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Abstract 
 

This study investigates the combined effects of cognitive, psychosocial, and cross-subject academic indicators on students’ mathematics 

achievement across 38 countries that participated in the PISA 2022 creative thinking assessment. Drawing on data from 144,446 students, 

we employed hierarchical linear modeling to examine how reading and science proficiency, engagement in creative activities (in and out 

of school), perseverance, curiosity, and socioeconomic status (ESCS) predict mathematical performance. The results show that reading and 

science are robust predictors of mathematics scores. ESCS and perseverance also demonstrated consistent positive effects, while creativity 

showed context-specific associations, positive in some clusters and negative in others. To identify latent cross-national typologies, we ap-

plied both K-means clustering and Gaussian Mixture Modeling (GMM) to country-level aggregates. Model comparison using the Bayesian 

Information Criterion (BIC) favored the GMM solution, which was subsequently used to group countries for multigroup structural equation 

modeling (MG-SEM). Results revealed significant variations in predictor effects across clusters, highlighting heterogeneity in pathways to 

mathematics success. This study contributes to comparative education research by integrating hierarchical regression and latent classifica-

tion techniques, offering implications for instructional design and international education policy aimed at promoting mathematical literacy 

across diverse systems. 

 
Keywords: Mathematics Achievement; Hierarchical Linear Modeling; Gaussian Mixture Model; Clustering and Classification; Bayesian Information 
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1. Introduction 

Understanding the predictors of student achievement in mathematics has long been a central problem in educational measurement and 

learning analytics (Namoun & Alshanqiti, 2021; Rajak et al., 2020). Formally, this can be posed as a prediction and classification problem 

in discrete mathematical sciences, where the task is to model the mapping 𝑋↦𝑌 with nested dependence across countries and to partition 

systems into latent classes based on observed covariates. With the growing availability of international large-scale assessment datasets such 

as Programme for International Student Assessment (PISA), mathematical modeling techniques can be used not only to identify perfor-

mance factors (Korres & Tsami, 2010; Wu et al., 2020), but also to characterize structural variation across national education systems 

(Bayirli et al., 2023). The 2022 cycle of PISA provides a rich opportunity to analyze the relationships between mathematics proficiency 

and a range of cognitive and psychosocial indicators, including cross-subject achievement (reading, science), perseverance, and creativity-

related behavior and traits (OECD, 2024). From a modeling standpoint, this setting invites the application of hierarchical and mixture-

based approaches to address nested and heterogeneous data structures. 

This study applies a multi-method quantitative framework to predict mathematics achievement among 144,446 students from 38 countries 

who participated in the PISA 2022 creative thinking module (OECD, 2024). We modeled the relationship between mathematics perfor-

mance and its predictors using Hierarchical Linear Modeling (HLM) to account for the nested structure of students within countries.  

 

Yi = αg(i) + Xi
⊤β + ϵi, αg ∼ Ν(α0, τ2), ϵi ∼ N(0, σ2) 

 

This mixed-effects formulation provides both fixed estimates of predictors and random intercepts capturing country-level variation. 

To explore latent typologies of education systems, we compared K-means and Gaussian Mixture Modeling (GMM) using country-level 

means of cognitive and psychosocial indicators. Based on model fit criteria, particularly the Bayesian Information Criterion (BIC), GMM 

was selected and used to generate clusters of educational systems. 

 

f(z) =  ∑ πkϕ (z|μk, ∑ )k
K
k=1   
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∑ πk = 1K

k=1   

 

where 𝑍𝑔 are country-level aggregates and BIC is used to select 𝐾. This yields a discrete partition of systems into clusters with probabilistic 

membership. These clusters then served as grouping variables in Multigroup Structural Equation Modeling (MG-SEM) to examine whether 

the strength and direction of predictor effects varied across educational profiles. 

 

Yi
(k)

= γ0k + Xi
(k)⊺

γk + ξi
(k)

, i ∈ Gk, k = 1, … , K  

 

where Yi
(k)

is math achievement for student 𝑖 in cluster 𝑘, Xi
(k)

are predictors, γk are group-specific path coefficients, ξi
(k)

 are residuals. We 

therefore compared an unconstrained model H1: γ1, … , γK free against a constrained model H0: γ1 = ⋯ = γK, with fit evaluated through 

Δx2, CFI, and RMSEA. This framework is well-suited in detecting both fixed and random effects, as well as latent heterogeneity in global 

learning environments (Khine et al., 2020; Lee & Stankov, 2023).  

Grounded in an integrative modeling framework that combines statistical inference and unsupervised machine learning (Lezhnina & 

Kismihók, 2022), the study draws on a multilevel regression foundation (Sun et al., 2012; You et al., 2021) and applies clustering methods 

to derive typologies based on country-level aggregates (Belciu et al., 2024). The GMM derived clusters were then analyzed using MG-

SEM to assess structural invariance (Singh & Kathuria, 2023). While the conceptual foundation draws on psychological and educational 

theories: such as Cross-Domain Transfer (Doumas et al., 2022) and Metacognitive Engagement (Li & Lajoie, 2022), the novelty lies in its 

methodological synthesis. This includes linear mixed-effects modeling, model evaluation using information criteria, and the application of 

finite mixture modeling to uncover latent structural variation. Such techniques are especially pertinent to mathematical modeling in the 

social sciences, where precision and generalizability are both essential (Toker & Green, 2021). The contribution of this study lies in treating 

the educational prediction task as a discrete classification-and-regression framework, integrating (i) multilevel modeling, (ii) mixture-based 

clustering with explicit likelihood and information criteria, and (iii) group-specific structural modeling. The framework demonstrates how 

discrete structures such as partitions, overlap matrices, and invariance constraints can be combined to yield policy-relevant insights. 

Overall, the study advances the use of integrated regression and classification techniques in international education research. By combining 

HLM, GMM, and MG-SEM, it demonstrates how nested dependence structures, latent heterogeneity, and contextualized predictor effects 

can be addressed within a unified framework. The findings offer empirical insight into mathematics learning across global contexts and 

establish a transferable modeling paradigm for interdisciplinary educational data science. From a discrete mathematical perspective, the 

research objectives (ROs) can be formalized as follows: 

• RO1: To model the relationship between reading performance and mathematics achievement using a two-level hierarchical linear 

model. 

• RO2: To extend the model by incorporating science achievement and evaluating its incremental predictive power. 

• RO3: To construct a full model including creativity-related activity engagement, perseverance, curiosity, and ESCS, and estimate their 

combined effects on mathematics achievement. 

• RO4: To identify and compare latent clusters of countries based on cognitive and psychosocial indicators using K-means and GMM, 

and to adopt the optimal solution for further analysis. 

• RO5: To test the invariance of predictor effects across the derived clusters using MG-SEM. 

2. Theoretical Background 

2.1. Cross-subject predictors of mathematics achievement 

Previous studies have established the predictive relationship between proficiency in reading and science and students’ performance in 

mathematics (Korpershoek et al., 2015; Zhu, 2022). In fact mathematics and science achievement are quite correlated (Hansen & Gonzalez, 

2014). While reading comprehension have also shown to have significant relationship with both mathematics and sciences performance 

(Akbasli et al., 2016; Caponera et al., 2016; Peng et al., 2020). Some other studies have even noted the impact of technology resources or 

competencies with mathematics achievement within the PISA 2022 data (Chao & Ching, 2025). Besides the studies using data from PISA, 

other international assessments such as Trends in International Mathematics and Science Study (TIMSS) and Progress in International 

Reading Literacy Study (PIRLS), have consistently shown that reading skills contribute to mathematical problem comprehension, espe-

cially for word problems and multi-step reasoning tasks (Gomez et al., 2020; Vilenius‐Tuohimaa et al., 2008). Likewise, science proficiency 

correlates with math achievement due to overlapping demands in logical reasoning, data interpretation, and conceptual abstraction (Jonsson 

et al., 2020; Pasigon, 2024). The notion of cross-domain transfer underpins these relationships, suggesting that foundational skills in one 

subject can enhance learning in others through shared cognitive structures. In this study, reading and science scores are modeled hierarchi-

cally as predictors of mathematics achievement across countries, forming the cognitive backbone of the predictive framework (RO1–RO2). 

From a modeling perspective, these cross-domain effects are treated as covariates in a hierarchical regression framework, where their 

coefficients can be estimated while accounting for the nested dependence of students within countries. 

2.2. Psychosocial predictors: perseverance, curiosity, and socioeconomic status 

Beyond cognitive skills, affective and dispositional traits play a significant role in shaping mathematics outcomes (Awofala et al., 2022; 

Kamid et al., 2021). In addition, perseverance; often operationalized as grit or task persistence, has been positively associated with sustained 

engagement in mathematics tasks and improved outcomes in challenging settings (DiNapoli, 2023; Yu et al., 2021). While, curiosity; a 

motivational trait reflecting interest in exploring novel problems (Spielberger & Starr, 1994), has mixed effects, such as supporting explor-

atory learning (Tang et al., 2025), but potentially unclear distinction with curiosity from interest and for supporting motivation in learning 

mathematics (Peterson & Cohen, 2019). Meanwhile, socioeconomic status (SES) remains one of the most consistent predictors of academic 

success with multiple pathways including access to resources, parental involvement, and school quality (Galindo & Sonnenschein, 2015; 

Muñez et al., 2021). For the current study, these psychosocial traits are incorporated into the full model (RO3), offering a broader view of 

student-level variation in mathematics performance within and across countries. Formally, these psychosocial variables extend the predictor 

vector 𝑋𝑖 in the regression model, allowing tests of whether dispositional factors contribute additively or interactively with cognitive pre-

dictors in shaping outcomes. 
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2.3. Creativity and problem-solving in mathematics 

The role of creativity in mathematics has gained increasing attention, particularly with the inclusion of creative thinking module in PISA 

2022 (OECD, 2023b). Creative problem-solving in mathematics involves flexible reasoning, divergent thinking, and the ability to construct 

multiple solution paths (de Vink et al., 2022; Hadar & Tirosh, 2019; Suherman & Vidákovich, 2022). However, the operationalization of 

creativity in standardized testing contexts is complex (Kaufman et al., 2023), and its direct predictive power on mathematics performance 

remains uncertain (Gajda et al., 2017). Some studies suggest creativity enhances mathematical reasoning (Lithner, 2017), while others 

caution against overgeneralizing its effects across cultural contexts (Jonsson et al., 2020). In the current study, creativity is operationalized 

through students’ frequency of engagement in creative activities, both within and outside of school, as measured by the PISA student 

questionnaire. While this construct captures behavioral aspects of creativity exposure rather than cognitive problem-solving itself, it none-

theless provides insight into the extent to which creative environments may support mathematical learning (Davies et al., 2013; Niu et al., 

2022). Creativity-related dispositions are tested as part of the extended model (RO3), enabling evaluation of their added value to predictive 

accuracy and their contextual variability in the succeeding multigroup modeling (RO5). In the mathematical framework, creativity indices 

are included as elements of 𝑋𝑖. Their coefficients are estimated in both pooled and group-specific models, and variation in their signs across 

clusters signals structural non-invariance. 

2.4. Modeling educational heterogeneity: hierarchical and latent approaches 

Mathematics achievement varies not only due to individual-level factors, but also due to systemic and cultural differences across countries 

(He et al., 2017; OECD, 2023b). HLM is suited for nested data structures, enabling partitioning of variance across levels (Raudenbush & 

Bryk, 2002). Additionally, latent class and mixture modeling techniques such as K-means and GMM allow for unsupervised grouping of 

systems based on multivariate patterns, revealing hidden structures in educational data (Alshabandar et al., 2018; Liu et al., 2022; Sideridis 

et al., 2021). Importantly, recent studies have used MG-SEM to explore whether the strength of predictors differs across clusters or regions 

(André et al., 2020; Byrne, 2012). This study combines these techniques (RO4–RO5) to model both fixed predictor effects and structural 

heterogeneity, contributing to methodological advances in comparative education analytics. Technically, K-means yields partitions by 

minimizing within-cluster variance in Euclidean space, whereas GMM yields partitions by maximizing the likelihood of a finite mixture 

density with BIC selecting the optimal 𝐾. These methods define a discrete structure over the set of countries, which then serves as the 

grouping basis in MG-SEM. 

2.5. Synthesis and research gap 

Prior studies have rarely integrated cognitive, psychosocial, and creativity-related factors into a unified predictive framework of mathe-

matics achievement, particularly using large-scale international datasets like PISA. While many investigations focus on within-country 

predictors or rely on aggregated cross-national comparisons, few examine latent educational typologies or account for contextual variability 

in predictor effects across countries. Additionally, creativity is often conceptualized narrowly as problem-solving ability, with less attention 

paid to behavioral engagement in creative activities; a construct increasingly relevant in contemporary curricula. The current study ad-

dresses these gaps by: (1) constructing hierarchical models that incorporate cross-subject academic performance, psychosocial traits, cre-

ative activity engagement, and socioeconomic status; and (2) applying unsupervised clustering and MG-SEM to uncover and test cross-

national variation in predictive relationships. In doing so, the study advances the use of scalable, statistically rigorous methods that support 

both theoretical insight and policy relevance in globally diverse educational systems. In discrete mathematical terms, the novelty of this 

study lies in formalizing the prediction task as a classification-and-regression pipeline: hierarchical modeling captures nested variance, 

mixture-based clustering generates partitions, and MG-SEM tests invariance across these partitions. 

3. Methodology 

3.1. Study design and data source 

This study employed a cross-sectional, secondary data analysis design using publicly available data from the 2022 PISA (OECD, 2023a). 

The dataset comprises student-level responses from 38 countries that participated in the Creative Thinking assessment module. A total of 

144,446 students were included after list wise deletion of cases with missing data on key predictors. The data structure is inherently hier-

archical, with students (Level 1) nested within countries (Level 2), thus justifying the use of multilevel modeling techniques (Raudenbush 

& Bryk, 2002). 

Table 1 presents the descriptive statistics of the 144,446 students from 38 countries included in the analytic sample. In addition, table 1 

descriptive patterns provide the empirical basis for the subsequent clustering analysis by illustrating cross-national variation in both cog-

nitive and psychosocial indicators. Country-level means and standard deviations (SD) are reported for the primary outcome variable, math-

ematics achievement, as well as for all cognitive, psychosocial, and contextual predictors. As shown, mean mathematics scores ranged 

from 400.3 (Brazil) to 562.6 (Hong Kong), with a grand mean of 481.7 (SD = 91.46). Corresponding average scores in reading and science 

were 487.3 and 494.8, respectively. With respect to psychosocial variables, country means for creativity engagement ranged from -0.300 

(Belgium) to 0.567 (Peru), while perseverance and curiosity showed moderate variation, with grand means of 0.024 and 0.052, respectively. 

Notably, ESCS (Economic, Social, and Cultural Status) varied widely, ranging from -1.149 (Turkey) to 0.471 (Australia and Iceland), 

reflecting substantial socioeconomic diversity across educational systems. The inclusion of these standardized predictors, scaled with ap-

proximately zero mean and unit variance, supports robust multilevel and multigroup estimation. These descriptive patterns also foreshadow 

the clustering results and cross-country modeling strategies adopted in later sections. 

 
Table 1: Descriptive Statistics 

Country n Math (SD) Reading (SD) Science (SD) Creative (SD) Perseverance (SD) Curiosity (SD) ESCS (SD) 

Argentina 3716 419.98 (69.18) 453.45 (82.11) 454.27 (76.82) 0.245 (0.93) -0.039 (0.93) 0.062 (1.00) -0.367 (1.09) 
Australia 9368 502.49 (91.60) 516.94 (97.38) 524.28 (97.79) -0.145 (0.74) -0.097 (0.90) 0.002 (0.93) 0.471 (0.81) 

Belgium 3485 510.68 (84.65) 499.06 (86.73) 510.01 (86.18) -0.300 (0.74) -0.069 (0.88) -0.187 (0.86) 0.202 (0.87) 

Brazil 4081 400.35 (73.40) 437.74 (89.85) 431.94 (85.78) 0.508 (1.05) 0.027 (0.96) 0.150 (0.98) -0.769 (1.09) 
Bulgaria 2535 446.41 (90.53) 437.62 (99.13) 449.28 (87.64) 0.406 (1.06) -0.024 (1.06) -0.002 (0.99) -0.120 (0.98) 
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Canada 12503 504.11 (85.75) 518.56 (93.46) 523.98 (87.52) -0.047 (0.87) 0.009 (1.02) 0.050 (1.01) 0.407 (0.75) 

Chile 2482 447.15 (75.58) 482.82 (87.02) 482.80 (85.33) 0.113 (0.94) 0.228 (1.12) 0.256 (1.06) -0.092 (0.98) 

Colombia 3451 411.00 (68.21) 442.34 (83.54) 442.70 (79.72) 0.537 (1.15) 0.305 (0.98) 0.315 (1.06) -0.768 (1.20) 

Croatia 3120 476.80 (81.19) 491.37 (77.46) 497.17 (84.51) -0.172 (1.04) -0.024 (0.99) -0.045 (0.95) -0.091 (0.82) 

Finland 4942 496.85 (82.36) 507.23 (90.18) 524.95 (96.26) -0.115 (0.86) 0.035 (1.00) -0.151 (0.88) 0.292 (0.80) 
France 2615 496.28 (80.92) 501.20 (89.65) 512.35 (89.49) -0.305 (0.78) 0.027 (1.03) 0.137 (1.03) 0.128 (0.90) 

Greece 2730 437.71 (77.47) 445.28 (83.27) 449.15 (81.62) 0.291 (0.98) 0.062 (0.95) 0.209 (0.93) -0.078 (0.91) 

Hong Kong 3305 562.65 (96.53) 520.96 (85.24) 539.38 (82.35) -0.030 (0.81) -0.214 (0.79) -0.072 (0.91) -0.367 (0.99) 
Hungary 2931 495.24 (86.75) 496.48 (91.14) 508.73 (87.81) -0.129 (0.87) 0.026 (1.00) 0.025 (0.98) 0.185 (0.91) 

Iceland 1290 474.68 (77.71) 456.46 (91.26) 458.51 (83.19) 0.041 (0.91) 0.227 (1.13) 0.010 (1.00) 0.471 (0.72) 

Ireland 4104 501.59 (73.50) 528.06 (78.46) 515.30 (82.98) -0.038 (0.67) 0.002 (0.92) 0.012 (0.89) 0.381 (0.79) 
Jamaica 1104 406.70 (68.83) 453.15 (93.71) 441.56 (90.42) 0.234 (1.00) 0.121 (1.06) 0.417 (1.14) -0.357 (0.93) 

Korea 3698 538.41 (99.94) 524.26 (90.48) 538.57 (94.10) 0.191 (0.68) -0.033 (1.01) 0.141 (1.10) 0.275 (0.80) 

Lithuania 3715 480.60 (81.19) 478.99 (84.08) 489.51 (84.67) -0.246 (0.91) -0.150 (0.84) -0.235 (0.88) 0.063 (0.86) 
Macao 3115 558.26 (86.29) 517.26 (79.31) 550.47 (79.63) -0.009 (0.69) -0.110 (0.83) -0.076 (0.91) -0.406 (0.92) 

Malta 1675 486.09 (87.46) 470.00 (93.40) 486.70 (89.23) -0.021 (0.87) -0.020 (1.04) 0.116 (0.98) 0.072 (0.94) 

Mexico 2708 408.22 (63.26) 428.81 (75.97) 421.65 (67.50) 0.110 (1.03) 0.258 (1.03) 0.297 (1.10) -0.737 (1.13) 
Moldova 3571 430.97 (72.44) 431.19 (77.02) 434.13 (74.83) 0.247 (0.96) 0.048 (0.91) 0.114 (0.94) -0.422 (0.93) 

Montenegro 2268 429.75 (76.56) 434.74 (80.91) 427.56 (75.82) 0.310 (1.07) 0.076 (1.07) -0.006 (0.95) -0.078 (0.81) 

New Zealand 2831 504.52 (88.57) 531.91 (92.94) 532.76 (93.19) -0.168 (0.70) -0.138 (0.89) 0.014 (0.95) 0.335 (0.87) 

Peru 2154 411.92 (70.16) 432.93 (78.27) 430.65 (76.50) 0.567 (1.05) 0.303 (1.03) 0.328 (1.01) -0.785 (1.18) 

Portugal 3218 491.78 (80.95) 496.18 (79.83) 504.67 (81.22) -0.297 (0.85) 0.285 (0.96) 0.304 (0.96) -0.098 (1.12) 

Romania 3686 459.77 (88.26) 460.97 (85.88) 459.55 (85.46) 0.380 (0.99) 0.171 (1.02) 0.236 (0.97) -0.111 (0.95) 
Serbia 2866 456.20 (80.99) 460.16 (79.57) 465.43 (80.48) 0.064 (1.10) 0.011 (0.97) -0.072 (0.93) -0.150 (0.80) 

Slovak 3028 488.92 (88.94) 472.19 (89.52) 486.67 (89.13) 0.093 (1.05) -0.205 (0.94) -0.126 (0.89) -0.151 (0.88) 

Slovenia 3802 488.39 (81.18) 475.99 (84.58) 505.13 (84.82) -0.025 (0.93) -0.191 (0.98) -0.237 (0.94) 0.232 (0.83) 
Spain 15516 491.90 (77.13) 494.15 (82.02) 501.04 (79.69) -0.070 (0.79) 0.147 (0.98) 0.113 (0.98) 0.069 (0.95) 

Switzerland 2495 527.49 (89.10) 505.34 (96.89) 520.61 (91.90) 0.003 (0.80) 0.087 (1.01) 0.036 (0.99) 0.301 (0.89) 

Taiwan 2178 542.81 (109.06) 511.13 (97.57) 536.77 (98.96) 0.211 (0.82) 0.036 (0.99) -0.007 (0.98) -0.209 (0.91) 
Turkey 4261 463.20 (86.51) 464.97 (80.77) 486.25 (84.04) 0.170 (0.85) 0.133 (1.06) 0.324 (1.10) -1.149 (1.16) 

UK 6438 501.76 (89.05) 514.68 (92.20) 514.07 (93.91) -0.236 (0.71) -0.136 (0.93) -0.076 (0.93) 0.186 (0.87) 

Ukrainian 1731 454.55 (81.75) 443.95 (82.22) 465.01 (80.06) 0.225 (0.98) -0.066 (0.89) -0.191 (0.90) -0.213 (0.81) 
Uruguay 1730 442.20 (72.15) 475.00 (79.81) 473.17 (78.03) 0.261 (1.12) 0.090 (0.97) 0.164 (1.02) -0.541 (1.12) 

TOTAL 144446 481.73 (91.46) 487.33 (92.27) 494.76 (92.35) 0.030 (0.91) 0.024 (0.98) 0.052 (0.98) -0.026 (1.00) 

Notes. SD = standard deviation. Countries are arranged alphabetically.  

3.2. Study variables 

Outcome Variable 

Mathematics Achievement (MATH_MEAN): The primary outcome of interest was students’ mathematical proficiency, operationalized 

using plausible values derived from the PISA 2022 mathematics assessment. Specifically, ten plausible values (PV1MATH–PV10MATH) 

were provided for each student by the OECD to account for measurement error inherent in large-scale testing (OECD, 2024). In this study, 

a simple average of these ten plausible values was computed for each student to form a composite indicator (MATH_MEAN) of overall 

mathematics achievement. This approach is appropriate for multilevel and exploratory modeling contexts where the focus is on prediction 

rather than population-level inference.  

To further clarify, PISA plausible values were handled by computing a simple average across the ten mathematics plausible values for each 

student. Although the OECD recommends the use of multiple plausible values in combination with replicate weights for population-level 

inference, the present study adopts an averaged plausible value approach for three reasons. First, the primary objective of the study is 

comparative modeling and structural pattern identification rather than national point estimation or policy benchmarking. Second, prior 

methodological work suggests that for regression-based and exploratory multilevel modeling, averaging plausible values yields stable 

parameter estimates that closely approximate results obtained using full plausible-value replication, particularly in large samples. Third, 

the integration of hierarchical modeling, mixture-based clustering, and multigroup SEM substantially increases computational complexity 

when full replication weights are applied. Accordingly, the averaged plausible value approach is adopted to facilitate model convergence 

and interpretability, while potential biases are acknowledged and addressed in the limitations section. 

Predictor Variables 

• Cognitive Predictors 

Reading Proficiency (READ_MEAN) and Science Proficiency (SCIE_MEAN): Cross-subject competencies in reading and science were 

included as cognitive predictors of mathematical achievement. These were derived from the respective domains in the PISA 2022 assess-

ment. As with mathematics, each domain provided ten plausible values (PV1READ–PV10READ for reading; PV1SCIE–PV10SCIE for 

science). The average of these plausible values was used to compute composite scores for reading (READ_MEAN) and science 

(SCIE_MEAN). These variables capture foundational academic skills that support mathematical reasoning and problem-solving, reflecting 

the theory of cross-domain transfer. 

• Psychosocial Predictors 

Perseverance (PERSEVAGR): Perseverance was measured through a PISA-derived index assessing students’ grit and persistence in aca-

demic tasks. The index aggregates responses to items that assess students’ tendency to maintain effort and interest over long periods, 

especially when faced with difficulties. The final index score was standardized by OECD procedures and is interpreted such that higher 

values indicate greater perseverance (OECD, 2024). 

Curiosity (CURIOAGR): Curiosity was included as a motivational predictor, reflecting students’ openness to new ideas and willingness to 

explore novel problems. This index aggregates responses to items related to intellectual curiosity and interest-driven exploration. Like 

perseverance, this construct is based on PISA student questionnaire items and standardized across the international sample. 

Creativity Engagement (CREATIVITY_MEAN): Creativity-related engagement was assessed using two weighted likelihood estimates 

(WLEs) from the PISA 2022 student questionnaire. The first variable, Creative Activities at School (CREATAS), captures students’ re-

ported frequency of engaging in idea generation, design tasks, and problem-solving in formal classroom settings. The second variable, 

Creative Activities Outside of School (CREATOOS), reflects participation in similar creative endeavors pursued independently, such as 

artistic hobbies, maker projects, or community-based activities. Both indices were developed and scaled by the OECD, with higher values 
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indicating greater involvement in creativity-supportive experiences. The two indicators were standardized and averaged to compute a 

composite score (CREATIVITY_MEAN). The internal consistency of the scale was high (Cronbach’s α = .825) (Cohen et al., 2007), 

indicating that students’ engagement in creative activities across school and informal settings is coherently aligned. In the present study, 

creativity is not operationalized as cognitive creative thinking ability (e.g., divergent thinking, ideational fluency, or originality), but rather 

as students’ self-reported engagement in creativity-related activities within and outside school contexts, as captured by the PISA 2022 

student questionnaire. 

• Contextual Predictor 

Economic, Social, and Cultural Status (ESCS): ESCS index is a composite measure developed by the OECD to capture students’ socioec-

onomic background, widely used across PISA cycles. It combines information from three key dimensions: (1) highest parental education 

(measured in years of schooling based on International Standard Classification of Education; ISCED classification), (2) highest parental 

occupational status (coded using the International Socio-Economic Index of Occupational Status; ISEI), and (3) home possessions and 

resources, including access to books, educational materials, and household amenities (OECD, 2024). The resulting index is standardized 

across the international sample to have a mean of zero and a SD of one. Higher ESCS values indicate greater economic, social, and cultural 

capital, while lower values reflect structural disadvantage. This index is a robust and well-validated predictor of academic achievement 

and was included in the current study to account for background inequality in opportunity and access to learning resources. 

3.3. Analytical procedures 

Hierarchical Linear Modeling (RO1–RO3) 

We used linear mixed-effects models to estimate the effects of student-level predictors while accounting for country-level random inter-

cepts. Three models were sequentially estimated: 

• Model 1 (RO1): Mathematics achievement predicted by reading proficiency. Model 1: Yi = αg(i) + β1READi + ϵi 

• Model 2 (RO2): Model 1 + science proficiency. Model 2: Yi = αg(i) + β1READi + β2SCIEi + ϵi 

• Model 3 (RO3): Model 2 + creativity engagement, perseverance, curiosity, and ESCS. Model 3: Yi = αg(i) + Xi
⊺β + ϵi 

where αg ∼ N(α0, τ2), ϵi ∼ N(0, σ2). Models were compared using fixed-effect estimates, confidence intervals, and model diagnostics in-

cluding intra-class correlation (ICC) and marginal/conditional R² (Raudenbush & Bryk, 2002). Akaike Information Criterion (AIC) was 

also used during preliminary testing to evaluate model fit across nested structures (Nakagawa et al., 2017). 

Clustering Analysis (RO4) 

To identify latent typologies of countries based on academic and psychosocial characteristics, we applied two unsupervised clustering 

methods: 

• K-means clustering, using standardized country-level means of key predictors (reading, science, perseverance, curiosity, creativity 

engagement, and ESCS) (MacQueen, 1967). 

• GMM using the mclust R package (Scrucca et al., 2016), with the optimal number of clusters selected using the Bayesian Information 

Criterion (BIC) (Schwarz, 1978). 

Although both methods were compared, GMM was retained for subsequent analysis due to superior model fit and flexibility in capturing 

probabilistic group structure. Final cluster membership derived from GMM was used to group countries in the MG-SEM, consistent with 

established practices in integrating unsupervised clustering and group-based modeling frameworks (Lubke & Muthén, 2005; Pastor et al., 

2007). 

Multigroup Structural Equation Modeling (RO5) 

We implemented MG-SEM using the lavaan package in R (Rosseel, 2012) to examine whether the strength and direction of predictors 

varied across GMM derived country clusters. Specifically, we: 

• Estimate the structural path model (cognitive and psychosocial predictors → mathematics achievement) within each cluster. 

• Compare an unconstrained model (all paths freely estimated across groups) to a constrained model (paths set equal across groups). 

• Evaluated model fit using the χ² difference test, Comparative Fit Index (CFI), and Root Mean Square Error of Approximation (RMSEA) 

(Hu & Bentler, 1999). 

Software and Weighting 

All analyses were conducted in R using the following packages (Saqr & López-Pernas, 2024): lme4 (Bates et al., 2015) and performance 

(Lüdecke et al., 2021) for HLM, mclust for GMM (Scrucca et al., 2016), lavaan for SEM (Rosseel, 2012), and tidyverse (Wickham et al., 

2019) and ggplot2 (Wickham, 2016) for data management and visualization. All algorithms (HLM estimation, clustering, SEM) can be 

viewed as optimization procedures: maximum likelihood for mixed models and GMM, least-squares for K-means, and covariance structure 

fitting for SEM. PISA’s replicate weights were not applied in this version of the analysis due to the exploratory focus on model structure, 

but potential biases are addressed in the limitations.  

4. Results 

RO1: Reading Proficiency as a Predictor of Mathematics Achievement 

The first HLM (Model 1) estimated the effect of reading proficiency on mathematics achievement, accounting for country-level variance. 

The model showed a strong, statistically significant fixed effect of reading on mathematics scores (β = 0.799, p < .001), indicating that a 

one-point increase in reading score is associated with a 0.80-point increase in mathematics score. The model explained 67.4% of the 

student-level variance in mathematics scores (marginal R² = 0.674), with an ICC of 0.22, suggesting notable between-country differences 

(Raudenbush & Bryk, 2002). 

 

Model 1 (HLM RO1): MATH_MEAN ~ READ_MEAN + (1 | Country) 

 

Yi = αg(i) + β1READi + ϵi, with αg ∼ N(α0, τ2)  

 

Random intercept variance (τ₀₀) = 576.4; Residual variance (σ²) = 2048.97 

 

RO2: Added Contribution of Science Proficiency 
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Adding science proficiency to the model significantly improved predictive accuracy. In Model 2, both reading (β = 0.241) and science (β 

= 0.665) were statistically significant predictors (p < .001). Model fit improved considerably over Model 1 (ΔAIC = 83,825.5; p < .001), 

and the explained variance increased (marginal R² = 0.821; conditional R² = 0.858). This confirms that science contributes unique explan-

atory power beyond reading. 

 

Model 2 (HLM RO2): MATH_MEAN ~ READ_MEAN + SCIE_MEAN + (1 | Country) 

 

Yi = αg(i) + β1READi + β2SCIEi + ϵi  

 

Random intercept variance = 299.92; Residual variance = 1146.86 

 

RO3: Effects of Creativity Engagement, Perseverance, Curiosity, and ESCS 

Model 3 incorporated psychosocial and socioeconomic predictors. The full model revealed that perseverance (β = 2.27, p < .001) and ESCS 

(β = 4.54, p < .001) were strong positive predictors. Interestingly, curiosity had a negative effect (β = -1.54, p < .001), while creativity 

engagement was non-significant (β = 0.11, p = 0.278). Model fit slightly improved (AIC reduced by 2,534.5 vs. Model 2), and marginal 

R² reached 0.825, confirming additive explanatory value. 

 

Model 3 (HLM RO3): MATH_MEAN ~ READ + SCIE + CREATIVITY ENGAGEMENT + PERSEVERANCE + CURIOSITY + ESCS 

+ (1 | Country) 

 

Yi = αg(i) + Xi
⊺β + ϵi, where Xi = (READ, SCIE, CRE, PER, CUR, ESCS)T 

 

Random intercept variance = 292.62; Residual variance = 1126.89 

 

Table 2 presents the HLM estimates corresponding to RO1 to RO3. It also summarizes the hierarchical linear models corresponding to 

RO1–RO3, demonstrating how successive blocks of predictors incrementally improve the explanation of mathematics achievement. The 

results show that reading and science proficiency significantly predict mathematics achievement, while perseverance and socioeconomic 

status add further explanatory power in the full model (RO3). Creativity engagement was not a significant predictor, and curiosity had a 

negative association. Model fit improved with each step, as indicated by increases in marginal and conditional R². 

 
Table 2: HLM Model Comparison 

Predictors 
RO1: Reading RO2: + Science RO3: + Creativity … ESCS 

Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 92.03 84.29 - 99.78 <.001 35.56 29.96 - 41.17 <.001 44.90 39.34 - 50.47 <.001 

Reading 0.80 0.80 - 0.80 <.001 0.24 0.24 - 0.25 <.001 0.24 0.23 - 0.24 <.001 

Science    0.67 0.66 - 0.67 <.001 0.65 0.65 - 0.66 <.001 

Creativity        0.11 -0.09 - 0.31 0.278 
Perseverance       2.27 2.08 - 2.46 <.001 

Curiosity       -1.54 -1.74 - -1.35 <.001 

ESCS       4.54 4.33 – 4.74 <.001 
Random Effects          

σ2 2048.97   1146.86   1126.89   

τ00 576.42   299.92   292.62   
ICC 0.22   0.21   0.21   

N 38   38   38   

Observations 144,446   144,446   144,446   
Marginal R2 0.674   0.821   0.825   

Conditional R2 0.746   0.858   0.861   

Notes. Unstandardized regression coefficients are reported. CI = 95% confidence interval. σ² = residual variance; τ₀₀ = random intercept variance across 

countries; ICC = intraclass correlation coefficient. Marginal R² indicates variance explained by fixed effects; Conditional R² includes both fixed and random 
effects. N = number of countries. **p < .001. 

 

Together, these results justify extending the analysis beyond pooled regression to examine cross-national heterogeneity through clustering 

and multigroup modeling. 

 

RO4: Clustering Countries by Performance and Psychosocial Profiles 

To begin, it is important to emphasize that the clustering results represent analytical typologies derived from country-level aggregates 

rather than definitive classifications of national education systems. Cluster membership reflects probabilistic similarity in observed indi-

cators and should not be interpreted as implying homogeneity within countries or fixed national characteristics. To identify latent typologies 

of educational systems, both K-means clustering and GMM were applied to country-level means of cognitive and psychosocial predictors. 

K-means yielded a four-cluster solution (cluster sizes: 7, 4, 11, and 16), but it is a non-probabilistic, distance-based method and does not 

generate likelihood-based criteria such as the BIC (Fraley & Raftery, 2002). 

In contrast, GMM uses a probabilistic framework and model-based approach. Using the mclust package in R (Scrucca et al., 2016), the 

optimal GMM solution was determined to be a three-component EVE model (equal volume, variable shape and orientation), which demon-

strated superior model fit based on BIC = −553.45. As a result, GMM was selected for interpretation and served as the basis for multigroup 

analysis in RO5. The three GMM clusters revealed distinct national profiles: 

• Cluster 1: High-performing and balanced systems with strong academic and psychosocial indicators (e.g., Argentina, Slovakia) 

• Cluster 2: High mathematics and science performance, but low perseverance (e.g., Hong Kong, Korea) 

• Cluster 3: Low ESCS and curiosity, but high perseverance (e.g., Colombia, Mexico) 

These groupings were subsequently used as grouping variables for MG-SEM in RO5.  

In addition, to assess the correspondence between K-means and GMM clustering solutions, a cross-classification heatmap was generated 

(see Figure 1) to evaluate the robustness and correspondence of the two clustering approaches, a cross-classification heatmap was con-

structed. The heatmap displays the frequency of countries assigned to each K-means (4 clusters) and GMM (3 clusters) cluster pairing. 
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While some overlap exists, the mapping between the two clustering methods reveals both agreement and divergence. For instance, K-

means Cluster 3 aligns most strongly with GMM Cluster 1, with 10 countries shared between them. Likewise, K-means Cluster 4 is highly 

concentrated in GMM Cluster 3, comprising 13 countries, suggesting stable classification under both methods. In contrast, K-means Cluster 

2 shows no overlap with GMM Clusters 1 or 3, indicating that its groupings diverge from the probabilistic structure identified by GMM. 

Additionally, GMM Cluster 2 receives contributions from three different K-means clusters, highlighting its broader, more diverse latent 

profile. Overall, these patterns support the decision to adopt the three-cluster GMM solution for further modeling. Compared to K-means, 

GMM provides greater flexibility in capturing uncertainty and variation in country profiles, making it more suitable for use in the MG-

SEM (RO5). The cross-classification matrix M ∈ ℕKkm×Kgmm quantifies overlaps between K-means and GMM partitions, with stability 

indicated by concentration along the diagonal. 

Overall, the GMM procedure classified countries into three distinct clusters based on their cognitive and psychosocial profiles. Cluster 1 

included Argentina, Slovakia, Serbia, the Ukrainian regions, Montenegro, Iceland, and Bulgaria. These countries demonstrated relatively 

balanced academic and psychosocial characteristics, with most indicators falling near the global average. Cluster 2 was characterized by 

countries that, on average, exhibited high mathematics and science performance alongside lower reported perseverance; this cluster in-

cluded several East Asian education systems, such as Taiwan, Macao, Korea, and Hong Kong. These countries exhibited exceptionally 

strong mathematics and science scores, but comparatively lower levels of reported perseverance. In contrast, Cluster 3 comprised Mexico, 

Moldova, Peru, Jamaica, Turkey, Uruguay, Romania, Greece, Colombia, Chile, and Brazil. This group was characterized by lower SES 

(ESCS) and curiosity levels, but notably high perseverance. These latent typologies informed the subsequent MG-SEM (RO5), which 

revealed meaningful variation in predictor effects across these contrasting educational profiles. 

 

 
Fig. 1: Heatmap of K-Means VS GMM Cluster Membership Overlap. 

 

Figure Notes: Cross-classification heatmap demonstrating the correspondence between the four-cluster K-means solution and the three-

cluster GMM solution. Values represent the number of countries jointly assigned to each cluster pairing. Strong alignment is observed 

between K-means Cluster 3 and GMM Cluster 1, and between K-means Cluster 4 and GMM Cluster 3. In contrast, the dispersion of K-

means Cluster 2 across GMM clusters suggests weaker structural coherence. These results highlight the superior probabilistic fit and greater 

classification stability of the GMM solution, which was subsequently adopted for multigroup SEM. 

This comparison supports the selection of the GMM solution as the grouping structure for subsequent MG-SEM analyses (RO5). 

 

RO5: Cross-Cluster Variation using MG-SEM 

The following multigroup analyses should be interpreted as comparisons across analytically derived clusters of country-level profiles, 

rather than as direct comparisons between individual countries or national education systems. MG-SEM was conducted to examine whether 

the strength and direction of predictor effects varied across the three GMM derived country clusters. The unconstrained model, in which 

path coefficients were freely estimated across groups, showed perfect fit (CFI = 1.00, RMSEA = 0), while the constrained model, with 

equal paths across clusters, fit significantly worse (Δχ² = 1796.89, p < .001; RMSEA = 0.052). This confirms structural heterogeneity and 

supports the need for cluster-specific interpretation of the predictive pathways. Key cross-cluster differences emerged: 

• Perseverance had the strongest effect in Cluster 2 (β = 3.26), with smaller, but still significant effects in Clusters 1 and Cluster 3. 

• Curiosity was a significant negative predictor in all clusters, although the strength of its effect varied. 

• Creativity engagement showed divergent effects: significantly positive in Cluster 3 (β = 0.79), significantly negative in Cluster 2, and 

non-significant in Cluster 1. 

• ESCS or SES was a stable and significant positive predictor across all clusters. 

These findings underscore that the predictive value of cognitive and psychosocial traits is not uniform across contexts. While reading and 

science proficiency consistently predicted mathematics achievement across all groups, the influence of non-cognitive traits, particularly 

perseverance, curiosity, and creativity engagement, was contextually dependent. Such variation highlights the importance of tailoring ed-

ucational strategies and interventions to the distinct psychological and socioeconomic profiles of student populations. Table 3 presents the 

multigroup SEM results, enabling direct comparison of predictor effects across the three GMM-derived country clusters. 

 
Table 3: Cluster (GMM) Comparison Using MG-SEM 

Predictor 
Cluster 1 Cluster 2 Cluster 3 
Estimates β Estimates β Estimates β 

Reading 0.229*** 0.237 0.212*** 0.226 0.237*** 0.254 

Science 0.670*** 0.666 0.650*** 0.685 0.631*** 0.669 

Creativity -0.524 -0.006 -1.243*** -0.012 0.785*** 0.010 
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Perseverance 2.367*** 0.028 3.256*** 0.037 0.637** 0.008 

Curiosity -3.219*** -0.037 -1.403*** -0.016 -1.792*** -0.023 

ESCS 6.282*** 0.069 5.149*** 0.054 3.791*** 0.054 

Notes. Values represent unstandardized regression coefficients with standardized beta coefficients (Std. β) in adjacent columns. Significance levels are 

denoted as follows: ** p < .01 and *** p < .001. Non-significant estimates are unmarked. 

5. Discussions and Conclusions 

This study examined the predictive relationships among cognitive, psychosocial, and contextual variables and students’ mathematics 

achievement using a robust, multi-method analytic framework. Drawing from a large-scale international dataset, we modeled student and 

country-level variation using HLM, identified latent typologies through clustering, and tested structural heterogeneity using MG-SEM. 

The findings offer insights using HLM, clustering, and MG-SEM. Formally, the study framed mathematics achievement as a mapping 

𝑋↦𝑌 with nested dependence and discrete partitions of countries, enabling both regression-based inference and classification of systemic 

typologies. 

5.1. Cognitive predictors: consistent cross-domain effects 

Findings from RO1 and RO2 reaffirmed the importance of cross-subject academic indicators in predicting mathematics achievement. 

Reading and science proficiencies were both strong and significant predictors, supporting prior work on cross-domain transfer 

(Korpershoek et al., 2015; Zhu, 2022). These results align with cognitive theories suggesting that shared skills such as comprehension, 

abstraction, and reasoning underpin performance across science, technology, engineering, and mathematics (STEM) domains (Hayes & 

Kraemer, 2017; Lamb et al., 2015). Notably, science exerted a larger effect than reading in the full models, suggesting it may serve as a 

more proximal domain for predicting mathematical problem-solving, likely due to its conceptual and methodological overlap with mathe-

matics (Jonsson et al., 2020). In the hierarchical formulation, the coefficient of science (𝛽𝑠𝑐𝑖𝑒) exceeded that of reading (𝛽𝑟𝑒𝑎𝑑), indicating 

stronger transferability from scientific reasoning to mathematic. 

5.2. Psychosocial predictors: uneven but informative patterns 

RO3 extended the model by incorporating psychosocial predictors; perseverance, curiosity, and creativity engagement, along with SES 

status (ESCS). As expected, perseverance demonstrated a robust positive association with mathematics achievement, supporting studies 

that link grit and sustained effort to academic outcomes (DiNapoli, 2023; Yu et al., 2021). ESCS also remained a significant predictor 

across all models, reaffirming its role as a structural factor influencing educational opportunity (Galindo & Sonnenschein, 2015). However, 

curiosity displayed a counterintuitive negative association with mathematics achievement. This aligns with recent critiques that curiosity, 

while motivational, may not always translate into academic performance, particularly in rigidly structured test environments (Peterson & 

Cohen, 2019). Creativity, operationalized through frequency of engagement in creative activities, was not a significant predictor in the 

pooled model, highlighting the challenge of capturing the influence of creativity in standardized assessments (Kaufman et al., 2023). 

Formally, the coefficient of creativity (𝛽𝑐𝑟𝑒) was statistically indistinguishable from zero in pooled models, but its variability across groups 

confirmed non-invariance. Its context-dependent effects were further unpacked through the multigroup analysis. 

5.3. Cross-national variation: latent typologies and structural differences 

RO4 identified three latent country clusters through K-means and GMM clustering, each reflecting different combinations of cognitive and 

psychosocial traits. These included: (a) a high-performing cluster with strong academic scores, but low perseverance (e.g., Hong Kong, 

Korea); (b) a resilience-oriented cluster with high perseverance despite low ESCS and curiosity (e.g., Colombia, Mexico); and (c) a bal-

anced cluster with mid-to-high outcomes across all traits (e.g., Canada, Switzerland). These typologies echo the ecological systems per-

spective (He et al., 2017), suggesting that educational outcomes are shaped by individual, institutional, and cultural interactions. Note that 

these latent typologies are not intended to essentialize countries or imply uniform educational practices within national borders; rather, 

they serve as heuristic groupings that summarize broad patterns in the data. From a classification perspective, the Gaussian Mixture Model 

produced a partition, where each cluster reflected a distinct joint distribution of cognitive and psychosocial covariates. Put simply, students 

across the world achieve mathematics success through diverse pathways. In high-performing systems like Hong Kong and Korea, academic 

achievement coexists with low perseverance. Notably important is with Cluster 2 (high-achieving East Asian systems), which exhibited 

lower self-reported perseverance despite top academic performance. This may reflect cultural differences in questionnaire response styles 

(e.g., modesty bias) rather than actual behavioral persistence, a common observation in cross-cultural PISA analyses of dispositional indices. 

In contrast, countries like Colombia and Mexico demonstrate that strong perseverance can mitigate the effects of lower ESCS and curiosity. 

Meanwhile, balanced systems like Canada and Switzerland benefit from consistently high academic and psychosocial indicators. These 

distinctions suggest that policy efforts should go beyond raising test scores and instead consider the psychological and structural profiles 

of students. One-size-fits-all interventions may overlook the diverse ways motivation, resilience, or systemic inequality shape achievement. 

5.4. Structural heterogeneity in predictive pathways 

Multigroup SEM in RO5 confirmed significant structural heterogeneity across clusters. For instance, perseverance had the largest effect in 

Cluster 2 (the high-achieving group), while creativity showed a significant positive association with mathematics achievement only in 

Cluster 3 (lower-SES, high-perseverance systems). Curiosity remained a negative predictor across all groups, though effect sizes varied. 

These results suggest that the same trait can operate differently depending on national context, emphasizing that pooled models may obscure 

important structural differences. This was formally confirmed by rejecting 𝐻0: 𝛾1 = 𝛾2 = 𝛾3 through Δ𝜒2, establishing that regression 

pathways differ significantly across clusters. In summary, MG-SEM revealed that predictors such as perseverance, ESCS, curiosity, and 

creativity engagement did not exert uniform effects across student populations. For example, in high-performing East Asian systems, 

perseverance played a stronger role in shaping outcomes, while in lower-resource settings, creativity became a more salient factor. This 

reinforces the idea that effective education strategies must be context-sensitive and responsive to national or local student profiles. 

5.5. Theoretical and methodological contributions 
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This study supports the relevance of cross-domain transfer theory and metacognitive engagement frameworks by showing that competen-

cies developed in one domain can significantly influence another. However, the variability in predictor strength across countries also 

highlights the limitations of assuming universal transferability. Methodologically, the integration of HLM, unsupervised clustering, and 

MG-SEM offers a replicable, rigorous framework for analyzing nested educational data and latent systemic variation. The novelty lies in 

combining regression, clustering, and SEM into a discrete classification–regression pipeline, where nested dependence is captured by HLM, 

latent typologies by mixture models, and invariance by MG-SEM. This contributes to ongoing efforts to advance quantitative modeling in 

comparative education research (Toker & Green, 2021). 

5.6. Limitations and future directions 

Despite its contributions, the study has limitations. First, plausible values were averaged rather than fully integrated using multiple impu-

tation and sampling weights, which may slightly reduce the precision of estimates. Second, while clustering revealed meaningful typologies, 

results are sensitive to input scaling and cluster number selection. Importantly, because clustering was conducted using country-level means, 

the resulting typologies may obscure substantial within-country variation and should be interpreted as descriptive patterns rather than 

definitive national classifications. Third, creativity was measured behaviorally (via activity frequency), not cognitively (e.g., ideation or 

divergent thinking), possibly limiting its explanatory power. Fourth, the analytic sample was restricted to 38 countries due to listwise 

deletion of cases with missing data on key variables, reducing the scope from the full 64 countries/economies that participated in the PISA 

2022 Creative Thinking assessment. This may limit the generalizability of the findings, particularly regarding the identified country clusters 

and cross-national variations, as certain education systems or regional profiles are underrepresented. Future studies could incorporate mul-

tiple imputation techniques or focus on the complete dataset to capture broader global heterogeneity. Finally, the absence of school or 

classroom-level variables means that meso-level factors remain unmodeled. Future research should explore longitudinal or multilevel time-

series models, incorporate instructional and curricular variables, and refine creativity measures to better capture its role in mathematics 

achievement. Moreover, clustering solutions are sensitive to initialization, and future work could explore stability via resampling or con-

sensus clustering. 

5.7. Implications for policy and practice 

The findings suggest that improving mathematics achievement requires multi-layered strategies: reinforcing cross-disciplinary learning, 

supporting persistence, and mitigating systemic inequality. Crucially, education policy must consider the distinct profiles of student popu-

lations, not just their average scores, when designing interventions. Cluster-based and multigroup approaches offer a promising route to 

crafting evidence-based, contextually responsive solutions rather than generic reforms. Beyond education, the framework demonstrates 

how discrete mathematical models: hierarchical regression, finite mixture clustering, and multigroup invariance testing, which can be 

synthesized to analyze nested, heterogeneous systems. 
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