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Abstract 
 

This systematic literature review investigates the recent advancements in the applications of Artificial Intelligence (AI) and Radiomics in 

Contrast-Enhanced Mammography (CEM), focusing on their diagnostic, predictive, and prognostic value in breast cancer imaging. The 

study aims to synthesize current evidence on the integration of AI-based algorithms and radiomic approaches that enhance lesion detection, 

classification, and clinical interpretation. The review follows the PRISMA protocol to ensure methodological rigor and transparency. A 

comprehensive search was conducted across Scopus and PubMed databases using the keywords contrast, mammography, and artificial 

intelligence, retrieving relevant studies published in 2025. After applying inclusion and exclusion criteria, 36 primary studies were selected 

for qualitative synthesis. The analysis identified three major thematic domains: (1) AI architectures and classification/detection models, (2) 

Radiomics and multi-modality predictive/prognostic models, and (3) Segmentation, microcalcification, and data-tooling for detection. The 

findings revealed that hybrid and ensemble deep learning models significantly improved diagnostic performance, while radiomics-based 

approaches enhanced molecular subtype prediction, risk stratification, and treatment planning. Furthermore, advances in segmentation and 

synthetic data augmentation improved lesion localization and model robustness, supporting more accurate and reproducible image inter-

pretation. Despite methodological progress, challenges persist regarding data standardization, model explainability, and clinical validation 

across diverse populations. The review concludes that integrating AI and radiomics within CEM holds substantial potential for transforming 

breast cancer diagnostics by improving precision, interpretability, and clinical decision-making. Continued development of standardized 

frameworks and multicenter validation is essential to ensure reliable, ethical, and clinically applicable AI adoption in breast imaging prac-

tice. 

 
Keywords: Artificial Intelligence; Radiomics; Contrast-Enhancement Mammography. 

1. Introduction 

Breast cancer is a major contributor to illness and death among women globally, highlighting the ongoing need for improved imaging 

techniques that support earlier diagnosis, better tumor assessment, and more tailored treatment strategies. Traditional mammography, while 

widely used, faces limitations in sensitivity and specificity, particularly in women with dense breast tissue. Contrast-enhanced mammog-

raphy (CEM) has emerged as a promising modality, offering enhanced visualization of tumor vascularity and morphology, and demonstrat-

ing diagnostic performance comparable to magnetic resonance imaging (MRI) but with greater accessibility and lower cost ((Jochelson & 

Lobbes, 2021); Kinkar et al., 2024). In parallel, the rapid evolution of artificial intelligence (AI) and radiomics has transformed medical 

imaging analysis, enabling the extraction of high-dimensional quantitative features from images and the development of predictive models 

that can support clinical decision-making (Kinkar et al., 2024; Pesapane et al., 2023). The integration of AI and radiomics with CEM holds 

significant potential to address current diagnostic challenges, improve lesion characterization, and facilitate individualized patient man-

agement. 

Recent research consistently shows that AI and radiomics enhance the diagnostic accuracy of CEM for breast cancer detection and char-

acterization. AI-based models, particularly those leveraging deep learning and advanced machine learning algorithms, have shown superior 

performance in differentiating benign from malignant lesions compared to traditional radiomics models and even experienced radiologists. 

For instance, a multicenter study employing a deep learning model with attention mechanisms achieved an area under the curve (AUC) of 
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0.932 in external validation, outperforming both radiomics and clinical models (H. Zhang et al., 2024). Similarly, AI algorithms have been 

effective in classifying in situ versus invasive carcinoma and in predicting molecular subtypes, such as HER2 status, with high accuracy 

(Zhang et al., 2024; (S. Wang et al., 2021); (Zhu et al., 2023)). These findings underscore the potential of AI-enhanced CEM to serve as a 

robust, non-invasive tool for comprehensive breast cancer assessment. 

Radiomics, the process of extracting quantitative features related to tumor size, shape, intensity, and texture from medical images, has been 

extensively applied to CEM for tumor characterization and prognostic prediction ((Petrillo et al., 2024); (Nicosia et al., 2025); Kinkar et 

al., 2024). Studies have shown that radiomic features, when combined with clinical data, can improve the prediction of disease-free and 

overall survival, as well as the likelihood of specific histological outcomes and molecular subtypes (Nicosia et al., 2025; Zhu et al., 2023). 

For example, radiomics models based on both low-energy and recombined CEM images have achieved AUCs above 0.80 for predicting 

luminal, HER2-enriched, and triple-negative breast cancer subtypes, supporting their utility in guiding individualized treatment strategies 

(Zhu et al., 2023). Moreover, the integration of radiomics with AI-driven feature selection and classification methods, such as random 

forests and support vector machines, has further enhanced diagnostic performance ((Massafra et al., 2021); (Beuque et al., 2023)). 

Despite these advances, several challenges remain in the clinical implementation of AI and radiomics in CEM. Manual segmentation of 

lesions, a common step in radiomics workflows, is time-consuming and subject to inter-operator variability, highlighting the need for 

automated or semi-automated segmentation solutions (Petrillo et al., 2022; Beuque et al., 2023). Additionally, the interpretability of com-

plex AI models and the standardization of data acquisition and analysis protocols are critical for ensuring reproducibility and clinical 

adoption (Kinkar et al., 2024; Pesapane et al., 2023). Recent guidelines, such as the Checklist for Artificial Intelligence in Medical Imaging 

(CLAIM), have been proposed to address these issues and promote rigorous evaluation and reporting of AI studies in breast imaging 

(Kinkar et al., 2024). 

In summary, the combination of AI and radiomics with contrast-enhanced mammography marks a major step forward in breast cancer 

imaging technology (Figure 1). These technologies have demonstrated high diagnostic accuracy for lesion classification, molecular subtype 

prediction, and prognostic assessment, with the potential to support personalized patient care. Ongoing research is focused on overcoming 

technical and methodological barriers to facilitate the widespread adoption of these tools in clinical practice (Zhang et al., 2024; Kinkar et 

al., 2024; Zhu et al., 2023; Pesapane et al., 2023). 

 

 
Fig. 1: The concept map of AI-Enhanced CEM for Breast Cancer. 

2. Research Question 

In a systematic literature review, the formulation of research questions is the central element that drives every stage of the review. These 

questions determine the boundaries and purpose of the investigation, influencing which publications are selected or excluded to preserve 

accuracy and relevance. When the questions are specific and well-structured, the search strategy becomes methodical and far-reaching, 

ensuring that all significant evidence on the subject is identified while reducing the risk of bias. They also act as a roadmap for organizing 

extracted information, allowing the results to be analyzed and presented logically. By outlining clear limits, research questions keep the 

review sharply focused and prevent unnecessary deviation from its intended aims. Additionally, they promote openness and repeatability, 

allowing future researchers to follow the same process or extend the work confidently. In essence, strong research questions give an SLR 

its direction and value, whether the goal is to highlight gaps in existing knowledge, assess outcomes of interventions, or explore new 

developments, making them the backbone of a robust and purposeful review.  

Specifying the Research Questions (RQs) is the most critical task during the planning phase and remains central throughout any systematic 

literature review (SLR), as it shapes and directs the entire review methodology (B, Kitchenham, 2007). Given that this SLR aims to explore 

and assess the current advancements within the selected domain, a systematic structure is crucial to maintain a clear and focused review 

direction. For this study, the PICo framework was employed as a guiding strategy, following the approach recommended by C. Lockwood 
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et al. (2015). Designed primarily for qualitative inquiries, PICo incorporates three core elements, Population, Interest, and Context, which 

help formulate specific and well-aligned research questions. 

In the PICo structure, the Population (P) identifies the particular individuals or groups being examined, which may include a certain de-

mographic, patient subgroup, or broader community. The Interest (I) highlights the primary topic, phenomenon, or aspect under study, such 

as a specific experience, behavior, intervention, or concern. Meanwhile, the Context (Co) outlines the surrounding conditions where the 

research is situated, which can involve the geographical setting, cultural influences, or social environment relevant to the investigation. By 

applying the PICo framework, research questions can be constructed in a systematic and organized manner. This approach ensures that 

each element of the study is explicitly defined, facilitating a more precise literature search and enhancing the overall focus and coherence 

of the SLR. This study achieved one research question as below; 

1) RQ1: For adult women receiving contrast-enhanced mammography (P), does the application of advanced AI architectures (ensembles, 

transformer–CNN hybrids, and attention-based models) (I), compared with conventional single-architecture CNNs or radiologist-alone 

interpretation, improve detection and classification accuracy and clinical interpretability of breast lesions in routine CEM practice 

(Co)? 

2) RQ2: In patients evaluated with contrast-enhanced mammography and complementary imaging (P), does a multi-modality radiomics 

model that fuses intra- and peritumoral features from CEM, DCE-MRI and ultrasound (I), versus single-modality radiomics or standard 

clinical models, provide superior prediction of molecular subtype, biopsy outcome, or long-term prognosis in multicenter validation 

(Co)? 

3) RQ3: For mammographic imaging datasets containing annotated lesions and microcalcifications (P), does the combination of robust 

anatomical segmentation, task-aware synthetic microcalcification augmentation, and attention-guided data strategies (I), compared 

with models trained on real data alone, improve sensitivity and localization accuracy for microcalcification clusters and reduce missed 

non-palpable carcinomas in CEM/DBT across external test sets (Co)? 

3. Materials and Methods 

The PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), as outlined by Page et al. (2020), is 

broadly recognized as a standard protocol for performing systematic reviews. Its purpose is to promote a clear, thorough, and structured 

review process. By adhering to PRISMA, researchers enhance the reliability and credibility of their findings through well-defined steps 

that involve locating, evaluating, and selecting studies relevant to the research focus. The framework also underscores the role of random-

ized research in minimizing bias and strengthening the overall quality of evidence. In this SLR, Scopus and PubMed were chosen as the 

primary sources of literature because of their broad scientific coverage and established authority as trusted databases.  

The PRISMA workflow is organized into four essential phases: identification, screening, eligibility, and data extraction. In the identification 

phase, a comprehensive search is carried out across selected databases to gather all studies that may be relevant to the topic. The screening 

phase then applies predefined inclusion and exclusion criteria to remove publications that do not align with the review’s objectives or 

quality standards. Next, the eligibility phase involves a closer evaluation of the remaining articles to confirm that they fully satisfy the 

criteria for inclusion. Finally, during the data extraction phase, pertinent information from the selected studies is collected, categorized, 

and synthesized to draw meaningful conclusions. This systematic process enhances research quality and transparency, ensuring that the 

final review presents trustworthy evidence to support ongoing scholarship and inform professional practice. 

3.1. Identification 

For this review, an extensive literature search was performed across the Scopus and PubMed databases. These two sources were chosen 

because they provide broad access to reputable, peer-reviewed publications within medical imaging, radiology, and artificial intelligence 

research. Using the predetermined search terms, “artificial intelligence,” “radiomics,” and “contrast-enhanced mammography (CEM)”. A 

total of 2,889 studies were initially identified, with 2,183 retrieved from Scopus and 706 from PubMed. This substantial volume of records 

reflects the rapid expansion of research in AI-driven diagnostic imaging and the increasing integration of radiomics for enhanced lesion 

characterization in breast cancer detection. The database selection and keyword strategy were designed to ensure inclusivity, capturing 

studies across clinical, computational, and imaging science domains to represent a holistic evidence base for the topic (Table 1). 

The large number of records identified highlights both the scientific relevance and the growing academic interest in the intersection of AI 

and CEM. The post-pandemic acceleration of digital transformation in medical imaging and the widespread adoption of data-driven diag-

nostic tools have contributed significantly to this research surge. Moreover, the inclusion of two premier indexing databases ensures the 

retrieval of diverse yet credible sources, minimizing publication bias and enhancing the comprehensiveness of the review. The high volume 

of initial records also underscores the necessity for rigorous screening and eligibility procedures, as mandated by the PRISMA framework, 

to refine the dataset to the most pertinent studies. Ultimately, this systematic identification process establishes a robust foundation for 

subsequent analytical phases, ensuring methodological rigor and enhancing the scientific reliability of the review’s findings. 

 
Table 1: The Search String 

Sco-
pus 

TITLE-ABS-KEY (( contrast OR enhance*) AND (mammogram OR mammography ) AND ( AI OR "artificial Intelligence" OR "deep learn-

ing" OR "machine learning" OR radiomic*)) AND (LIMIT-TO (PUBYEAR, 2025)) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO 
(PUBSTAGE, "final")) AND (LIMIT-TO (LANGUAGE, "English")) 

Date of Access: November 2025 

Pub-

med 

Search: (contrast OR enhance*) AND (mammogram OR mammography) AND (AI OR "artificial Intelligence" OR "deep learning" OR "ma-

chine learning" OR radiomic*) Filters: Adaptive Clinical Trial, Address, Autobiography, Bibliography, Biography, Books and Documents, 
Case Reports, Classical Article, Clinical Conference, Clinical Study, Clinical Trial, Clinical Trial, Phase I, Clinical Trial, Phase II, Clinical 

Trial, Phase III, Clinical Trial, Phase IV, Clinical Trial Protocol, Collected Work, Comment, Comparative Study, Congress, Consensus Devel-

opment Conference, Consensus Development Conference, NIH, Controlled Clinical Trial, Corrected and Republished Article, Dataset, Dic-
tionary, Directory, Duplicate Publication, Editorial, Electronic Supplementary Materials, English Abstract, Equivalence Trial, Evaluation 

Study, Expression of Concern, Festschrift, Government Publication, Guideline, Historical Article, Interactive Tutorial, Interview, Introductory 

Journal Article, Lecture, Legal Case, Legislation, Letter, Meta-Analysis, Multicenter Study, Network Meta-Analysis, News, Newspaper Arti-
cle, Observational Study, Overall, Patient Education Handout, Periodical Index, Personal Narrative, Portrait, Practice Guideline, Pragmatic 

Clinical Trial, Preprint, Published Erratum, Randomized Controlled Trial, Randomized Controlled Trial, Veterinary, Research Support, Ameri-

can Recovery and Reinvestment Act, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, Research Support, Non-
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U.S. Gov't, Research Support, U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S., Retracted Publica-

tion, Retraction of Publication, Clinical Trial, Veterinary, Observational Study, Veterinary, English, from 2025/1/1 - 2025/11/8 

Date of Access: November 2025 

3.2. Screening 

During the screening phase of this systematic review, all records retrieved from the initial search were carefully examined for relevance 

and quality. Out of the 2,889 studies identified in the identification stage, 345 articles were retained after the first-level screening, 323 from 

Scopus and 22 from PubMed. This refinement was guided by predefined inclusion and exclusion criteria to ensure that only studies closely 

aligned with the objectives of the review were considered (Table 2). The screening primarily involved evaluating titles and abstracts to 

verify their focus on artificial intelligence, radiomics, and contrast-enhanced mammography (CEM). Furthermore, six duplicate records 

were detected and removed to preserve the accuracy and integrity of the dataset. 

Following this, 2,544 records were excluded based on specific criteria designed to enhance methodological rigor and ensure the inclusion 

of only high-quality, peer-reviewed studies. Excluded articles were those published before 2025, written in non-English languages, or 

categorized as conference proceedings, book chapters, reviews, or “in press” papers. This filtering ensured that the remaining dataset 

comprised only original research articles with complete and verifiable findings, consistent with PRISMA recommendations. The substantial 

number of excluded records highlights the necessity of a stringent screening approach in a rapidly evolving research field, where the 

proliferation of non-peer-reviewed and secondary publications is common. Consequently, this phase yielded a refined, reliable, and lan-

guage-consistent body of literature, forming a strong empirical foundation for the subsequent eligibility and inclusion stages of the sys-

tematic review. 

 
Table 2: The Selection Criterion in Searching 

Criterion Inclusion Exclusion 

Language English Non-English 

Time line 2025 < 2025 
Literature type Journal (Article) Conference, Book, Review 

Publication stage Final In-press 

Subject  Medicine Besides Medicine 

3.3. Eligibility 

In the eligibility phase, 339 articles were subjected to a thorough assessment. Each study’s title, abstract, and full text were thoroughly 

reviewed to confirm their compliance with the inclusion criteria and alignment with the review’s specific objectives. During this process, 

302 articles were excluded for reasons such as being outside the scope of the field, having titles or abstracts that did not correspond to the 

study’s focus, lacking full-text availability, or failing to provide empirical evidence. As a result, 37 studies satisfied all eligibility require-

ments and were advanced to the final stage of the systematic review. 

3.4. Data abstraction and analysis 

This study utilized an integrative analysis approach to review and combine findings from diverse research designs, with a particular focus 

on qualitative studies. The primary aim was to identify key topics and subtopics relevant to the research focus. Data collection constituted 

the initial step in developing these themes. As exemplified in Figure 2, the authors carefully analyzed 39 selected publications (Table 3) to 

extract statements or content pertinent to the study’s objectives. Next, the authors evaluated the most significant current studies concerning 

the application of artificial intelligence and radiomics in contrast-enhanced mammography (CEM). Both the methodologies and findings 

of these studies were examined in detail. The authors then work together to derive themes grounded in the evidence within the context of 

this review. A detailed log was maintained throughout the analysis process to document reflections, interpretations, and observations related 

to data synthesis. To finish, the authors reviewed and cross-verified the findings to maintain consistency in the development of themes. 

Any discrepancies in interpretation were resolved through collaborative discussion among the authors to achieve consensus. 

 
Table 3: Number and details of Primary Studies (PS) Database 

PS Authors Title Year Journal 

1 
(X. Wang et al., 
2025) 

Predicting short- to long-term breast cancer risk from longitudinal mammo-
graphic screening history 

2025 npj Breast Cancer 

2 (Ergün et al., 2025) 
BCECNN: an explainable deep ensemble architecture for accurate diagnosis 

of breast cancer 
2025 

BMC Medical Informatics and 

Decision Making 

3 (Lafcı et al., 2025) 
Application of Radiomics Analysis on Mammography for Differentiating Be-

nign and Malignant Masses 
2025 

SN Comprehensive Clinical 

Medicine 

4 
(Varshney et al., 

2025) 
Hybrid and optimized feature fusion for enhanced breast cancer classification 2025 

Network Modeling Analysis in 
Health Informatics and Bioin-

formatics 

5 
(D. Zhang et al., 
2025) 

Deep learning on routine full-breast mammograms enhances lymph node me-
tastasis prediction in early breast cancer 

2025 npj Digital Medicine 

6 (Wu et al., 2025) 
Multi-modality radiomics diagnosis of breast cancer based on MRI, ultra-

sound and mammography 
2025 BMC Medical Imaging 

7 (Ma et al., 2025) 
Contrast-enhanced mammography-based interpretable machine learning 

model for the prediction of the molecular subtype breast cancers 
2025 BMC Medical Imaging 

8 
(Pacal & Attallah, 
2025) 

InceptionNeXt-Transformer: A novel multi-scale deep feature learning archi-
tecture for multimodal breast cancer diagnosis 

2025 
Biomedical Signal Processing 
and Control 

9 
(Hashem et al., 

2025) 

Can artificial intelligence and contrast-enhanced mammography be of value 

in the assessment and characterization of breast lesions? 
2025 

Egyptian Journal of Radiology 

and Nuclear Medicine 

10 
(Chen & Martel, 
2025) 

Enhancing breast cancer detection on screening mammogram using self-su-

pervised learning and a hybrid deep model of Swin Transformer and convo-

lutional neural networks 

2025 Journal of Medical Imaging 

11 (Camp et al., 2025) 
Impact of synthetic data on training a deep learning model for lesion detec-

tion and classification in contrast-enhanced mammography 
2025 Journal of Medical Imaging 
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12 
(Abdelhalim et al., 

2025) 

A deep learning framework for accurate mammographic mass classification 

using local context attention module 
2025 Medical Physics 

13 
(Krishna et al., 

2025) 

Enhancing Breast Cancer Diagnosis With Attention Branch Network and 

Thermographic Imaging 
2025 

International Journal of Imaging 

Systems and Technology 

14 
(Sierra-Franco et 
al., 2025) 

Towards Automated Semantic Segmentation in Mammography Images for 
Enhanced Clinical Applications 

2025 
Journal of Imaging Informatics 
in Medicine 

15 (Ismail et al., 2025) 
Application of Tuning-ensemble N-Best in Auto-Sklearn for Mammographic 

Radiomic Analysis for Breast Cancer Prediction 
2025 Current Medical Imaging 

16 
(Q. Wang et al., 

2025) 

Dual-Modality Virtual Biopsy System Integrating MRI and MG for Noninva-

sive Predicting HER2 Status in Breast Cancer 
2025 Academic Radiology 

17 
(Niranjana et al., 
2025) 

Performance analysis of novel hybrid\ deep learning model IEU Net++ for 
multiclass categorization of breast mammogram images 

2025 
Biomedical Signal Processing 
and Control 

18 
(Mansour, Kamal, 

et al., 2025) 

Enhancing detection of previously missed non-palpable breast carcinomas 

through artificial intelligence 
2025 

European Journal of Radiology 

Open 

19 
(Nicosia et al., 

2022) 

Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography 

for Prognostic Prediction of Breast Cancer 
2025 Cancers 

20 (Ra et al., 2025) 
Enhancing radiomics features via a large language model for classifying be-
nign and malignant breast tumors in mammography 

2025 
Computer Methods and Pro-
grams in Biomedicine 

21 (Liu et al., 2025) 
A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast 

Cancer Biopsy Outcome Prediction 
2025 Academic Radiology 

22 
(Ciurescu et al., 

2025) 
AI in 2D Mammography: Improving Breast Cancer Screening Accuracy 2025 Medicina (Lithuania) 

23 (Li et al., 2025) 
An explainable and comprehensive BI-RADS assisted diagnosis pipeline for 
mammograms 

2025 Physica Medica 

24 
(Panambur et al., 

2025) 

Attention-guided erasing for enhanced transfer learning in breast abnormality 

classification  
2025 

International Journal of Com-

puter Assisted Radiology and 
Surgery 

25 
(Mansour, Mokh-

tar, et al., 2025) 

Artificial intelligence reading digital mammogram: enhancing detection and 

differentiation of suspicious microcalcifications 
2025 British Journal of Radiology 

26 
(Van Camp et al., 

2025) 

An automated toolbox for microcalcification cluster modeling for mammo-

graphic imaging 
2025 Medical Physics 

27 (Idress et al., 2025) 
Hybrid segmentation and 3D Imaging: Comprehensive framework for breast 
cancer patient segmentation and classification based on digital breast tomo-

synthesis 

2025 
Biomedical Signal Processing 

and Control 

28 
(Vijetha et al., 
2025) 

A Sisters Similarity Neural Network SSNN Model for Generalization and 
Detection of Mammographic Breast Cancer Lesion Abnormalities 

2025 
Journal of Cancer Research Up-
dates 

29 (Yang et al., 2025) 
Radiomics Integration of Mammography and DCE-MRI for Predicting Mo-
lecular Subtypes in Breast Cancer Patients 

2025 
Breast Cancer: Targets and 
Therapy 

30 
(Nour & Boufama, 

2025) 

Hybrid deep learning and active contour approach for enhanced breast lesion 

segmentation and classification in mammograms 
2025 Intelligence-Based Medicine 

31 
(la Moglia & Al-

mustafa, 2025) 
Breast cancer prediction using machine learning classification algorithms 2025 Intelligence-Based Medicine 

32 
(F. Wang et al., 
2025) 

TopoTxR: A topology-guided deep convolutional network for breast paren-
chyma learning on DCE-MRIs 

2025 Medical Image Analysis 

33 
(Satake et al., 

2025) 

Predictive Performance of Radiomic Features Extracted from Breast MR Im-

aging in Postoperative Upgrading of Ductal Carcinoma in Situ to Invasive 
Carcinoma 

2025 
Magnetic Resonance in Medical 

Sciences 

34 (Shi et al., 2025) 
Development and validation of an intratumoral-peritumoral deep transfer 

learning fusion model for differentiating BI-RADS 3–4 breast nodules 
2025 Gland Surgery 

35 (Xu et al., 2025) 

Enhancing Specificity in Predicting Axillary Lymph Node Metastasis in 

Breast Cancer through an Interpretable Machine Learning Model with CEM 

and Ultrasound Integration 

2025 
Technology in Cancer Research 
and Treatment 

36 
(Puttegowda et al., 

2025) 

Advanced Machine Learning Techniques for Prognostic Analysis in Breast 

Cancer 
2025 Open Bioinformatics Journal 

3.5. Quality of appraisal 

Following the guidelines proposed by Kitchenham and Charters (Kitchenham, 2007), after selecting the primary studies, it is necessary to 

evaluate their research quality and perform a quantitative comparison. In this study, the quality assessment approach by Anas Abouzahra 

et al. (Abouzahra et al., 2020) was adopted, which includes six quality assessment (QA) criteria for the SLR. Each criterion was rated using 

a three-point scale: “Yes” (Y) with a score of 1 if the criterion was fully satisfied, “Partly” (P) with a score of 0.5 if it was partially met 

with minor limitations, and “No” (N) with a score of 0 if it was not met. 

• QA1. Is the study’s purpose clearly articulated? 

• QA2. Are the significance and practical relevance of the work well presented? 

• QA3. Is the methodology clearly described and justified? 

• QA4. Are the key concepts and theoretical approach clearly defined? 

• QA5. Does the study include comparisons with or evaluations against similar work? 

• QA6. Are the limitations and potential weaknesses of the study explicitly acknowledged? 

The table presents the quality assessment (QA) process employed to evaluate each study according to predefined criteria. Three experts 

independently reviewed the studies based on these criteria, assigning one of three possible ratings for each: “Yes” (Y) if the criterion was 

fully met, “Partly” (P) if it was partially satisfied with some limitations, or “No” (N) if it was not met. A detailed explanation of this 

assessment process is provided below. Each expert independently evaluates the study based on the established criteria, and their individual 

scores are then combined to calculate a total score. To advance to the next stage, a study must achieve a cumulative score greater than 3.0. 

This cutoff ensures that only studies meeting the required quality standards are considered for further analysis. 
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Fig. 2: Flow Diagram of the Proposed Searching Study. 

4. Results and Discussion 

Based on the quality assessment results presented in Table 4, the overall methodological rigor of the 36 selected primary studies demon-

strates a consistently high standard of research quality within the field of Artificial Intelligence (AI) and Radiomics in Contrast-Enhanced 

Mammography (CEM). The majority of studies scored between 75% and 83%, reflecting strong adherence to essential quality indicators 

such as research design clarity, data integrity, and analytical robustness. To provide continuity with the broader evolution of the field, the 

findings of this 2025-focused review should be interpreted in the context of established foundational and late-2024 studies on AI and 

radiomics in contrast-enhanced mammography (CEM). Earlier landmark investigations laid the methodological groundwork for feature 

extraction, lesion segmentation, and model validation, particularly demonstrating the feasibility of radiomics-based risk stratification and 

the added diagnostic value of contrast enhancement. Late-2024 studies further advanced this foundation by introducing multicenter da-

tasets, hybrid deep learning–radiomics pipelines, and early efforts toward explainable AI and standardized reporting frameworks. The 

studies published in 2025, which form the core of this review, largely build upon these prior contributions by refining model architectures, 

improving generalizability through ensemble and transformer-based approaches, and expanding prognostic and molecular subtype predic-

tion capabilities. By situating recent evidence within this established trajectory, the review clarifies that current advances represent meth-

odological maturation and optimization rather than isolated innovation, thereby strengthening the coherence and interpretability of the 

synthesized findings while maintaining the predefined inclusion criteria. 

Notably, one study (PS12) achieved the highest rating of 92%, signifying exceptional methodological quality and comprehensive reporting. 

In contrast, a small number of studies (PS4, PS9, and PS16) attained lower scores, ranging from 58% to 67%, suggesting partial fulfillment 

of evaluation criteria and potential limitations in study design or data validation processes. The consistent performance across the majority 

of studies highlights the growing maturity and methodological soundness in AI-driven imaging research, particularly regarding reproduci-

bility, feature extraction, and model performance evaluation. 

These findings further indicate that research in AI and radiomics applied to CEM has reached a stable level of methodological reliability, 

enabling stronger clinical translation and evidence-based integration into diagnostic workflows. However, the lower-performing studies 

underline the continued need for standardized validation frameworks, larger datasets, and transparent reporting practices to strengthen 

credibility and generalizability. The predominance of high-quality studies enhances confidence in the synthesized evidence derived from 

this structured review, ensuring that the conclusions drawn are both reliable and representative of the field’s current state. Overall, the 

quality assessment underscores that the selected studies collectively provide a robust foundation for understanding the diagnostic and 

predictive applications of AI and radiomics in enhancing breast cancer detection through contrast-enhanced mammography. 
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Table 4: Quality Assessment Results of Selected Primary Studies 

PS QA1 QA2 QA3 QA4 QA5 QA6 Total Mark % 

PS1 Y Y P Y Y N 4.5 75% 
PS2 Y Y Y Y Y N 5.0 83% 

PS3 Y Y Y P Y N 4.5 75% 

PS4 Y Y P P P N 3.5 58% 
PS5 Y Y Y P Y N 4.5 75% 

PS6 Y Y Y P Y N 4.5 75% 

PS7 Y Y Y P Y N 4.5 75% 
PS8 Y Y Y Y Y N 5.0 83% 

PS9 Y Y P P P N 3.5 58% 
PS10 Y Y Y P Y N 4.5 75% 

PS11 Y Y Y Y Y N 5.0 83% 

PS12 Y Y Y Y Y P 5.5 92% 
PS13 Y Y Y Y Y N 5.0 83% 

PS14 Y Y Y Y P N 4.5 75% 

PS15 Y Y Y Y Y N 5.0 83% 
PS16 Y Y P P P Y 4.0 67% 

PS17 Y Y Y Y Y N 5.0 83% 

PS18 Y Y Y Y Y N 5.0 83% 

PS19 Y Y Y Y Y N 5.0 83% 

PS20 Y Y Y Y Y N 5.0 83% 

PS21 Y Y Y Y Y N 5.0 83% 
PS22 Y Y Y Y Y N 5.0 83% 

PS23 Y Y Y Y Y N 5.0 83% 

PS24 Y Y Y Y Y N 5.0 83% 
PS25 Y Y Y Y Y N 5.0 83% 

PS26 Y Y Y Y Y N 5.0 83% 

PS27 Y Y Y Y Y N 5.0 83% 
PS28 Y Y Y Y Y N 5.0 83% 

PS29 Y Y Y Y Y N 5.0 83% 

PS30 Y Y Y Y Y N 5.0 83% 
PS31 Y Y Y Y Y N 5.0 83% 

PS32 Y Y Y Y Y N 5.0 83% 

PS33 Y Y Y Y Y N 5.0 83% 
PS34 Y Y Y Y Y N 5.0 83% 

PS35 Y Y Y Y Y N 5.0 83% 

PS36 Y Y Y Y Y N 5.0 83% 

4.1. AI architectures & classification/detection models 

Recent advances in artificial intelligence (AI) and deep learning (DL) have transformed mammographic image analysis, enabling enhanced 

diagnostic accuracy through novel classification and feature extraction frameworks. Among these developments, ensemble architectures 

and hybrid models have emerged as leading strategies for improving model generalization and clinical interpretability. Ergün, Çoban, and 

Kayadibi (2025) introduced the Breast Cancer Ensemble Convolutional Neural Network (BCECNN), integrating multiple convolutional 

neural network (CNN) architectures such as AlexNet, VGG16, and EfficientNetB0 using a voting mechanism. This model achieved a high 

diagnostic accuracy of 98.75%, demonstrating the robustness of ensemble learning, even with limited datasets. The inclusion of explainable 

artificial intelligence (XAI) methods, including Grad-CAM and LIME, further improved transparency and interpretability in clinical vali-

dation. Similarly, Varshney, Verma, Kaur, and Puri (2025) proposed a hybrid system combining radiomic and DL-derived features, where 

Recursive Feature Elimination improved feature selection efficiency. Their ensemble classifier reached 98.43% accuracy and 0.99 ROC-

AUC, showing superior diagnostic precision. The integration of ensemble and hybrid learning principles across these studies suggests that 

combining multiple architectures can mitigate data scarcity challenges while offering better interpretability and model reliability for breast 

cancer diagnosis. 

Deep learning-based hybrid frameworks have also been shown to address the limitations of traditional single-modality diagnostic models. 

Pacal and Attallah (2025) developed the InceptionNeXt-Transformer, a multi-scale architecture combining CNNs and Vision Transformers 

for multimodal breast cancer analysis. This model achieved accuracy rates approaching 100% across datasets including histopathology, 

mammography, and ultrasound, demonstrating strong generalization capability and computational efficiency. Similarly, Chen and Martel 

(2025) designed a hybrid Swin Transformer–CNN model, termed HybMNet, which incorporated self-supervised learning (SSL) to over-

come the scarcity of labeled mammographic data. Their model improved classification on the INbreast and CMMD datasets, achieving 

AUCs of 0.889 and 0.864, respectively. The use of SSL pretraining enabled effective feature extraction despite limited supervision, im-

proving lesion detection in mammograms. These studies collectively highlight the potential of transformer-based hybrid architectures to 

combine local and global context features efficiently, offering reliable and scalable solutions for diverse imaging modalities. 

Attention mechanisms and local context modules have also been effectively integrated to enhance feature discrimination in complex mam-

mographic data. Abdelhalim et al. (2025) designed a deep learning model employing a Local Context Attention Module (LCAM) to classify 

mammographic masses based on BI-RADS categories. Their model achieved 82.46% sensitivity and 91.42% specificity across 3,020 pa-

tients, demonstrating improved accuracy through spatial-channel attention refinement. Likewise, Krishna, Stancilas, Srinivasan, and Vi-

jayakumar (2025) utilized an Attention Branch Network (ABN) to interpret thermographic images for breast abnormality detection, achiev-

ing an impressive 98.15% accuracy. The integration of attention modules in both studies enabled models to focus on salient regions, im-

proving lesion localization and interpretability. Panambur et al. (2025) extended this concept through attention-guided erasing (AGE), a 

novel data augmentation approach enhancing feature generalization during transfer learning. The model demonstrated notable F1-score 

improvements, particularly in breast density and malignancy classification tasks, underscoring how attention-driven mechanisms can refine 

transfer learning outcomes across datasets. Collectively, attention-based networks represent a pivotal trend in modern AI-driven mammo-

graphic systems by amplifying diagnostic precision while maintaining model explainability. 

Hybrid and ensemble deep learning architectures have further evolved through multi-task and topology-guided approaches to capture 

complex mammographic patterns. Li et al. (2025) proposed an explainable BI-RADS-assisted diagnostic pipeline incorporating multi-scale 
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feature fusion and spatial attention (MFFSA), achieving AUCs above 91% across multiple datasets. The combination of BI-RADS-based 

classification with explainability modules connected radiological indicators to deep features, advancing the interpretability of automated 

assessments. In another approach, Niranjana, Ravi, and Sivadasan (2025) developed IEU Net++, a hybrid deep learning model combining 

InceptionResNetV2 and EfficientNetB7 architectures for multiclass classification of mammographic images. Their framework achieved 

up to 99.87% accuracy and 0.972 Dice scores across INBreast and MIAS datasets, showing outstanding performance in differentiating 

between benign and malignant lesions. These findings emphasize the growing trend of multi-scale, hybrid networks that integrate both 

local and high-level spatial representations for superior accuracy and generalization in breast cancer detection. 

Further enhancements in model adaptability and robustness have been achieved through similarity learning and AI-assisted 2D mammog-

raphy approaches. Vijetha, Jude, and KanthiThilaka (2025) proposed the Sisters Similarity Neural Network (SSNN), which utilized patch-

based preprocessing and discriminative similarity learning to handle data variability and noise in mammograms. This model achieved 

92.3% accuracy and an AUC of 0.936, highlighting improved lesion detection consistency even under data heterogeneity. Complementing 

this work, Ciurescu et al. (2025) applied AI-driven CNN models for 2D mammography screening, reaching 88.5% accuracy and an AUC 

of 0.93. The system notably improved lesion classification accuracy while reducing false positives, though optimization was still needed 

to minimize false negatives. Both studies reveal the significance of designing adaptable frameworks that address real-world image quality 

variations and radiological inconsistencies to enhance screening reliability in clinical applications. 

Lastly, traditional machine learning methods continue to complement deep learning innovations by providing interpretable and computa-

tionally efficient alternatives for preliminary diagnosis. La Moglia and Almustafa (2025) compared eight classical classifiers and found 

Logistic Regression achieved the highest testing accuracy of 91.67%, with notable improvement after feature selection using the LGBM 

model. These results reaffirm that, while deep learning dominates current research, optimized classical algorithms still play a meaningful 

role in low-resource or early-screening environments. Combined with advanced CNN and transformer-based architectures, these ap-

proaches collectively form a spectrum of AI methodologies that progressively strengthen diagnostic decision-making in mammography. 

In summary, the reviewed studies converge on several key advancements in breast cancer detection using AI-based architectures: ensemble 

learning for accuracy improvement (Ergün et al., 2025; Varshney et al., 2025), hybrid transformer-CNN models for multimodal generali-

zation (Pacal & Attallah, 2025; Chen & Martel, 2025), attention mechanisms for interpretability (Abdelhalim et al., 2025; Krishna et al., 

2025; Panambur et al., 2025), and multi-scale or similarity-based frameworks for robustness (Li et al., 2025; Vijetha et al., 2025). Collec-

tively, these studies illustrate that future diagnostic models in mammography will increasingly depend on multi-level integration of radio-

mic, attention-guided, and self-supervised learning strategies to achieve precision, transparency, and adaptability across diverse clinical 

contexts. 

4.2. Radiomics & multi-modality predictive / prognostic models 

The integration of artificial intelligence (AI) and radiomics in breast imaging has led to a paradigm shift in predictive and prognostic 

modeling, particularly in contrast-enhanced mammography (CEM). A growing body of research demonstrates the capacity of radiomics-

based approaches to extract quantifiable imaging biomarkers that enhance diagnostic precision, risk stratification, and outcome prediction. 

Radiomics models, as evidenced by studies such as those by Wang et al. (2025), Lafcı et al. (2025), and Zhang et al. (2025), have shown 

significant improvements in identifying subtle imaging patterns associated with malignancy, outperforming conventional diagnostic meth-

ods. These approaches bridge the gap between image interpretation and individualized patient management by capturing minute heteroge-

neities invisible to the human eye. Notably, Wang et al. (2025) introduced a Multi-Time Point Breast Cancer Risk Model (MTP-BCR) that 

integrates longitudinal mammographic data to predict breast cancer risk over a ten-year period with an AUC of 0.80, underscoring the 

power of temporal imaging data. Similarly, Lafcı et al. (2025) demonstrated that radiomics features extracted from craniocaudal and me-

diolateral oblique projections could improve the differentiation between benign and malignant lesions, achieving AUC values comparable 

to experienced radiologists. Complementing these findings, Zhang et al. (2025) confirmed that deep learning integration with full-breast 

mammograms enhances the predictive capability for lymph node metastasis, providing a foundation for improved surgical decision-mak-

ing. 

Advancements in multi-modality imaging and AI-based integration have significantly improved diagnostic modeling for breast cancer. Wu 

et al. (2025) and Wang Q. et al. (2025) developed multi-modality radiomics frameworks combining MRI, ultrasound, and mammography, 

achieving superior diagnostic accuracy compared to single-modality models. Wu et al. (2025) demonstrated that a logistic regression model 

integrating peritumoral features across modalities reached an AUC of 0.905, emphasizing the benefit of including spatial information 

beyond the lesion boundary. Likewise, Wang Q. et al. (2025) established a Dual-Modality Virtual Biopsy System (DM-VBS) integrating 

MRI and mammography radiomics for HER2 prediction, attaining over 85% classification accuracy in validation cohorts. The inclusion of 

both radiomic and deep learning-derived features enhanced the system’s ability to distinguish HER2-positive from HER2-negative cases, 

suggesting that noninvasive imaging biomarkers could serve as surrogates for molecular profiling. The consistent diagnostic gains across 

modalities illustrate how multi-source image integration, coupled with radiomics, may provide a more comprehensive view of tumor biol-

ogy and improve personalized care pathways. 

Machine learning models built on radiomic features have further contributed to refining diagnostic workflows and enhancing clinical 

decision-making. Studies such as Ma et al. (2025), Ismail et al. (2025), and Liu et al. (2025) explored distinct algorithmic approaches for 

breast cancer subtype classification, lesion differentiation, and biopsy outcome prediction. Ma et al. (2025) constructed an interpretable 

machine learning model based on CEM features for molecular subtype prediction, achieving an AUC of 0.798 for luminal versus non-

luminal subtypes. Their use of the SHAP algorithm provided transparency in feature importance, a critical step toward clinical acceptability. 

In another approach, Ismail et al. (2025) applied an Auto-Sklearn ensemble framework that automated model selection and tuning for 

radiomic classification tasks, demonstrating improved accuracy and efficiency compared to manual model optimization. Meanwhile, Liu 

et al. (2025) combined radiomics and radiologist-assessed clinical descriptors in a logistic regression model that predicted breast biopsy 

outcomes for BI-RADS 4A–5 lesions, achieving an AUC of 0.90. These studies collectively highlight how machine learning can transform 

traditional diagnostic interpretation into quantitative, reproducible assessments, thereby reducing inter-observer variability and enhancing 

diagnostic confidence. 

Beyond diagnosis, recent investigations have expanded the application of radiomics in CEM toward prognostic modeling and survival 

prediction. Nicosia et al. (2025) presented a radiomics-based prognostic model derived from CEM that successfully predicted disease-free 

and overall survival in breast cancer patients. By employing a Cox-LASSO regression model, they established a significant correlation 

between radiomic scores and long-term survival outcomes, with C-index values reaching 0.84 when combined with clinical data. This 

advancement underscores the potential of CEM-derived radiomics as a noninvasive prognostic marker. Similarly, Wang X. et al. (2025) 

and Zhang et al. (2025) reinforced the value of integrating longitudinal and morphological features for risk stratification and metastasis 
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prediction, respectively. Such prognostic models not only assist in early disease detection but also enable risk-adaptive follow-up and 

therapy planning, marking a shift toward more individualized breast cancer management strategies. 

Emerging technologies have also focused on enhancing radiomics capabilities through integration with advanced computational frame-

works. Ra et al. (2025) proposed an innovative method that leveraged large language models (LLMs) to augment radiomic feature repre-

sentation. By embedding LLM-learned clinical knowledge into radiomic feature analysis, their approach achieved superior accuracy com-

pared to conventional models, particularly in cross-dataset generalization. Similarly, Pacal and Attallah (2025) introduced the Inception-

NeXt-Transformer architecture, merging convolutional networks with vision transformers for multimodal image analysis. This model 

achieved nearly perfect accuracy across several breast imaging datasets, demonstrating strong generalization and computational efficiency. 

The integration of transformer-based architectures and LLMs represents a promising evolution in radiomics, allowing models to synthesize 

multimodal and contextual information more effectively than traditional convolutional frameworks. 

Overall, the convergence of radiomics, deep learning, and multi-modality imaging in CEM has yielded significant advancements in diag-

nostic accuracy, prognostic prediction, and clinical decision support. The collective findings from studies by Wu et al. (2025), Ma et al. 

(2025), Liu et al. (2025), Nicosia et al. (2025), and Wang Q. et al. (2025) emphasize the emerging role of radiomics-based predictive models 

in enabling precision breast cancer care. These developments highlight the necessity of larger, multicentric validation studies and stand-

ardized radiomic pipelines to ensure reproducibility and clinical integration. Furthermore, the growing incorporation of interpretable AI 

models enhances the transparency and trustworthiness of CEM-based radiomics systems, paving the way toward broader adoption in rou-

tine breast cancer diagnosis and prognosis. 

4.3. Segmentation, microcalcification & data-tooling for detection 

Recent investigations emphasize data augmentation, automated segmentation, and specialized tooling as central to improving lesion detec-

tion in contrast-enhanced mammography (CEM) and related mammographic modalities. Camp et al. (2025) examined the role of synthetic 

microcalcification insertion and showed that synthetic examples can increase detection sensitivity for malignant lesions when combined 

with limited real data, although gains in precision were not uniform. Panambur et al. (2025) demonstrated that attention-guided erasing 

(AGE) derived from self-supervised attention maps provides modest but consistent F1-score improvements across several classification 

tasks, including patch-level calcification detection. Mansour et al. (2024) reported that AI overlays on prior negative mammograms flagged 

substantial proportions of missed carcinomas, with particularly strong performance on distortion and grouped microcalcifications; this 

result supports the hypothesis that automated preprocessing and visualization can uncover subtle early markers otherwise overlooked in 

routine screening. 

Augmentation strategies and synthetic augmentation interact with model design choices and validation schemes in nontrivial ways. Camp 

et al. (2025) observed a performance plateau in detection sensitivity when synthetic data dominated training, and found that ensembles 

combining DL and handcrafted radiomics sometimes reduced generalization on external sets due to spurious region proposals. Panambur 

et al. (2025) stressed that attention-based erasing improved downstream transfer learning most for tasks where background noise obscures 

salient patches, while yielding negligible benefit when erased regions masked critical mass features. Mansour et al. (2025, British Journal 

of Radiology) additionally revealed that AI assistance increased sensitivity for grouped microcalcifications but required human expert 

specification to achieve acceptable positive predictive value. Together, these findings indicate that augmentation must be task-aware and 

validated across internal and external cohorts to avoid overfitting to synthetic artefacts. 

Automated segmentation of anatomical landmarks and conversion to three-dimensional representations show promise for downstream 

detection and quality assurance. Sierra-Franco et al. (2025) developed a large annotated dataset for nipple, pectoral muscle, fibroglandular 

and fatty tissue segmentation and compared multiple semantic segmentation architectures, reporting robust performance and several clini-

cal applications such as automated multi-view registration and breast density estimation. Idress et al. (2024) proposed a hybrid pipeline 

using advanced preprocessing, DENSE SE-Net segmentation, and conversion to digital breast tomosynthesis (DBT) 3D images followed 

by YOLOv7 detection and semi-supervised CNN classification; simulation results indicated improvements in accuracy and ROC metrics 

relative to prior methods. The combination of reliable anatomical segmentation (Sierra-Franco et al.) and DBT-based 3D reconstruction 

(Idress et al.) suggests a practical route to reduce false positives and improve lesion localization in dense breasts. 

Specialized toolboxes and similarity-guided learning address the microcalcification modelling and generalization challenges. Mansour et 

al. (2025, British Journal of Radiology) produced an automated toolbox for microcalcification cluster modelling, showing high correlation 

between AI heatmap scores and histopathologically confirmed malignant calcifications; sensitivity for grouped calcifications was reported 

near 94.7%. Camp et al. (2025) corroborated the utility of simulated calcification data to fill gaps where real annotated examples are scarce, 

but emphasized careful calibration of simulated appearance and texture. Panambur et al. (2025) further observed that self-supervised at-

tention maps can be repurposed for targeted erasing or augmentation to improve the model’s robustness to imaging variations. These studies 

together indicate that targeted tool development — combining synthetic data, explicit cluster modelling, and attention-based augmentation 

— can enhance detection and characterization of microcalcifications when validated on varied cohorts. 

Operational considerations and remaining limitations require careful attention before clinical deployment. Camp et al. (2025) showed that 

blending synthetic and real data demands distributional alignment to avoid precision loss, and that ensemble stacking without careful error 

analysis may degrade external performance. Sierra-Franco et al. (2025) noted that segmentation models require large, diverse annotated 

sets to maintain robustness across acquisition devices and patient morphologies. Mansour et al. (2024, European Journal of Radiology 

Open) highlighted that AI flagging increases detection but may not predict specific pathology types; thus, AI should be used to augment 

triage rather than replace confirmatory imaging or biopsy. Idress et al. (2024) reported promising simulation metrics for DBT-based 3D 

systems, but translation into clinical practice needs prospective validation and assessment of workflow impact. Collectively, the literature 

recommends task-specific augmentation, multimodal segmentation pipelines, and rigorous external validation as prerequisites for trust-

worthy CEM-based detection systems. 

Despite promising diagnostic and prognostic performance, several factors must be addressed before AI- and radiomics-enhanced contrast-

enhanced mammography (CEM) can be routinely adopted in clinical practice. From a regulatory perspective, most existing models remain 

at an investigational stage and require rigorous external and prospective validation to meet approval standards set by regulatory authorities. 

Transparent reporting, explainable AI mechanisms, and compliance with emerging medical AI governance frameworks are essential to 

support regulatory readiness. In terms of clinical workflow integration, successful implementation depends on seamless interoperability 

with picture archiving and communication systems (PACS), minimal disruption to radiologists’ reading time, and clear human–AI interac-

tion pathways that support, rather than replace, clinical judgment. Cost-effectiveness is another critical consideration, as AI deployment 

involves expenses related to software acquisition, infrastructure, data management, and ongoing model maintenance, which must be justi-

fied by measurable improvements in diagnostic efficiency or patient outcomes. Furthermore, real-world implementation is challenged by 



International Journal of Basic and Applied Sciences 29 

 
data heterogeneity, institutional variability, and clinician trust, underscoring the need for multicenter trials, standardized pipelines, and 

user-centered design to facilitate safe and sustainable clinical adoption. 

Overall, the field shows a convergent trend: augmentation (synthetic or attention-guided), robust anatomical segmentation, and specialized 

microcalcification toolboxes jointly improve sensitivity and localization, while generalizability and precision hinge on suitable validation 

strategies and human-in-the-loop interpretation. Future work should prioritize multicenter external testing, standardization of synthetic data 

generation, and integrated pipelines that combine segmentation, detection, and explainable outputs to support clinical decision pathways. 

5. Conclusion 

This systematic literature review aimed to evaluate the recent developments in the application of artificial intelligence (AI) and radiomics 

in contrast-enhanced mammography (CEM), focusing on their diagnostic, predictive, and prognostic capabilities for breast cancer detection 

and characterization. The review synthesized evidence from studies published within the 2025 timeframe, selected from Scopus and Pub-

Med databases using strict inclusion criteria that prioritized peer-reviewed, English-language, and final-stage journal articles. This review 

is subject to several limitations that should be acknowledged. First, the literature search was restricted to the Scopus and PubMed databases, 

which, while comprehensive and widely recognized, may not capture all relevant engineering- and computer science–focused studies in 

artificial intelligence. Although Scopus provides partial coverage of technical and AI-related journals, some specialized contributions in-

dexed in databases such as IEEE Xplore may have been missed. This database selection may therefore have led to the exclusion of certain 

methodological innovations originating from the engineering and informatics communities. Future systematic reviews are encouraged to 

incorporate additional databases, including IEEE Xplore and similar technical repositories, to ensure broader coverage and a more exhaus-

tive synthesis of AI-driven breast imaging research. 

The analysis was structured according to the PRISMA approach and guided by research questions framed under the PICo model, which 

explored how advanced AI architectures, multi-modality radiomics, and microcalcification detection frameworks enhance diagnostic pre-

cision and clinical interpretability in CEM. The overarching purpose was to consolidate fragmented findings across domains of AI-driven 

imaging, identify methodological strengths and weaknesses, and highlight the potential for integrated computational models to improve 

breast cancer management. 

The review identified three dominant research themes: AI architectures and classification models, radiomics-based multi-modality predic-

tive frameworks, and segmentation or data-tooling for microcalcification detection. Across these domains, consistent evidence demon-

strated that ensemble and hybrid deep learning models combining convolutional neural networks (CNNs), transformers, and attention 

mechanisms achieved superior performance in differentiating benign and malignant lesions, as well as predicting molecular subtypes. 

Radiomics analyses showed strong potential in prognostic modeling, risk prediction, and feature-based survival estimation, especially when 

combined with clinical and imaging data from modalities such as MRI and ultrasound. Additionally, studies integrating synthetic data 

generation, attention-guided augmentation, and automated segmentation techniques improved model robustness and lesion localization 

accuracy. The findings collectively reveal that the fusion of AI and radiomics with CEM enhances both diagnostic accuracy and interpret-

ability, bridging the gap between imaging data and personalized decision-making. Despite methodological variations, most included studies 

achieved high-quality assessment scores, indicating methodological maturity and increasing readiness for clinical translation. 

The synthesis contributes to the field by offering a comprehensive framework that integrates AI architectures, radiomics modeling, and 

segmentation strategies into a unified perspective on intelligent breast imaging. This review highlights how the convergence of these 

approaches can reduce diagnostic variability, optimize detection workflows, and support precision medicine initiatives. In practical terms, 

the results underscore the potential of AI-enhanced CEM to assist radiologists in early cancer detection, improve risk stratification, and 

reduce unnecessary biopsies through more accurate lesion characterization. However, several limitations were noted, including a narrow 

publication timeframe, the use of only two databases, and language restrictions, which may have excluded relevant research. Furthermore, 

most included studies relied on retrospective datasets with limited population diversity, suggesting the need for large-scale, multicenter 

validation to ensure generalizability. Future investigations should focus on standardizing image acquisition protocols, developing explain-

able AI frameworks, and assessing real-world clinical integration to ensure safe and effective deployment. Overall, this review reinforces 

the importance of evidence-based synthesis for advancing the field of AI-driven radiology. Systematic reviews such as this not only clarify 

the evolving research landscape but also provide critical direction for future innovation, ensuring that emerging technologies in CEM 

continue to align with clinical accuracy, ethical transparency, and patient-centered care. 
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