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Abstract 
 

Grape leaf diseases cause serious problems for viticulture around the world by having a substantial impact on the output and quality of 

grapevine cultivation. Conventional manual diagnosis techniques are laborious, subjective, and frequently ineffectual in extensive field 

set-tings. In this study, we present the Inceptive Synergic Network Model (ISNM), a revolutionary deep learning framework for the precise, 

effective, and scalable categorization of grape leaf diseases. With a Scale-Invariant Feature Learning (SIFL) module to improve spatial in-

variance and reduce superfluous background noise, ISNM combines the advantages of Mobile-Net and ResNet-50 as dual backbones for 

reliable multi-scale feature extraction. We also investigate how wavelet-based sub-band decomposition can enhance feature localization in 

a variety of illumination and disease-spread scenarios. Lightweight convolutional layers optimize the fused deep features, allowing for de-

ployment on edge devices for real-time monitoring. The suggested ISNM outperforms baseline CNNs and other conventional designs in 

terms of precision, recall, and computational efficiency, achieving a state-of-the-art accuracy of 98.75% when tested on the Plant Village 

grape leaf dataset. With potential uses in precision farming, self-sufficient vineyard monitoring, and sustainable crop management, this 

work provides a scalable, interpretable, and useful approach to early grapevine disease diagnosis. 
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1. Introduction 

Plant diseases account for an estimated 20–40 % loss in global crop yields each year, with fungal infections such as downy mildew (DM), 

powdery mildew (PM), and leaf spot among the most damaging to viticulture. These pathogens not only reduce fruit quantity but also 

compromise grape quality, leading to substantial economic impacts across both large‐scale vineyards and smallholder farms [1]. The 

magnitude of these losses underscores the urgent need for scalable, reliable disease‐diagnosis tools that can keep pace with pathogen spread 

and environmental variability. India alone contributes roughly 6% of the world’s grape production and achieves the highest productivity 

per unit area, yet DM and PM remain the primary threats to yield and profitability [2]. Outbreaks of DM and PM can decimate foliage 

within days under conducive conditions, necessitating frequent chemical treatments that raise production costs and environmental concerns. 

Early detection and  

targeted intervention are therefore critical to safeguarding both yield and farm sustainability. Traditional disease diagnosis relies 

predominantly on expert visual inspection, which is time‐consuming, subjective, and infeasible over large acreages. Moreover, variability 

in inspector skill and environmental conditions (e.g., lighting, leaf orientation) can lead to inconsistent assessments [4]. In response, modern 

image‐analysis methods leveraging machine learning have emerged, offering automated, high‐accuracy alternatives. By extracting 

quantitative features from digital images such as texture, color distribution, and lesion morphology these approaches enable non‐expert 

users to detect disease symptoms well before they become visually apparent at the canopy level [5]. 

One promising deployment strategy is on‐device inference using lightweight deep‐learning architectures. For instance, a recent study 

demonstrated that a modified MobileNetV3-Large model, when deployed on edge devices, can perform real‐time grape leaf disease 

monitoring while maintaining low memory footprints and energy consumption. This edge‐based solution achieved satisfactory 
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classification performance across multiple disease classes, illustrating the feasibility of in‐field, always‐on plant health diagnostics without 

reliance on cloud connectivity. Beyond mobile architectures, advancements in transfer learning and hybrid model designs have further 

improved diagnostic accuracy. Fine‐tuning pre‐trained convolutional neural networks (CNNs) and vision transformers on domain‐specific 

grape leaf datasets allows models to leverage general visual features learned from large image corpora while adapting to the unique patterns 

of grapevine pathology [6]. These methods have achieved classification accuracies exceeding 95%, demonstrating that state‐of‐the‐art 

feature extractors can be repurposed effectively for agricultural applications. 

Grapevine leaves are highly susceptible to a complex interplay of biotic and abiotic stresses, including variations in temperature, humidity, 

and pathogen virulence. If diseases are not detected and managed promptly, symptom progression can spread systemically, diminishing 

photosynthetic capacity and ultimately reducing both fruit quality and yield. Moreover, overuse of broad‐spectrum fungicides can lead to 

resistant pathogen strains and environmental harm, further highlighting the need for precise, data‐driven disease management strategies. 

In this paper, we introduce a novel transfer‐learning framework that augments a pre-trained ResNet-50 backbone with Convolutional Block 

Attention Modules (CBAM) to achieve fine‐grained grape leaf disease recognition. We freeze the first 30 convolutional layers to preserve 

generic visual features, fine‐tune the remaining 20 layers on our curated 5,000-image grape leaf dataset, and insert CBAM after each 

residual block to dynamically recalibrate channel and spatial feature responses. Our approach attains a classification accuracy of 96.3 %, 

delivering a 3.2 % improvement over the vanilla ResNet-50 baseline and a 4.5 % gain over standard fine-tuning techniques. These results 

demonstrate the effectiveness of attention‐driven feature refinement for precision viticulture and pave the way for real-time deployment 

on both edge devices and high‐throughput screening systems. 

The Primary Objectives of the paper 

• To design a fine-grained disease detection model by integrating CBAM into a pre-trained ResNet-50, enabling adaptive channel- and 

spatial-level feature recalibration. 

• Establishing an effective transfer-learning workflow by determining which layers to freeze versus fine-tune for optimal generalization 

on grape leaf imagery. 

• To evaluate the proposed framework on a large multi-class grape leaf dataset, reporting accuracy, precision, recall, F1-score, ROC-

AUC, and inference latency. 

• Demonstrating interpretability through Grad-CAM visualizations, showing that attention modules focus on biologically relevant lesion 

regions. 

• To achieving at least, a 3% absolute gain in accuracy over vanilla fine-tuned CNNs, thereby validating the benefits of attention-driven 

feature refinement. 

The paper presents a novel and well-structured deep learning framework, termed the Inceptive Synergic Network Model (ISNM), which 

effectively integrates MobileNet and ResNet-50 to achieve a strong balance between high classification accuracy and computational effi-

ciency. A key strength of the work lies in the introduction of the Scale-Invariant Feature Learning (SIFL) module, which enhances robust-

ness to variations in leaf size, orientation, and lesion patterns commonly encountered in real-world grape leaf images. The model demon-

strates excellent classification performance, achieving approximately 98–99% accuracy while maintaining a low parameter count of about 

5.2 million, making it highly suitable for edge and real-time agricultural applications. The methodology is clearly motivated and thoroughly 

described, with detailed architectural explanations and mathematical formulations that support reproducibility. Furthermore, the extensive 

and up-to-date literature review reflects a strong understanding of recent advances in grape leaf disease detection, while the comprehensive 

experimental evaluation underscores the practical relevance and scientific contribution of the proposed approach to precision agriculture 

and applied artificial intelligence. 

The remainder of this paper is organized as follows. In Section II, we survey the state of the art in grape leaf disease detection, examining 

both traditional and deep-learning approaches, transfer-learning strategies, and recent advances in attention mechanisms within 

convolutional neural networks. Section III describes our proposed methodology, detailing the integration of Convolutional Block Attention 

Modules into a pre-trained ResNet-50 backbone, the transfer-learning protocol (including layer freezing and fine-tuning), data 

augmentation techniques, and overall training configuration. In Section IV, we present our experimental results, which include 

comprehensive ablation studies, as well as Grad-CAM visualizations and inference-time benchmarks to assess both accuracy and 

computational efficiency. Finally, Section V concludes the paper by summarizing our key contributions and outlining future directions, 

such as the incorporation of multispectral imagery and deployment on real-time edge devices. Recent research in grape leaf disease 

detection has increasingly adopted deep learning techniques for improved accuracy and real-time performance.  

2. Related Work 

Xie et al. [20], [28] developed an enhanced CNN model using residual blocks, attention mechanisms, data augmentation, and transfer 

learning, achieving 96.8% accuracy with real-time inference under 30 milliseconds. However, the model's robustness under harsh environ-

mental conditions and its suitability for low-resource devices remain uncertain. Andrushia et al. [3] proposed a hybrid method combining 

image preprocessing and Artificial Bee Colony (ABC) optimization for feature selection, achieving 93.2% accuracy. Their reliance on 

hand-crafted features and limited dataset, however, restricts generalizability and real-time usability.Guo et al. [11] introduced a CNN with 

Channel and Spatial Attention (CA and SA) modules, outperforming VGG16 and ResNet50 with an accuracy of 98.76%, though it was 

only tested on controlled datasets. Ali et al. [2] designed a CNN to detect nutrient deficiencies using vineyard-collected images, achieving 

96.34% accuracy but lacking in comparative studies and real-world deployment validation. Kaur et al. [14] combined K-means clustering, 

Hu Moments, and GLCM with an SVM classifier, obtaining 91.2% accuracy. The approach showed sensitivity to lighting and required 

manual preprocessing. Similarly, Shantkumari et al. [24] applied traditional ML models (SVM, KNN, DT, RF) on preprocessed datasets, 

with Random Forest performing best at 91.37% accuracy, though deep learning was not utilized. 

Liu et al. [16], [19], [28], [30] Zhou et al., [31] and Kunduracioglu et al. [17] worked on deep CNN architectures using real-field datasets. 

Liu et al. improved their network through batch normalization, dropout, and deeper layers, while Zhou et al. applied similar enhancements. 

Kunduracioglu et al. tested transfer learning models and found ResNet50 to be the most accurate (98.78%), although deployment feasibility 

was not addressed. Ashokkumar et al. [4] built a Faster R-CNN model using ResNet-50 for disease localization and classification, achieving 

94.27% accuracy. Yet, the limited dataset and absence of comparative evaluation constrain the model’s broader adoption.Aher et al. [1] 

provided a comprehensive review across multiple datasets (PlantVillage, vineyard images) and models (CNN, AlexNet, VGG16, ResNet, 

Inception), noting accuracies as high as 99% when proper preprocessing and augmentation were applied. Nonetheless, they highlighted the 

lack of standardized, real-world datasets and limited field testing as persistent issues. Talaat et al. [26] presented DeepLeaf, a CNN fine-
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tuned using varied lighting and background conditions, delivering 98.76% accuracy. Canghai et al.7 employed ResNet-50 combined with 

a Convolutional Block Attention Module (CBAM), achieving the highest reported accuracy of 99.24%. 

Billa et al. [5] analyzed multiple DL architectures for grapevine disease detection and found ResNet-50 outperformed VGG-16 and Incep-

tionV3 with 98.76% accuracy. Mamun et al. [21] introduced a YOLOv5-based mobile app for disease detection, emphasizing real-time 

capability with 96.2% accuracy. Sagar et al. [23] utilized an enhanced ResNet-50 with batch normalization on a self-constructed dataset, 

reaching 98.37% accuracy for powdery mildew and downy detection on both leaves and fruits. Malagol et al. [20] proposed a model to 

estimate grape leaf trichome density, important for phenotyping, with strong predictive accuracy (R² = 0.91), though limited by close-up 

image requirements. Rahman et al. [22] demonstrated a CNN-based system for real-time diagnosis using a combined PlantVillage and field 

dataset, achieving 98.7% accuracy. Khan et al. [2], [15], [16] focused on real-time detection under varied conditions using a YOLOv7-

based model, reporting 98.6% accuracy and high precision and mAP scores. Wang et al. [19], [27], [28] designed CSF-YOLO, a lightweight 

model optimized for leafhoppeFr damage detection, with 93.7% accuracy and minimal computational load. Despite these advancements, 

many state-of-the-art models like ResNet50, FRCNN, or hybrid CNN-transformers are computationally intensive and unsuitable for mobile 

or UAV-based monitoring systems. Most lack performance evaluations under low-resource constraints and rarely consider energy effi-

ciency, interpretability (e.g., Grad-CAM), or field scalability. Furthermore, there's a clear gap in integrating lightweight CNNs (like Mo-

bileNet) with deeper networks and attention modules in a unified architecture. Addressing these limitations could lead to more effective, 

robust, and deployable solutions for grapevine disease detection in real-world agricultural settings. 

Scope of this work 

• The study targets early and accurate detection of grape leaf diseases, a critical challenge in viticulture that directly impacts crop yield, 

quality, and sustainable agricultural practices. 

• The manuscript introduces the Inceptive Synergic Network Model (ISNM), a novel deep learning architecture that synergistically 

integrates MobileNet and ResNet-50 with Scale-Invariant Feature Learning (SIFL). 

• The dual-backbone feature extraction strategy combined with scale-invariant processing enhances robustness against variations in leaf 

size, orientation, and illumination conditions. 

• The proposed model achieves high classification accuracy while maintaining a low parameter count, making it suitable for deployment 

on resource-constrained and edge-based devices. 

• ISNM supports real-time disease monitoring and can assist farmers and agricultural experts in early diagnosis and targeted disease 

management. 

• The outcomes of this work promote sustainable farming practices by reducing dependence on manual inspection and excessive chem-

ical usage, supporting environmentally responsible agriculture. 

3. Material and Methods 

The Inceptive Synergic Network Model (ISNM) is composed of several tightly integrated modules, each designed to maximize discrimi-

native power while keeping computational costs low. Below is an in-depth, multi-paragraph description of each stage in Figure 1. 

 

 
Fig. 1: Grape Leaf Disease Classification Hierarchy. 

3.1. Input layer & preprocessing 

ISNM begins by ingesting high-resolution RGB images of grape leaves (commonly resized to 256×256 pixels). Each image undergoes 

pixel-level normalization—subtracting the dataset mean and dividing by the standard deviation—to ensure stable gradient flows during 

training. Optional noise filtering (e.g., a 3×3 median filter) can be applied to suppress salt-and-pepper artifacts from field captures. Finally, 

geometric augmentations (random rotations, flips, and slight zooms) are performed on the fly to improve model generalization to varied 

leaf orientations and scales. 

3.2. Wavelet-based sub-band decomposition 

To further enrich low-level feature representations, ISNM can apply a Morlet wavelet transform to each input, decomposing the image into 

multiple frequency sub-bands (e.g., low-low, low-high, high-low, high-high). Each sub-band emphasizes either coarse structural infor-

mation (low frequencies) or fine textural details (high frequencies). By processing these sub-bands in parallel, the network gains robustness 

against illumination changes and can detect subtle lesion boundaries that may be lost in purely spatial convolutions. Sub-band images are 

concatenated channel-wise with the original RGB input before entering the feature extractor. 
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3.3. Dual-backbone feature extraction 

ISNM employs two parallel CNN streams to capture a broad spectrum of representations: 

a) Mobile Net Stream (Path A): Uses depth wise separable convolutions—first performing a lightweight spatial convolution per channel, 

followed by a 1×1 point wise convolution to mix channels. This reduces FLOPs and parameters by ~8–9× compared to standard 

convolutions, yielding a compact feature map of size 8×8×320 after the final bottleneck block. 

b) ResNet-50 Stream (Path B): Consists of 16 residual blocks with identity skip connections that mitigate vanishing gradients and enable 

end-to-end training of deep networks. The features here are richer hierarchically: early blocks focus on edges and textures, while deeper 

blocks encode complex shapes and lesion patterns, producing a 8×8×2048 feature tensor. Both streams are initialized from Image-Net 

pre-trained weights, with the early layers frozen during initial epochs to preserve general visual features. 

3.4. Feature fusion block 

At the 8×8 spatial resolution stage, feature maps from Mobile Net (8×8×320) and ResNet-50 (8×8×2048) are concatenated along the 

channel dimension, yielding an 8×8×2368 tensor. A subsequent 1×1 convolution reduces this to a more manageable 8×8×512, also serving 

as a channel-wise attention mechanism: the convolution weights learn to emphasize channels carrying disease-relevant information. Batch 

normalization and ReLU activation follow, stabilizing training and injecting nonlinearity. Optionally, a squeeze-and-excitation block can 

be interposed here to further recalibrate channel importance globally. 

3.5. SIFL block (scale-invariant feature learning) 

Instead of traditional 2×2 max pooling, ISNM’s SIFL block applies multi-scale Gaussian filtering followed by Difference of Gaussians 

(DoG) to the fused features. For each spatial scale σ (e.g., σ=1.0, 2.0, 4.0), a Gaussian blur G(x,y;σ) produces a smoothed version; DoG = 

G(x,y;σ₁) – G(x,y;σ₂) highlights edges and patterns invariant to scale. These DoG responses are concatenated and passed through a 3×3 

convolution to merge multi-scale cues, yielding a refined 4×4×512 tensor that retains the most discriminative features across lesion sizes 

and orientations. This enhances robustness against varying leaf distances and camera zoom. To reduce methodological redundancy, generic 

explanations of standard CNN components such as convolution, pooling, activation functions, and backpropagation should be minimized 

or removed, as these concepts are well established in the literature. The methodology section should instead focus on ISNM-specific design 

choices, including the dual-backbone integration of MobileNet and ResNet-50, the feature fusion strategy, and the Scale-Invariant Feature 

Learning (SIFL) module. Mathematical formulations should be limited to novel or modified operations directly related to ISNM, while 

standard CNN operations can be referenced through citations. This streamlining improves clarity, reduces manuscript length, and ensures 

that the methodological contribution is clearly distinguished from conventional deep learning practices. 

3.6. Fully connected layer 

The 4×4×512 output is flattened into a 8192-dimensional vector and fed into a dense layer with 1024 neurons. A 0.5 dropout rate is applied 

during training to prevent co-adaptation. This layer learns high-level combinations of the fused, scale-invariant features, mapping them 

into an embedding space where disease classes become more linearly separable. 

3.7. Output layer 

A final dense layer with C units (where C=4 for Black Rot, Leaf Blight, ESCA Measles, Healthy) applies a softmax activation to produce 

class probabilities. The network is trained end-to-end using a categorical cross-entropy loss, optionally weighted to compensate for class 

imbalances. During inference, the network outputs the most probable disease class, and the SIFL-driven features ensure that tiny lesion 

cues and large discoloration patterns are both reliably detected. By combining compact, efficient feature extractors with wavelet-enhanced 

inputs, attention-driven fusion, and scale-invariant pooling, ISNM delivers state-of-the-art accuracy with a lean 5.2 M parameter foot-

print—ideal for deployment on edge devices in vineyard monitoring systems. 

3.8. Inceptive synergic network (ISN)  

The Inceptive Synergic Network Model (ISNM) is a unified dual-backbone deep learning architecture designed for accurate and computa-

tionally efficient grape leaf disease classification. The final ISNM architecture consists of seven well-defined stages, which are consistently 

followed throughout this paper. First, the input stage accepts RGB grape leaf images resized to 256 × 256, followed by normalization and 

data augmentation. Optionally, a Morlet wavelet-based sub-band decomposition is applied to enhance frequency-domain feature represen-

tation and robustness to illumination variations. 

Second, ISNM employs dual parallel feature extractors. The MobileNet branch captures lightweight, low-level and mid-level features with 

depthwise separable convolutions for computational efficiency, while the ResNet-50 branch extracts deep, high-level semantic features 

using residual learning. Both backbones are initialized with ImageNet pre-trained weights, and early layers are frozen during initial training 

to preserve generic visual features. Third, the extracted feature maps from both branches are concatenated at a common spatial resolution 

(8 × 8) and passed through a feature fusion block consisting of a 1 × 1 convolution, batch normalization, and ReLU activation. This block 

reduces dimensionality and emphasizes disease-relevant channels.Fourth, the fused features are processed by the Scale-Invariant Feature 

Learning (SIFL) module, which replaces conventional pooling. SIFL applies multi-scale Gaussian filtering and Difference-of-Gaussians 

operations to achieve scale and rotation invariance, enabling reliable detection of lesions of varying sizes. Fifth, the refined feature maps 

are flattened and forwarded to a fully connected layer with dropout regularization, which learns discriminative class-level representations 

while preventing overfitting. Finally, a softmax-based output layer performs multi-class classification into four categories: Black Rot, Leaf 

Blight, ESCA (Black Measles), and Healthy leaves. The model is trained end-to-end using categorical cross-entropy loss. 

This standardized ISNM architecture integrates MobileNet, ResNet-50, feature fusion, and SIFL into a single coherent framework, achiev-

ing high classification accuracy with a low parameter count (≈5.2M), making it suitable for real-time and edge-based agricultural applica-

tions.DCNN (Deep Convolution Neural Network) includes convolutional layer, pooling layer, and fully connected layer. The Convolu-

tional layer performs convolution operation where it is shown in Figure 3. Determines the dot-product of corresponding fields and a set of 

learnable filters (or kernels). After completing the convolution process, the nonlinear down-samplings are accomplished in the pooling 
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layers with aiming at decreasing the dimension of information. Max pooling in this concept finds the maximum value from the candidates, 

and average pooling estimates the average value of the candidates Equation (1). Followed by, the discovered feature maps are given to 

activation functions that performs non-linear transformations Equation (2) i. e. Rectified Linear Unit (ReLU). 

 

f(x)  =  max(0, x)                                                                                                                                                                                          (1) 

 

Sigmoid function, 

 

f(x)  =  (1 +  e − x ) − 1                                                                                                                                                                            (2) 

 

Hyperbolic tangent (tanh) function in Equation (3) 

 

f(x)  =  2 1 + e − 2x −  1.                                                                                                                                                                           (3) 

 

Ds=√(q2 − q1) + (r2 − r1)                                                                                                                                                                          (4) 

 

In the above mathematical expression (4), Ds defines the distance, (q1 − r1) describes the coordinates of the center point which assumed 

as (0,0)and coordinates (q2 − r2)demonstrates the edge of the image.The formation of ISNM includes convolution, pooling and fully 

connected layers to enhance the feature extraction accuracy of remote sensing images. On the contrary to state-of-the-art research method-

ologies, ISNM algorithm finds the vital objects features in input remote sensing images without humancontribution and also a lessens 

computational complexity. The process of ISNM is depicted in Figure 2. 

 

 
Fig. 2: Processing Diagram of ISNM. 

 

Figure 2 presents the overall processes of ISNM to reduce complexity of feature extraction during the grape classification. As defined in 

the above diagram, ISNM initially collects number of remote sensing images ‘RSi = RS1, RS2, . . , RSm’ as input to conduct the experimental 

task. After that, ISNM partitioned the input remote sensing images into number of sub-bands using below, 

 

MWTRS(u,v)
=

1

√|u|
∫ RSi(t)

∞

−∞
ψ∗ (

t−v

u
) dt                                                                                                                                                    (5) 

 

In the above mathematical Equation (5), an input test remote sensing images are partitioned into a number of sub-bands with the application 

of Morlet Wavelet Transformation. For each sub-bands of given image, convolution layer in ISNM deeply learns and also finds all features 

of each object with the support of below mathematical expression, 

 

Convolβ(RS, j) = Wβ,l(u, v). inputRS(RS − u, j − v) + bβ,l                                                                                                                        (6) 

 

In the mathematical computation Equation (6), Wβ,ldescribes βthkernel and bβ,lrepresents the bias of βth layer. The above mathematical 

describes the deep feature extraction process of ISNM for identifying the dissimilar kinds of grapes. From that, the convolution layer results 

of ISNM are mathematically defined with the aid of below mathematical formulation, 

 

fi = f1, f2, . . , fn                                                                                                                                                                                               (7) 

 

In the mathematical description Equation (7), fn demonstrates ‘n’ number of features extracted from all the objects in given remote sensing 

images. After carried outing the deep feature learning ask, SIFL concept is utilized in max-pooling layer of ISNM in order to detect the 

most considerable objects features (i.e. shape, color, texture, and size) in input remote sensing image.  

The output of the primary convolution layer in ISNM is coupled with a max-pooling layer in which it minimizes features dimensionality 

with the application of SIFL concept. On the contrary to traditional grape prediction techniques, ISNM accurately extracts only key objects 

features due to its scale and rotation invariant characteristics. As well, max-pooling layer in ISNM also carried outs noise suppressant 

during the significant feature extraction task and also obtains de-noising together with dimensionality reduction for effective grape type 

classification in Figure 3. 
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Fig. 3: Mobile Net Convolution Block. 

 

In max-pooling layer, ISNM defines given remote sensing image in multiple scales with aiming at discovering interesting key objects 

features across dissimilar scales by the application of Gaussian kernel which mathematically depicted as, 

 

G(p, q, x) =
1

2πx2

−(p2+q2)

2x2
                                                                                                                                                                                 (8) 

 

In equation (8), p, q shows the coordinates of each pixel and x describes the parameter interconnected to the scale. With the goal of repre-

senting the remote sensing image ‘RSi’ in multiple scales, the convolution of the image with the kernel at each scale is attained with the 

aid of the below,  

 

L(p, q, x) = G(p, q, x) ∗ I(p, q)                                                                                                                                                                      (9) 

 

In Equation (9), ISNM carried out key-point localization in which interesting key object features are discovered by utilizing difference of 

Gaussians, 

 

DoG(p, q) = µi (
1

2πx2
e−

p2+q2

2x2 −
1

2πK2x2
e−

p2+q2

2K2x2 )                                                                                                                                          (10) 

 

Then Equation(10), ISNM accomplished the orientation assignment via determine the gradient magnitude m(p, q) and orientation O(p, q) 

with the support of following mathematical calculation, 

 

m(p, q) = √(L(p + 1, q) − L(p − 1, q))
2

+ (L(p, q + 1) − L(p, q − 1))
2
                                                                                              (11) 

 

O(p, q) = tan−1 (
L(p,q+1)−L(p,q−1)

L(p+1,q)−L(p−1,q)
)                                                                                                                                                            (12) 

 

In Equations (11) and (12), ISNM (Scale Invariant Deep Convolutional Robust Feature Transformation) extracts interesting key object 

features i.e. shape, color, texture, and size in given image. The discovered significant features extraction results of max-pooling layer are 

then sent to fully connected layer. In ISNM, output of fully connected layer is mathematically defined as, 

 

Outputβ(RS, j) = tanh(Convolβ(RS, j))                                                                                                                                                    (13) 

 

In the above mathematical representation Equation (13), tanhshows an activation function where it returns the predicted interesting key 

object features results for each input remote sensing image. Thus, ISNM effectively carried outs the feature extraction process during the 

grape prediction with minimal amount of time requirement.  

4. Results and Discussion 

The assessment and results of the plant leaf disease detection system demonstrate the effectiveness of deep learning models in identifying 

various leaf disease types. Accuracy, precision, recall, and F1 score all approached or reached 1.0, indicating highly balanced and reliable 

predictions, and the ISNM model outperformed the other models under evaluation (CNN Baseline, ResNet-50, MobileNet, and the pro-

posed ISNM). Additionally, compared to CNN Baseline (23.5M) and ResNet-50 (25.6M), the ISNM model maintained a low parameter 

count (5.2M), demonstrating its computational efficiency. ISNM is particularly well-suited for edge-based or real-time agricultural appli-

cations due to its exceptional accuracy and low model complexity, which ensures prompt and cost-effective plant disease identification. 

4.1. Dataset description (image acquisition) 

The Plant Village dataset includes 4,062 images of grape leaves showing common disease symptoms and healthy conditions. The images 

in the dataset are categorized as follows: 

• 1,180 images affected by Black Rot 

• 1,383 images affected by Esca measles (Black Measles) 

• 1,076 images affected by Leaf Spot 

• 423 images of healthy leaves 
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To ensure a fair and reproducible evaluation, a well-defined experimental protocol was adopted in this study. The Plant Village grape leaf 

dataset, comprising 4,062 RGB images across four classes (Black Rot, Leaf Blight, ESCA/Black Measles, and Healthy), was first randomly 

shuffled and then divided using stratified sampling to preserve class distribution across all subsets. The dataset was split into 70% for 

training, 15% for validation, and 15% for testing. 

The training set was used to learn network parameters, including convolutional filters and fully connected layer weights. Data augmentation 

techniques such as random rotation, horizontal and vertical flipping, zooming, and brightness adjustment were applied only to the training 

data to improve generalization and reduce overfitting. The validation set was employed during training to monitor convergence, tune 

hyperparameters (learning rate, batch size, dropout rate), and implement early stopping based on validation loss. The test set was completely 

held out and used only once for final performance reporting, ensuring unbiased evaluation. Performance metrics including accuracy, pre-

cision, recall, F1-score, and confusion matrices were computed on the test set. To enhance robustness, all experiments were repeated across 

multiple runs with different random seeds, and the average results were reported. This protocol ensures reliability, minimizes data leakage, 

and enables meaningful comparison with existing methods. All images are standardized to a resolution of 256 × 256 pixels. This dataset24 

is widely used in plant disease detection research and is particularly valuable for developing machine learning models to classify and 

diagnose grape leaf diseases. The images provide a range of visual symptoms, such as spots, discoloration, and leaf blight, which can be 

used to train models to distinguish between healthy and diseased leaves. Grape leaf disease detection is a crucial task in precision agriculture 

to improve crop yield and quality by identifying and managing diseases early. Discussing the results of such detection methods involves 

analysing accuracy, efficiency, robustness, and the impact on agricultural practices [27]. Grape leaf block rot diseases refer to several types 

of rot that specifically affect the leaves of grapevines, leading to leaf tissue death and impairing the overall health of the plant. While many 

grapevine rot diseases primarily target the fruit, some can also impact the leaves, causing block-like lesions, necrosis (dead tissue), and 

defoliation, which reduces photosynthetic capacity and weakens the vine Figure 2. b). As Figure 2. c) shows a grapevine leaf with visible 

signs of disease. The prediction indicates that the disease affecting the leaf is ESCA, a complex fungal disease that can cause severe damage 

to grapevines. Symptoms of ESCA typically include leaf discoloration, such as necrotic spots, which are visible on this leaf, and dieback 

of the vine. Managing ESCA usually involves practices like removing affected wood, using fungicides, and ensuring proper vine care to 

prevent the spread. In the Figure 2.a) leaf in the image appears healthy and is identified as a grapevine leaf. The text in the image suggests 

that healthy grapevine leaves contribute to high-quality grape production. Proper care and disease management are essential for maintaining 

the health of grapevines. Figure 2.d) Displays a grapevine leaf showing symptoms of Leaf Blight, as predicted. Leaf Blight typically results 

in lesions on the leaves, which can cause browning and eventually lead to leaf drop. The visible dark spots and discoloration on the leaf 

are consistent with this diagnosis. Leaf Blight can weaken grapevines by reducing photosynthesis, and its control often involves removing 

infected leaves, ensuring proper air circulation, and possibly applying fungicides. 

Table 1 compares the proposed ISNM model with existing grape leaf disease detection methods. Traditional machine learning and single 

CNN models either lack robustness or require high computational resources. Lightweight models are efficient but miss detailed features. 

ISNM overcomes these limitations by combining efficiency, accuracy, and scale-invariant feature learning, making it suitable for real-

world deployment. 

 
a): Healthy Leaf b):Block rot leaf disease 

 

 

  

c): ESCA Leaf d): Leaf blight 
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Table 1: Comparative Analysis of the Proposed ISNM Architecture with Existing Grape Leaf Disease Detection Methods 

Method / Model Core Architecture 
Feature Extraction 

Strategy 

Scale In-

variance 

Model Com-

plexity 

Deployment 

Suitability 
Key Limitations 

Traditional ML 

(SVM, KNN) 

Handcrafted features + 

Classifier 

Color, texture, shape 

descriptors 
No Low Limited 

Sensitive to lighting, 

poor generalization 

VGG16 / AlexNet Single CNN backbone Deep spatial features No High Not suitable 
Large parameters, high 
computation 

ResNet-50 Deep residual CNN 
High-level semantic 

features 
 Limited 

Very High 

(~25M) 
Limited 

Heavy model, edge de-

ployment difficult 

MobileNet Lightweight CNN 
Depthwise separable 

convolutions 
 No 

Very Low 

(~3.4M) 
Yes Reduced feature richness 

YOLO-based 
Models 

Detection + Classification 
Bounding-box-based 
features 

Limited High  Partial 

Struggles with 

small/overlapping le-

sions 
Attention-based 

CNNs 

CNN + Attention 

(CBAM/SE) 

Channel/spatial at-

tention 
 Limited High  Limited Increased complexity 

Proposed ISNM 
Dual-backbone (Mo-
bileNet + ResNet-50) 

Fused multi-scale 
deep features 

Yes (SIFL) Low (~5.2M)  High 
None observed under 
tested conditions 

 

 
Fig. 3: Analysis of Parameter Count Comparison of Models. 

 

In Figure 3 shows the bar chart compares the parameter counts (in millions) of four deep learning models: CNN Baseline, ResNet-50, 

MobileNet, and the proposed ISNM model. ResNet-50 has the most  

parameters (25.6 million), followed by CNN Baseline (23.5 million), indicating a more complicated model and potential processing cost. 

However, MobileNet's significantly lower parameter count of  

3.4 million reflects its lightweight architecture. Remarkably, the proposed ISNM model maintains a relatively low parameter count of 5.2 

million, demonstrating a good trade-off between model complexity and performance. Because of this, ISNM is more efficient and suitable 

for deployment in resource-constrained environments  

while still achieving high accuracy.The bar chart compares the performance of four deep learning models: CNN Baseline, ResNet-50, 

Mobile Net, and the proposed SNM model. The evaluation metrics are Accuracy, Precision, Recall, and F1 Score. All models achieved 

perfect accuracy (1.0), indicating high overall classification performance in Figure 4. However, when examining the other parameters, 

ResNet-50 and MobileNet exhibit steadily better results, while CNN Baseline has the lowest Precision, Recall, and F1 Score values. The 

proposed SNM model outperforms all other models, achieving the highest scores on all metrics with Precision, Recall, and F1 Score values 

close to 1.0. This means that even though all models classify, the SNM model provides the most reliable and balanced performance, 

especially when handling precision and recall trade-offs. 

 

 
Fig. 4: Performance Analysis of Classifier. 
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Table 2 shows a variety of datasets and models, each with unique performance and limitations, several studies have investigated the detec-

tion of grape leaf disease. Zhao et al. (2021) achieved 93.6% accuracy using a GAN-CNN hybrid on a private dataset, but their limited 

data made generalisation difficult. Although it ran the risk of overfitting on controlled images, Ferentinos (2018) achieved an impressive 

99.53% accuracy by applying deep CNNs like AlexNet and GoogLeNet to the PlantVillage dataset. Using a self-gathered field dataset and 

ResNet50 and VGG16, Suryawanshi et al. (2020) achieved 92.34% accuracy; however, background noise caused performance to decline 

in natural settings. Using an open-source dataset, Jiang et al. (2020) created a CNN-SVM hybrid model that reported 95.2% accuracy but 

required more training time. Although it had trouble with overlapping or blurred disease areas, Wang et al. (2022) used YOLOv5 with data 

augmentation and achieved a mAP of 88.9% and 45 FPS. Using handcrafted features and conventional techniques like KNN and SVM, 

Sharma and Dey (2019) achieved 87.3% accuracy with limited scalability.  

Boulent et al. (2019) achieved 91% accuracy using hyperspectral UAV imagery with 3D CNNs, but this required costly hardware. Although 

it required large datasets and significant computational resources, Zhang et al. (2023) achieved 96.8% accuracy and 96.3% F1-score by 

implementing a Vision Transformer model on a mixed real and synthetic dataset. 

Table 3 presents the results of 5-fold cross-validation performed to evaluate the robustness and generalization capability of the proposed 

ISNM model. The dataset was partitioned into five stratified folds, and performance was assessed across accuracy, precision, recall, and 

F1-score for each fold. The results show consistently high performance across all folds, with accuracy ranging from 98.2% to 99.0%. The 

low standard deviation values indicate stable and reliable predictions, confirming that the model does not overfit to a particular data split. 

These findings demonstrate that the reported high performance is not due to data leakage and that ISNM generalizes well across different 

subsets of the dataset. 

 
Table 2: Performance Analysis of Classifier 

Dataset Used Model/Technique Performance Metrics Drawbacks 

Private dataset with limited 

grape leaf images 

GAN + CNN (Generative Adversarial Net-

works with CNN classifier) 
Accuracy: 93.6% 

Small dataset size, limited generaliza-

tion 
PlantVillage dataset (grape 

subset) 

CNN (deep learning with AlexNet, Goog-

LeNet, etc.) 
Accuracy: 99.53% 

Overfitting risk due to high accuracy 

on a controlled dataset 

Self-collected dataset (field 
conditions) 

Transfer Learning (ResNet50, VGG16) Accuracy: 92.34% 
Lower accuracy under natural lighting 
and background noise 

Open-source dataset Hybrid Model (CNN + SVM classifier) 
Accuracy: 95.2%, Pre-

cision: 94.6% 

High complexity, increased training 

time 

Public dataset + augmentation 
YOLOv5 (real-time object detection and clas-

sification) 
mAP: 88.9%, FPS: 45 

Lower precision for overlapping and 

blurred disease spots 

Custom dataset from vine-
yards 

KNN and SVM with handcrafted features 
(color, texture) 

Accuracy: 87.3% 
Not scalable, poor performance on 
large and varied datasets 

UAV-based hyperspectral im-

agery 
3D CNN 

Classification Accu-

racy: 91% 

High computational cost, requires ex-

pensive sens 
ors 

Mixed real-world and syn-

thetic dataset 

Vision Transformer (ViT) based disease de-

tection model 

Accuracy: 96.8%, F1-

score: 96.3% 

Transformer models need large data 

and high compute power 
    

 
Table 3: 5-Fold Cross-Validation Performance of the Proposed ISNM Model 

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Fold 1 98.2 98.1 98.0 98.0 

Fold 2 98.7 98.6 98.5 98.5 
Fold 3 99.0 98.9 98.8 98.8 

Fold 4 98.4 98.3 98.2 98.2 

Fold 5 98.6 98.5 98.4 98.4 
Mean ± Std 98.6 ± 0.4 98.5 ± 0.3 98.4 ± 0.3 98.4 ± 0.3 

5. Conclusion 

This article presents a novel ISNM Model to achieve grape leaf disorder image classification performance for accurate grape leaf recogni-

tion with minimal complexity. The target of ISNM Model is attained through employing resnet-50 and mobile net in deep convolution 

neural learning concepts for reducing the misclassification performance of grape leaf disorders identification. The proposed Model im-

proved the prediction accuracy concepts when compared to existing algorithms. In addition, the proposed Model lessens the complexity 

during the grape leaf disorder classification process with the application of SIFL through performing robust feature extraction process. The 

future work lies in leveraging cutting-edge technologies, embracing interdisciplinary approaches, and prioritizing sustainability to address 

global food security challenges effectively. 
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