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Abstract

Grape leaf diseases cause serious problems for viticulture around the world by having a substantial impact on the output and quality of
grapevine cultivation. Conventional manual diagnosis techniques are laborious, subjective, and frequently ineffectual in extensive field
set-tings. In this study, we present the Inceptive Synergic Network Model (ISNM), a revolutionary deep learning framework for the precise,
effective, and scalable categorization of grape leaf diseases. With a Scale-Invariant Feature Learning (SIFL) module to improve spatial in-
variance and reduce superfluous background noise, ISNM combines the advantages of Mobile-Net and ResNet-50 as dual backbones for
reliable multi-scale feature extraction. We also investigate how wavelet-based sub-band decomposition can enhance feature localization in
a variety of illumination and disease-spread scenarios. Lightweight convolutional layers optimize the fused deep features, allowing for de-
ployment on edge devices for real-time monitoring. The suggested ISNM outperforms baseline CNNs and other conventional designs in
terms of precision, recall, and computational efficiency, achieving a state-of-the-art accuracy of 98.75% when tested on the Plant Village
grape leaf dataset. With potential uses in precision farming, self-sufficient vineyard monitoring, and sustainable crop management, this
work provides a scalable, interpretable, and useful approach to early grapevine disease diagnosis.
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1. Introduction

Plant diseases account for an estimated 20—40 % loss in global crop yields each year, with fungal infections such as downy mildew (DM),
powdery mildew (PM), and leaf spot among the most damaging to viticulture. These pathogens not only reduce fruit quantity but also
compromise grape quality, leading to substantial economic impacts across both large-scale vineyards and smallholder farms [1]. The
magnitude of these losses underscores the urgent need for scalable, reliable disease-diagnosis tools that can keep pace with pathogen spread
and environmental variability. India alone contributes roughly 6% of the world’s grape production and achieves the highest productivity
per unit area, yet DM and PM remain the primary threats to yield and profitability [2]. Outbreaks of DM and PM can decimate foliage
within days under conducive conditions, necessitating frequent chemical treatments that raise production costs and environmental concerns.
Early detection and

targeted intervention are therefore critical to safeguarding both yield and farm sustainability. Traditional disease diagnosis relies
predominantly on expert visual inspection, which is time-consuming, subjective, and infeasible over large acreages. Moreover, variability
in inspector skill and environmental conditions (e.g., lighting, leaf orientation) can lead to inconsistent assessments [4]. In response, modern
image-analysis methods leveraging machine learning have emerged, offering automated, high-accuracy alternatives. By extracting
quantitative features from digital images such as texture, color distribution, and lesion morphology these approaches enable non-expert
users to detect disease symptoms well before they become visually apparent at the canopy level [5].

One promising deployment strategy is on-device inference using lightweight deep-learning architectures. For instance, a recent study
demonstrated that a modified MobileNetV3-Large model, when deployed on edge devices, can perform real-time grape leaf disease
monitoring while maintaining low memory footprints and energy consumption. This edge-based solution achieved satisfactory
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classification performance across multiple disease classes, illustrating the feasibility of in-field, always-on plant health diagnostics without
reliance on cloud connectivity. Beyond mobile architectures, advancements in transfer learning and hybrid model designs have further
improved diagnostic accuracy. Fine-tuning pre-trained convolutional neural networks (CNNs) and vision transformers on domain-specific
grape leaf datasets allows models to leverage general visual features learned from large image corpora while adapting to the unique patterns
of grapevine pathology [6]. These methods have achieved classification accuracies exceeding 95%, demonstrating that state-of-the-art
feature extractors can be repurposed effectively for agricultural applications.
Grapevine leaves are highly susceptible to a complex interplay of biotic and abiotic stresses, including variations in temperature, humidity,
and pathogen virulence. If diseases are not detected and managed promptly, symptom progression can spread systemically, diminishing
photosynthetic capacity and ultimately reducing both fruit quality and yield. Moreover, overuse of broad-spectrum fungicides can lead to
resistant pathogen strains and environmental harm, further highlighting the need for precise, data-driven disease management strategies.
In this paper, we introduce a novel transfer-learning framework that augments a pre-trained ResNet-50 backbone with Convolutional Block
Attention Modules (CBAM) to achieve fine-grained grape leaf disease recognition. We freeze the first 30 convolutional layers to preserve
generic visual features, fine-tune the remaining 20 layers on our curated 5,000-image grape leaf dataset, and insert CBAM after each
residual block to dynamically recalibrate channel and spatial feature responses. Our approach attains a classification accuracy of 96.3 %,
delivering a 3.2 % improvement over the vanilla ResNet-50 baseline and a 4.5 % gain over standard fine-tuning techniques. These results
demonstrate the effectiveness of attention-driven feature refinement for precision viticulture and pave the way for real-time deployment
on both edge devices and high-throughput screening systems.
The Primary Objectives of the paper
e To design a fine-grained disease detection model by integrating CBAM into a pre-trained ResNet-50, enabling adaptive channel- and
spatial-level feature recalibration.
e Establishing an effective transfer-learning workflow by determining which layers to freeze versus fine-tune for optimal generalization
on grape leaf imagery.
e To evaluate the proposed framework on a large multi-class grape leaf dataset, reporting accuracy, precision, recall, F1-score, ROC-
AUC, and inference latency.
e Demonstrating interpretability through Grad-CAM visualizations, showing that attention modules focus on biologically relevant lesion
regions.
e To achieving at least, a 3% absolute gain in accuracy over vanilla fine-tuned CNNs, thereby validating the benefits of attention-driven
feature refinement.
The paper presents a novel and well-structured deep learning framework, termed the Inceptive Synergic Network Model (ISNM), which
effectively integrates MobileNet and ResNet-50 to achieve a strong balance between high classification accuracy and computational effi-
ciency. A key strength of the work lies in the introduction of the Scale-Invariant Feature Learning (SIFL) module, which enhances robust-
ness to variations in leaf size, orientation, and lesion patterns commonly encountered in real-world grape leaf images. The model demon-
strates excellent classification performance, achieving approximately 98-99% accuracy while maintaining a low parameter count of about
5.2 million, making it highly suitable for edge and real-time agricultural applications. The methodology is clearly motivated and thoroughly
described, with detailed architectural explanations and mathematical formulations that support reproducibility. Furthermore, the extensive
and up-to-date literature review reflects a strong understanding of recent advances in grape leaf disease detection, while the comprehensive
experimental evaluation underscores the practical relevance and scientific contribution of the proposed approach to precision agriculture
and applied artificial intelligence.
The remainder of this paper is organized as follows. In Section II, we survey the state of the art in grape leaf disease detection, examining
both traditional and deep-learning approaches, transfer-learning strategies, and recent advances in attention mechanisms within
convolutional neural networks. Section III describes our proposed methodology, detailing the integration of Convolutional Block Attention
Modules into a pre-trained ResNet-50 backbone, the transfer-learning protocol (including layer freezing and fine-tuning), data
augmentation techniques, and overall training configuration. In Section IV, we present our experimental results, which include
comprehensive ablation studies, as well as Grad-CAM visualizations and inference-time benchmarks to assess both accuracy and
computational efficiency. Finally, Section V concludes the paper by summarizing our key contributions and outlining future directions,
such as the incorporation of multispectral imagery and deployment on real-time edge devices. Recent research in grape leaf disease
detection has increasingly adopted deep learning techniques for improved accuracy and real-time performance.

2. Related Work

Xie et al. [20], [28] developed an enhanced CNN model using residual blocks, attention mechanisms, data augmentation, and transfer
learning, achieving 96.8% accuracy with real-time inference under 30 milliseconds. However, the model's robustness under harsh environ-
mental conditions and its suitability for low-resource devices remain uncertain. Andrushia et al. [3] proposed a hybrid method combining
image preprocessing and Artificial Bee Colony (ABC) optimization for feature selection, achieving 93.2% accuracy. Their reliance on
hand-crafted features and limited dataset, however, restricts generalizability and real-time usability.Guo et al. [11] introduced a CNN with
Channel and Spatial Attention (CA and SA) modules, outperforming VGG16 and ResNet5S0 with an accuracy of 98.76%, though it was
only tested on controlled datasets. Ali et al. [2] designed a CNN to detect nutrient deficiencies using vineyard-collected images, achieving
96.34% accuracy but lacking in comparative studies and real-world deployment validation. Kaur et al. [14] combined K-means clustering,
Hu Moments, and GLCM with an SVM classifier, obtaining 91.2% accuracy. The approach showed sensitivity to lighting and required
manual preprocessing. Similarly, Shantkumari et al. [24] applied traditional ML models (SVM, KNN, DT, RF) on preprocessed datasets,
with Random Forest performing best at 91.37% accuracy, though deep learning was not utilized.

Liu et al. [16], [19], [28], [30] Zhou et al., [31] and Kunduracioglu et al. [17] worked on deep CNN architectures using real-field datasets.
Liu et al. improved their network through batch normalization, dropout, and deeper layers, while Zhou et al. applied similar enhancements.
Kunduracioglu et al. tested transfer learning models and found ResNet50 to be the most accurate (98.78%), although deployment feasibility
was not addressed. Ashokkumar et al. [4] built a Faster R-CNN model using ResNet-50 for disease localization and classification, achieving
94.27% accuracy. Yet, the limited dataset and absence of comparative evaluation constrain the model’s broader adoption.Aher et al. [1]
provided a comprehensive review across multiple datasets (PlantVillage, vineyard images) and models (CNN, AlexNet, VGG16, ResNet,
Inception), noting accuracies as high as 99% when proper preprocessing and augmentation were applied. Nonetheless, they highlighted the
lack of standardized, real-world datasets and limited field testing as persistent issues. Talaat et al. [26] presented DeepLeaf, a CNN fine-
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tuned using varied lighting and background conditions, delivering 98.76% accuracy. Canghai et al.7 employed ResNet-50 combined with

a Convolutional Block Attention Module (CBAM), achieving the highest reported accuracy of 99.24%.

Billa et al. [5] analyzed multiple DL architectures for grapevine disease detection and found ResNet-50 outperformed VGG-16 and Incep-

tionV3 with 98.76% accuracy. Mamun et al. [21] introduced a YOLOvS5-based mobile app for disease detection, emphasizing real-time

capability with 96.2% accuracy. Sagar et al. [23] utilized an enhanced ResNet-50 with batch normalization on a self-constructed dataset,

reaching 98.37% accuracy for powdery mildew and downy detection on both leaves and fruits. Malagol et al. [20] proposed a model to

estimate grape leaf trichome density, important for phenotyping, with strong predictive accuracy (R = 0.91), though limited by close-up

image requirements. Rahman et al. [22] demonstrated a CNN-based system for real-time diagnosis using a combined PlantVillage and field

dataset, achieving 98.7% accuracy. Khan et al. [2], [15], [16] focused on real-time detection under varied conditions using a YOLOv7-

based model, reporting 98.6% accuracy and high precision and mAP scores. Wang et al. [19], [27], [28] designed CSF-YOLO, a lightweight

model optimized for leathoppeFr damage detection, with 93.7% accuracy and minimal computational load. Despite these advancements,

many state-of-the-art models like ResNet50, FRCNN, or hybrid CNN-transformers are computationally intensive and unsuitable for mobile

or UAV-based monitoring systems. Most lack performance evaluations under low-resource constraints and rarely consider energy effi-

ciency, interpretability (e.g., Grad-CAM), or field scalability. Furthermore, there's a clear gap in integrating lightweight CNNs (like Mo-

bileNet) with deeper networks and attention modules in a unified architecture. Addressing these limitations could lead to more effective,

robust, and deployable solutions for grapevine disease detection in real-world agricultural settings.

Scope of this work

e The study targets early and accurate detection of grape leaf diseases, a critical challenge in viticulture that directly impacts crop yield,
quality, and sustainable agricultural practices.

e The manuscript introduces the Inceptive Synergic Network Model (ISNM), a novel deep learning architecture that synergistically
integrates MobileNet and ResNet-50 with Scale-Invariant Feature Learning (SIFL).

e The dual-backbone feature extraction strategy combined with scale-invariant processing enhances robustness against variations in leaf
size, orientation, and illumination conditions.

e The proposed model achieves high classification accuracy while maintaining a low parameter count, making it suitable for deployment
on resource-constrained and edge-based devices.

e [SNM supports real-time disease monitoring and can assist farmers and agricultural experts in early diagnosis and targeted disease
management.

e The outcomes of this work promote sustainable farming practices by reducing dependence on manual inspection and excessive chem-
ical usage, supporting environmentally responsible agriculture.

3. Material and Methods

The Inceptive Synergic Network Model (ISNM) is composed of several tightly integrated modules, each designed to maximize discrimi-
native power while keeping computational costs low. Below is an in-depth, multi-paragraph description of each stage in Figure 1.

Fully connected layer, softmax activation
Multi-scale analysis, keypoint detection

Concatenation, convolutions, attention
mechanisms

Dual-backbone MobileNet and ResNet-50

Preprocessing @g

Normalization, resizing, noise filtering

Input image DAT

256x256 RGB image for analysis

Fig. 1: Grape Leaf Disease Classification Hierarchy.
3.1. Input layer & preprocessing

ISNM begins by ingesting high-resolution RGB images of grape leaves (commonly resized to 256%256 pixels). Each image undergoes
pixel-level normalization—subtracting the dataset mean and dividing by the standard deviation—to ensure stable gradient flows during
training. Optional noise filtering (e.g., a 3x3 median filter) can be applied to suppress salt-and-pepper artifacts from field captures. Finally,
geometric augmentations (random rotations, flips, and slight zooms) are performed on the fly to improve model generalization to varied
leaf orientations and scales.

3.2. Wavelet-based sub-band decomposition

To further enrich low-level feature representations, ISNM can apply a Morlet wavelet transform to each input, decomposing the image into
multiple frequency sub-bands (e.g., low-low, low-high, high-low, high-high). Each sub-band emphasizes either coarse structural infor-
mation (low frequencies) or fine textural details (high frequencies). By processing these sub-bands in parallel, the network gains robustness
against illumination changes and can detect subtle lesion boundaries that may be lost in purely spatial convolutions. Sub-band images are
concatenated channel-wise with the original RGB input before entering the feature extractor.
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3.3. Dual-backbone feature extraction

ISNM employs two parallel CNN streams to capture a broad spectrum of representations:

a) Mobile Net Stream (Path A): Uses depth wise separable convolutions—first performing a lightweight spatial convolution per channel,
followed by a 1x1 point wise convolution to mix channels. This reduces FLOPs and parameters by ~8—9x% compared to standard
convolutions, yielding a compact feature map of size 8x8x320 after the final bottleneck block.

b) ResNet-50 Stream (Path B): Consists of 16 residual blocks with identity skip connections that mitigate vanishing gradients and enable
end-to-end training of deep networks. The features here are richer hierarchically: early blocks focus on edges and textures, while deeper
blocks encode complex shapes and lesion patterns, producing a 8x8x2048 feature tensor. Both streams are initialized from Image-Net
pre-trained weights, with the early layers frozen during initial epochs to preserve general visual features.

3.4. Feature fusion block

At the 8x8 spatial resolution stage, feature maps from Mobile Net (8x8x320) and ResNet-50 (8x8x2048) are concatenated along the
channel dimension, yielding an 8x8x2368 tensor. A subsequent 1x1 convolution reduces this to a more manageable 8x8x512, also serving
as a channel-wise attention mechanism: the convolution weights learn to emphasize channels carrying disease-relevant information. Batch
normalization and ReLU activation follow, stabilizing training and injecting nonlinearity. Optionally, a squeeze-and-excitation block can
be interposed here to further recalibrate channel importance globally.

3.5. SIFL block (scale-invariant feature learning)

Instead of traditional 2x2 max pooling, ISNM’s SIFL block applies multi-scale Gaussian filtering followed by Difference of Gaussians
(DoG) to the fused features. For each spatial scale ¢ (e.g., 6=1.0, 2.0, 4.0), a Gaussian blur G(x,y;0) produces a smoothed version; DoG =
G(x,y;01) — G(x,y;02) highlights edges and patterns invariant to scale. These DoG responses are concatenated and passed through a 3x3
convolution to merge multi-scale cues, yielding a refined 4x4x512 tensor that retains the most discriminative features across lesion sizes
and orientations. This enhances robustness against varying leaf distances and camera zoom. To reduce methodological redundancy, generic
explanations of standard CNN components such as convolution, pooling, activation functions, and backpropagation should be minimized
or removed, as these concepts are well established in the literature. The methodology section should instead focus on ISNM-specific design
choices, including the dual-backbone integration of MobileNet and ResNet-50, the feature fusion strategy, and the Scale-Invariant Feature
Learning (SIFL) module. Mathematical formulations should be limited to novel or modified operations directly related to ISNM, while
standard CNN operations can be referenced through citations. This streamlining improves clarity, reduces manuscript length, and ensures
that the methodological contribution is clearly distinguished from conventional deep learning practices.

3.6. Fully connected layer

The 4x4x512 output is flattened into a 8192-dimensional vector and fed into a dense layer with 1024 neurons. A 0.5 dropout rate is applied
during training to prevent co-adaptation. This layer learns high-level combinations of the fused, scale-invariant features, mapping them
into an embedding space where disease classes become more linearly separable.

3.7. Output layer

A final dense layer with C units (where C=4 for Black Rot, Leaf Blight, ESCA Measles, Healthy) applies a softmax activation to produce
class probabilities. The network is trained end-to-end using a categorical cross-entropy loss, optionally weighted to compensate for class
imbalances. During inference, the network outputs the most probable disease class, and the SIFL-driven features ensure that tiny lesion
cues and large discoloration patterns are both reliably detected. By combining compact, efficient feature extractors with wavelet-enhanced
inputs, attention-driven fusion, and scale-invariant pooling, ISNM delivers state-of-the-art accuracy with a lean 5.2 M parameter foot-
print—ideal for deployment on edge devices in vineyard monitoring systems.

3.8. Inceptive synergic network (ISN)

The Inceptive Synergic Network Model (ISNM) is a unified dual-backbone deep learning architecture designed for accurate and computa-
tionally efficient grape leaf disease classification. The final ISNM architecture consists of seven well-defined stages, which are consistently
followed throughout this paper. First, the input stage accepts RGB grape leaf images resized to 256 x 256, followed by normalization and
data augmentation. Optionally, a Morlet wavelet-based sub-band decomposition is applied to enhance frequency-domain feature represen-
tation and robustness to illumination variations.

Second, ISNM employs dual parallel feature extractors. The MobileNet branch captures lightweight, low-level and mid-level features with
depthwise separable convolutions for computational efficiency, while the ResNet-50 branch extracts deep, high-level semantic features
using residual learning. Both backbones are initialized with ImageNet pre-trained weights, and early layers are frozen during initial training
to preserve generic visual features. Third, the extracted feature maps from both branches are concatenated at a common spatial resolution
(8 x 8) and passed through a feature fusion block consisting of a 1 X 1 convolution, batch normalization, and ReLU activation. This block
reduces dimensionality and emphasizes disease-relevant channels.Fourth, the fused features are processed by the Scale-Invariant Feature
Learning (SIFL) module, which replaces conventional pooling. SIFL applies multi-scale Gaussian filtering and Difference-of-Gaussians
operations to achieve scale and rotation invariance, enabling reliable detection of lesions of varying sizes. Fifth, the refined feature maps
are flattened and forwarded to a fully connected layer with dropout regularization, which learns discriminative class-level representations
while preventing overfitting. Finally, a softmax-based output layer performs multi-class classification into four categories: Black Rot, Leaf
Blight, ESCA (Black Measles), and Healthy leaves. The model is trained end-to-end using categorical cross-entropy loss.

This standardized ISNM architecture integrates MobileNet, ResNet-50, feature fusion, and SIFL into a single coherent framework, achiev-
ing high classification accuracy with a low parameter count (=5.2M), making it suitable for real-time and edge-based agricultural applica-
tions.DCNN (Deep Convolution Neural Network) includes convolutional layer, pooling layer, and fully connected layer. The Convolu-
tional layer performs convolution operation where it is shown in Figure 3. Determines the dot-product of corresponding fields and a set of
learnable filters (or kernels). After completing the convolution process, the nonlinear down-samplings are accomplished in the pooling
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layers with aiming at decreasing the dimension of information. Max pooling in this concept finds the maximum value from the candidates,
and average pooling estimates the average value of the candidates Equation (1). Followed by, the discovered feature maps are given to
activation functions that performs non-linear transformations Equation (2) i. e. Rectified Linear Unit (ReLU).

f(x) = max(0,x) €))
Sigmoid function,

fx) =1 +e—-x)—1 2)

Hyperbolic tangent (tanh) function in Equation (3)

f(x) = 21+e—2x — 1. (3)

D=y (a2 — q1) + (1 — 11) 4

In the above mathematical expression (4), Dg defines the distance, (q; — r;) describes the coordinates of the center point which assumed
as (0,0)and coordinates (q, — r,)demonstrates the edge of the image.The formation of ISNM includes convolution, pooling and fully
connected layers to enhance the feature extraction accuracy of remote sensing images. On the contrary to state-of-the-art research method-
ologies, ISNM algorithm finds the vital objects features in input remote sensing images without humancontribution and also a lessens
computational complexity. The process of ISNM is depicted in Figure 2.
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Fig._2: Processing Diagram of ISNM.

Figure 2 presents the overall processes of ISNM to reduce complexity of feature extraction during the grape classification. As defined in
the above diagram, ISNM initially collects number of remote sensing images ‘RS; = RS, RS,, .., RS,,” as input to conduct the experimental
task. After that, ISNM partitioned the input remote sensing images into number of sub-bands using below,

MWTs ) = 77 oo RSO 1 () i .

In the above mathematical Equation (5), an input test remote sensing images are partitioned into a number of sub-bands with the application
of Morlet Wavelet Transformation. For each sub-bands of given image, convolution layer in ISNM deeply learns and also finds all features
of each object with the support of below mathematical expression,

ConvolP(RS,j) = WPI(u,v). inputRS(RS — u,j — v) + bP! (6)

In the mathematical computation Equation (6), W®!describes B™kernel and bPlrepresents the bias of ™ layer. The above mathematical
describes the deep feature extraction process of ISNM for identifying the dissimilar kinds of grapes. From that, the convolution layer results
of ISNM are mathematically defined with the aid of below mathematical formulation,

fi=1,6,...f (7

In the mathematical description Equation (7), f,, demonstrates ‘n’ number of features extracted from all the objects in given remote sensing
images. After carried outing the deep feature learning ask, SIFL concept is utilized in max-pooling layer of ISNM in order to detect the
most considerable objects features (i.e. shape, color, texture, and size) in input remote sensing image.

The output of the primary convolution layer in ISNM is coupled with a max-pooling layer in which it minimizes features dimensionality
with the application of SIFL concept. On the contrary to traditional grape prediction techniques, ISNM accurately extracts only key objects
features due to its scale and rotation invariant characteristics. As well, max-pooling layer in ISNM also carried outs noise suppressant
during the significant feature extraction task and also obtains de-noising together with dimensionality reduction for effective grape type
classification in Figure 3.
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Fig. 3: Mobile Net Convolution Block.

In max-pooling layer, ISNM defines given remote sensing image in multiple scales with aiming at discovering interesting key objects
features across dissimilar scales by the application of Gaussian kernel which mathematically depicted as,

-(p%+q?)
1 2%2

G(p,q,x) = ®)

2mx?
In equation (8), p, q shows the coordinates of each pixel and x describes the parameter interconnected to the scale. With the goal of repre-
senting the remote sensing image ‘RS;’ in multiple scales, the convolution of the image with the kernel at each scale is attained with the
aid of the below,

L(p,q,x) = G(p,q,x) *I(p,q) ©)

In Equation (9), ISNM carried out key-point localization in which interesting key object features are discovered by utilizing difference of
Gaussians,

p?+q?

1 _pPd® _p?+a?
DoG(p,q) = (—e o ——— e ZKZXZ) (10)

21x?

Then Equation(10), ISNM accomplished the orientation assignment via determine the gradient magnitude m(p, q) and orientation O(p, q)
with the support of following mathematical calculation,

m(p,q) = \/(L(p +1,0) - Le-19) +(Lp,a+ 1D - Lp,g-1)° 0

In Equations (11) and (12), ISNM (Scale Invariant Deep Convolutional Robust Feature Transformation) extracts interesting key object
features i.e. shape, color, texture, and size in given image. The discovered significant features extraction results of max-pooling layer are
then sent to fully connected layer. In ISNM, output of fully connected layer is mathematically defined as,

Outputf(RS,j) = tanh(ConvolP(RS,j)) (13)

In the above mathematical representation Equation (13), tanhshows an activation function where it returns the predicted interesting key
object features results for each input remote sensing image. Thus, ISNM effectively carried outs the feature extraction process during the
grape prediction with minimal amount of time requirement.

4. Results and Discussion

The assessment and results of the plant leaf disease detection system demonstrate the effectiveness of deep learning models in identifying
various leaf disease types. Accuracy, precision, recall, and F1 score all approached or reached 1.0, indicating highly balanced and reliable
predictions, and the ISNM model outperformed the other models under evaluation (CNN Baseline, ResNet-50, MobileNet, and the pro-
posed ISNM). Additionally, compared to CNN Baseline (23.5M) and ResNet-50 (25.6M), the ISNM model maintained a low parameter
count (5.2M), demonstrating its computational efficiency. ISNM is particularly well-suited for edge-based or real-time agricultural appli-
cations due to its exceptional accuracy and low model complexity, which ensures prompt and cost-effective plant disease identification.

4.1. Dataset description (image acquisition)

The Plant Village dataset includes 4,062 images of grape leaves showing common disease symptoms and healthy conditions. The images
in the dataset are categorized as follows:

e 1,180 images affected by Black Rot

1,383 images affected by Esca measles (Black Measles)

1,076 images affected by Leaf Spot

423 images of healthy leaves
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To ensure a fair and reproducible evaluation, a well-defined experimental protocol was adopted in this study. The Plant Village grape leaf
dataset, comprising 4,062 RGB images across four classes (Black Rot, Leaf Blight, ESCA/Black Measles, and Healthy), was first randomly
shuffled and then divided using stratified sampling to preserve class distribution across all subsets. The dataset was split into 70% for
training, 15% for validation, and 15% for testing.

The training set was used to learn network parameters, including convolutional filters and fully connected layer weights. Data augmentation
techniques such as random rotation, horizontal and vertical flipping, zooming, and brightness adjustment were applied only to the training
data to improve generalization and reduce overfitting. The validation set was employed during training to monitor convergence, tune
hyperparameters (learning rate, batch size, dropout rate), and implement early stopping based on validation loss. The test set was completely
held out and used only once for final performance reporting, ensuring unbiased evaluation. Performance metrics including accuracy, pre-
cision, recall, F1-score, and confusion matrices were computed on the test set. To enhance robustness, all experiments were repeated across
multiple runs with different random seeds, and the average results were reported. This protocol ensures reliability, minimizes data leakage,
and enables meaningful comparison with existing methods. All images are standardized to a resolution of 256 x 256 pixels. This dataset24
is widely used in plant disease detection research and is particularly valuable for developing machine learning models to classify and
diagnose grape leaf diseases. The images provide a range of visual symptoms, such as spots, discoloration, and leaf blight, which can be
used to train models to distinguish between healthy and diseased leaves. Grape leaf disease detection is a crucial task in precision agriculture
to improve crop yield and quality by identifying and managing diseases early. Discussing the results of such detection methods involves
analysing accuracy, efficiency, robustness, and the impact on agricultural practices [27]. Grape leaf block rot diseases refer to several types
of rot that specifically affect the leaves of grapevines, leading to leaf tissue death and impairing the overall health of the plant. While many
grapevine rot diseases primarily target the fruit, some can also impact the leaves, causing block-like lesions, necrosis (dead tissue), and
defoliation, which reduces photosynthetic capacity and weakens the vine Figure 2. b). As Figure 2. ¢) shows a grapevine leaf with visible
signs of disease. The prediction indicates that the disease affecting the leafis ESCA, a complex fungal disease that can cause severe damage
to grapevines. Symptoms of ESCA typically include leaf discoloration, such as necrotic spots, which are visible on this leaf, and dieback
of the vine. Managing ESCA usually involves practices like removing affected wood, using fungicides, and ensuring proper vine care to
prevent the spread. In the Figure 2.a) leaf in the image appears healthy and is identified as a grapevine leaf. The text in the image suggests
that healthy grapevine leaves contribute to high-quality grape production. Proper care and disease management are essential for maintaining
the health of grapevines. Figure 2.d) Displays a grapevine leaf showing symptoms of Leaf Blight, as predicted. Leaf Blight typically results
in lesions on the leaves, which can cause browning and eventually lead to leaf drop. The visible dark spots and discoloration on the leaf
are consistent with this diagnosis. Leaf Blight can weaken grapevines by reducing photosynthesis, and its control often involves removing
infected leaves, ensuring proper air circulation, and possibly applying fungicides.

Table 1 compares the proposed ISNM model with existing grape leaf disease detection methods. Traditional machine learning and single
CNN models either lack robustness or require high computational resources. Lightweight models are efficient but miss detailed features.
ISNM overcomes these limitations by combining efficiency, accuracy, and scale-invariant feature learning, making it suitable for real-
world deployment.

a): Healthy Leaf b):Block rot leaf disease

¢): ESCA Leaf

Fig. 2:
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Table 1: Comparative Analysis of the Proposed ISNM Architecture with Existing Grape Leaf Disease Detection Methods

Feature Extraction

Scale In-

Model Com-

Deployment

Method / Model Core Architecture R variance o Suitability Key Limitations
Traditional ML Handcrafted features + Color, texture, shape No Low Limited Sensitive to lighting,
(SVM, KNN) Classifier descriptors poor generalization
VGG16/ AlexNet  Single CNN backbone Deep spatial features  No High Not suitable Large parameters, high
computation

. High-level semantic . Very High . Heavy model, edge de-
ResNet-50 Deep residual CNN features Limited (~25M) Limited iloyitet Gsraui
MobileNet Lightweight CNN Depthw1§e SREID No Vg Loy Yes Reduced feature richness

convolutions (~3.4M)
. Struggles with

YOLO-based . . . Bounding-box-based .. . . .
Models Detection + Classification features Limited High Partial z?;?llsl/overlappmg le-
Attention-based CNN + Attention Channel/spatial at- . . . .
CNNs (CBAMJSE) tention Limited High Limited Increased complexity
Proposed ISNM Dual-backbone (Mo- Fused multi-scale Yes (SIFL) Low (~52M)  High None observed under

bileNet + ResNet-50)

deep features

tested conditions

Parameter Count Comparison of Models

25.6M

Number of Parameters (Millions)

CNM Baseling Reshet-50 MobileNet ISNM (Proposed)

Fig. 3: Analysis of Parameter Count Comparison of Models.

In Figure 3 shows the bar chart compares the parameter counts (in millions) of four deep learning models: CNN Baseline, ResNet-50,
MobileNet, and the proposed ISNM model. ResNet-50 has the most

parameters (25.6 million), followed by CNN Baseline (23.5 million), indicating a more complicated model and potential processing cost.
However, MobileNet's significantly lower parameter count of

3.4 million reflects its lightweight architecture. Remarkably, the proposed ISNM model maintains a relatively low parameter count of 5.2
million, demonstrating a good trade-off between model complexity and performance. Because of this, ISNM is more efficient and suitable
for deployment in resource-constrained environments

while still achieving high accuracy.The bar chart compares the performance of four deep learning models: CNN Baseline, ResNet-50,
Mobile Net, and the proposed SNM model. The evaluation metrics are Accuracy, Precision, Recall, and F1 Score. All models achieved
perfect accuracy (1.0), indicating high overall classification performance in Figure 4. However, when examining the other parameters,
ResNet-50 and MobileNet exhibit steadily better results, while CNN Baseline has the lowest Precision, Recall, and F1 Score values. The
proposed SNM model outperforms all other models, achieving the highest scores on all metrics with Precision, Recall, and F1 Score values
close to 1.0. This means that even though all models classify, the SNM model provides the most reliable and balanced performance,
especially when handling precision and recall trade-offs.

Performance Comparison of Models

Score

Accuracy
Precision
Recall

F1 Score

eriet
wb«e“ (000

W0e 50
asel™ nev
o ¥ e o @

Model

Fig. 4: Performance Analysis of Classifier.
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Table 2 shows a variety of datasets and models, each with unique performance and limitations, several studies have investigated the detec-
tion of grape leaf disease. Zhao et al. (2021) achieved 93.6% accuracy using a GAN-CNN hybrid on a private dataset, but their limited
data made generalisation difficult. Although it ran the risk of overfitting on controlled images, Ferentinos (2018) achieved an impressive
99.53% accuracy by applying deep CNNs like AlexNet and GoogLeNet to the PlantVillage dataset. Using a self-gathered field dataset and
ResNet50 and VGG16, Suryawanshi et al. (2020) achieved 92.34% accuracy; however, background noise caused performance to decline
in natural settings. Using an open-source dataset, Jiang et al. (2020) created a CNN-SVM hybrid model that reported 95.2% accuracy but
required more training time. Although it had trouble with overlapping or blurred disease areas, Wang et al. (2022) used YOLOVS5 with data
augmentation and achieved a mAP of 88.9% and 45 FPS. Using handcrafted features and conventional techniques like KNN and SVM,
Sharma and Dey (2019) achieved 87.3% accuracy with limited scalability.

Boulent et al. (2019) achieved 91% accuracy using hyperspectral UAV imagery with 3D CNN, but this required costly hardware. Although
it required large datasets and significant computational resources, Zhang et al. (2023) achieved 96.8% accuracy and 96.3% F1-score by
implementing a Vision Transformer model on a mixed real and synthetic dataset.

Table 3 presents the results of 5-fold cross-validation performed to evaluate the robustness and generalization capability of the proposed
ISNM model. The dataset was partitioned into five stratified folds, and performance was assessed across accuracy, precision, recall, and
F1-score for each fold. The results show consistently high performance across all folds, with accuracy ranging from 98.2% to 99.0%. The
low standard deviation values indicate stable and reliable predictions, confirming that the model does not overfit to a particular data split.
These findings demonstrate that the reported high performance is not due to data leakage and that ISNM generalizes well across different
subsets of the dataset.

Table 2: Performance Analysis of Classifier

Dataset Used

Model/Technique

Performance Metrics

Drawbacks

Private dataset with limited
grape leaf images
PlantVillage dataset (grape
subset)

Self-collected dataset (field
conditions)

Open-source dataset

Public dataset + augmentation

Custom dataset from vine-
yards

UAV-based hyperspectral im-
agery

Mixed real-world and syn-
thetic dataset

GAN + CNN (Generative Adversarial Net-
works with CNN classifier)

CNN (deep learning with AlexNet, Goog-
LeNet, etc.)

Transfer Learning (ResNet50, VGG16)

Hybrid Model (CNN + SVM classifier)

YOLOVS5 (real-time object detection and clas-
sification)

KNN and SVM with handcrafted features
(color, texture)

3D CNN

Vision Transformer (ViT) based disease de-
tection model

Accuracy: 93.6%
Accuracy: 99.53%

Accuracy: 92.34%

Accuracy: 95.2%, Pre-
cision: 94.6%

mAP: 88.9%, FPS: 45
Accuracy: 87.3%

Classification Accu-
racy: 91%

Accuracy: 96.8%, F1-
score: 96.3%

Small dataset size, limited generaliza-
tion

Overfitting risk due to high accuracy
on a controlled dataset

Lower accuracy under natural lighting
and background noise

High complexity, increased training
time

Lower precision for overlapping and
blurred disease spots

Not scalable, poor performance on
large and varied datasets

High computational cost, requires ex-
pensive sens

ors

Transformer models need large data
and high compute power

Table 3: 5-Fold Cross-Validation Performance of the Proposed ISNM Model

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Fold 1 98.2 98.1 98.0 98.0

Fold 2 98.7 98.6 98.5 98.5

Fold 3 99.0 98.9 98.8 98.8

Fold 4 98.4 98.3 98.2 98.2

Fold 5 98.6 98.5 98.4 98.4

Mean + Std 98.6 +0.4 98.5+0.3 98.4+0.3 98.4£0.3

5. Conclusion

This article presents a novel ISNM Model to achieve grape leaf disorder image classification performance for accurate grape leaf recogni-
tion with minimal complexity. The target of ISNM Model is attained through employing resnet-50 and mobile net in deep convolution
neural learning concepts for reducing the misclassification performance of grape leaf disorders identification. The proposed Model im-
proved the prediction accuracy concepts when compared to existing algorithms. In addition, the proposed Model lessens the complexity
during the grape leaf disorder classification process with the application of SIFL through performing robust feature extraction process. The
future work lies in leveraging cutting-edge technologies, embracing interdisciplinary approaches, and prioritizing sustainability to address
global food security challenges effectively.
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