scalable, efficient transaction validation while preserving decentralized trust. These results vali-

date the suitability of PoT as a consensus foundation for blockchain-enabled security enforcement in ultra-dense, high-mobility 6G vehic-

ular cloud systems. 
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Fig. 8: Consensus Latency vs. Number of Validators. 

 

Although Figure 8 compares the proposed Proof-of-Trust (PoT) consensus against PBFT and Proof-of-Work in terms of validation latency, 

it is also important to contextualize PoT with respect to representative trust-based and hybrid consensus schemes proposed in vehicular 

and edge-blockchain literature. Existing trust-aware approaches typically employ reputation or trust scores to filter validator committees, 

weight voting power, or select block proposers; however, many of these schemes still rely on all-to-all communication within the selected 

committee or incur non-negligible coordination overhead under high mobility. In contrast, the proposed PoT mechanism integrates trust 

more directly into the consensus decision by jointly prioritizing validators based on both trustworthiness and communication delay, thereby 

enabling low-latency subset validation without exhaustive message exchange. A conceptual comparison between PoT and representative 

trust-based and hybrid consensus models is summarized in Table 6, highlighting differences in trust utilization, communication overhead, 

finality latency, and suitability for ultra-reliable low-latency and high-mobility vehicular environments. This comparison clarifies why PoT 

is better aligned with the stringent timing and scalability requirements of 6G-enabled vehicular cloud systems. 

 
Table 6: Conceptual Comparison of PoT with Trust-Based and Hybrid Consensus Models for Vehicular Contexts 

Consensus Model Trust Usage Mechanism 
Communication 
Overhead 

Finality/Latency Suitability 
Vehicular Suitability (Mobil-
ity/URLLC) 

PBFT (baseline) 
Not trust-aware; all valida-

tors participate equally 
High (all-to-all) 

Poor at scale; latency grows 

quickly 

Limited in dense/high-mobility 

settings 

Trust-filtered PBFT (repre-

sentative trust-based) 

Trust used to filter commit-

tee membership 

Still high (commit-

tee all-to-all) 

Better than PBFT, but de-
grades as the committee 

grows 

Moderate; committee tuning 

required 

Reputation-weighted vot-
ing (trust-based) 

Trust weights voting power 
or leader selection 

Medium–High 
Depends on the voting 
scheme; it can still bottleneck 

Moderate; sensitive to churn 
and attacks on reputation 

Hybrid PoW/PoS (repre-

sentative hybrid) 

Trust is often not explicit; it 

relies on stake/work 

High compute or 

medium comms 

Typically too slow for 

URLLC 

Low for safety-critical real-

time needs 

Proposed PoT 
Trust + latency-aware vali-

dator prioritization 

Low–Medium 

(subset validation) 

Fast, bounded latency under 

scaling 

High; designed for URLLC & 

mobility 

 

To evaluate the effectiveness of the smart-contract-based mitigation mechanism defined in Algorithm 4, the system’s ability to contain 

attacks and restore normal operation was analyzed through detailed timing measurements of the mitigation lifecycle. In vehicular cloud 

environments, rapid and autonomous mitigation is essential, as delayed or manual responses can propagate disruptions across intercon-

nected vehicles and compromise safety-critical services. 

Figure 9 illustrates the complete mitigation response timeline following the detection of a malicious event. The timeline captures four 

sequential phases: initial anomaly detection at the edge, on-chain validation through Proof-of-Trust consensus, execution of mitigation 

actions via smart contracts, and subsequent recovery of system operation through trust recalibration and credential management. This end-

to-end view provides a comprehensive assessment of how quickly and reliably the system transitions from threat recognition to enforced 

defense. 

The results indicate that mitigation enforcement is executed within an average latency of less than 18 ms from the moment an attack is 

detected. This low response time demonstrates that integrating smart contracts with lightweight blockchain consensus does not introduce 

prohibitive delays, even under adversarial conditions. Once consensus validation is complete, mitigation actions—such as certificate rev-

ocation, a reduction in trust score, or pseudonym reinitialization—are applied automatically without requiring human intervention. This 

automation eliminates operational bottlenecks commonly associated with centralized security management, ensuring consistent enforce-

ment across all participating nodes. 

An important observation from Figure 9 is the system’s ability to restore normal operation rapidly following mitigation. Trust recalibration 

mechanisms prevent excessive or permanent isolation of vehicles that exhibit transient or false-positive anomalies, thereby avoiding long-

term service denial. Legitimate vehicles that are temporarily flagged due to abnormal but non-malicious behavior can recover their trust 

status once normal behavior resumes, thereby maintaining system fairness and service availability. 

The mitigation dynamics demonstrated in Figure 9 confirm that Algorithm 4 enables a fully autonomous, low-latency, and self-healing 

security response. The tight coupling between anomaly validation, smart contract enforcement, and trust recovery ensures that attacks are 

contained promptly while preserving the continuity of vehicular services. These results validate the suitability of smart-contract-driven 

mitigation for real-time defense in ultra-dense 6G vehicular cloud environments, where resilience, automation, and rapid recovery are 

paramount. 
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Fig. 9: Mitigation Response Timeline After Attack Detection. 

 

To provide an integrated and intuitive comparison of the security capabilities achieved by the proposed methodology relative to existing 

approaches, a multi-dimensional radar visualization is presented in Figure 10. Unlike single-metric comparisons, this visualization captures 

the trade-offs and strengths of each method across multiple security and system-level dimensions that are critical for 6G vehicular cloud 

environments. 

Figure 10 compares four representative security solutions—Snort, a federated learning–based intrusion detection system, a PBFT-based 

blockchain IDS, and the proposed method—across six dimensions: detection accuracy, false positive rate, end-to-end latency, privacy 

preservation, mitigation automation, and scalability. These dimensions collectively reflect not only detection performance, but also opera-

tional feasibility, responsiveness, and resilience under ultra-dense vehicular conditions. 

The visualization clearly shows that traditional rule-based systems, such as Snort, perform adequately only in limited dimensions, primarily 

in terms of basic detection accuracy, while exhibiting poor performance in terms of latency sensitivity, scalability, and privacy preservation. 

The federated IDS improves detection accuracy and reduces false positives by leveraging collaborative learning; however, it lacks enforce-

able mitigation and decentralized trust, resulting in limited coverage in automation and accountability-related dimensions. 

PBFT-based blockchain IDS solutions offer improved decentralization and stronger integrity guarantees but suffer from scalability and 

latency issues as the number of validators increases. This limitation is reflected in the radar chart by reduced coverage in latency and 

scalability dimensions, highlighting the mismatch between classical Byzantine consensus mechanisms and 6G URLLC requirements. 

In contrast, the proposed method exhibits consistently strong performance across all evaluated dimensions. High detection accuracy and 

low false positive rates are complemented by ultra-low response latency, effective privacy preservation through federated learning and 

differential privacy, and fully automated mitigation enforced via smart contracts. The scalability advantage is particularly evident, as the 

Proof-of-Trust consensus mechanism enables efficient validation without the communication overhead of PBFT or the computational cost 

of Proof-of-Work. 

Figure 10 achieves a balanced, comprehensive security posture rather than excelling in isolated metrics. Its dominance across automation, 

privacy, and scalability dimensions underscores its suitability for next-generation 6G vehicular cloud systems, where security solutions 

must simultaneously be intelligent, decentralized, privacy-aware, and real-time. This comparative visualization reinforces the quantitative 

results presented in earlier subsections and highlights the holistic advantage of integrating trust-aware AI, lightweight blockchain consen-

sus, and autonomous mitigation into a unified security framework. 

 

 
Fig. 10: Multi-Dimensional Security Comparison. 

6. Conclusion 

This study aimed to investigate whether a tightly integrated combination of dynamic trust evaluation, federated anomaly detection, and 

blockchain-based enforcement can yield measurable security and performance improvements in 6G-enabled vehicular cloud networks. The 

experimental results demonstrate that this objective was successfully achieved. Across all evaluated datasets and attack categories, the 

proposed methodology consistently achieved high detection accuracy while maintaining low false-positive rates, confirming that integrat-

ing trust-aware filtering with AI-based detection improves classification reliability in highly dynamic vehicular environments. 
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The results obtained from the CIC-IDS2017, TON_IoT, and N-BaIoT datasets show that the proposed system is not limited to a single 

threat model or traffic pattern. Instead, it performs robustly against volumetric attacks, stealthy low-rate intrusions, and coordinated botnet-

driven behaviors. Detection rates remained above 95% across all datasets, while false-positive rates were kept close to or below 1%, a 

critical requirement for vehicular systems, where unnecessary isolation of benign nodes can negatively impact safety and service availa-

bility. These outcomes indicate that the trust evaluation mechanism effectively suppresses spurious alerts while still enabling timely iden-

tification of malicious behavior. 

From a system-level perspective, the latency and scalability results provide strong evidence that decentralized security mechanisms can be 

deployed without violating 6G performance constraints. End-to-end response latency, measured from anomaly detection to mitigation 

enforcement, remained below 20 ms, even under high vehicular density, thereby satisfying the ultra-reliable low-latency communication 

requirements. The Proof-of-Trust consensus mechanism demonstrated stable validation performance as the number of validators increased, 

outperforming PBFT-based and Proof-of-Work schemes that exhibited rapid latency degradation. This confirms that the proposed consen-

sus design is both computationally efficient and practically deployable in dense vehicular cloud environments. 

The behavioral analysis of trust evolution further validates the methodological design. Experimental results showed that benign vehicles 

maintained stable trust values over time; transient anomalies led to temporary trust degradation followed by recovery, while persistently 

malicious nodes experienced monotonic trust decay culminating in isolation. This behavior confirms that the trust model avoids premature 

or irreversible penalties, thereby preserving system stability while still enforcing accountability—an essential property in high-mobility 

vehicular environments. 

Additionally, the federated learning results demonstrate that collaborative intelligence can be achieved without requiring centralized data 

aggregation. Loss convergence was reached within a limited number of training rounds, and no instability was observed under heteroge-

neous and non-IID traffic conditions. This confirms that the proposed anomaly detection mechanism maintains detection effectiveness 

while preserving data privacy, addressing a key limitation identified in prior studies on federated vehicular security. 

Finally, the mitigation and recovery analysis show that security enforcement is not merely reactive but operationally effective. Smart-

contract-driven mitigation actions were executed automatically following on-chain validation, with recovery times consistently remaining 

low and requiring no human intervention. This capability ensures that attacks are not only detected but also contained and resolved in a 

timely and verifiable manner, significantly reducing the risk of prolonged service disruption. 

Overall, the experimental results demonstrate that the proposed methodology achieves a balanced combination of detection accuracy, 

latency efficiency, scalability, privacy preservation, and automated enforcement. The findings provide concrete empirical evidence that 

decentralized, trust-aware, and AI-assisted security mechanisms can be jointly realized in 6G vehicular cloud systems. This work therefore 

delivers a validated, practically grounded security solution for next-generation intelligent transportation networks, while future research 

will focus on addressing real-world deployment considerations, such as energy efficiency, interoperability with legacy vehicular systems, 

regulatory constraints, and large-scale validation in emerging 6G vehicular environments. 
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