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Abstract 
 

The rapid growth of digital video data makes efficient Content-Based Video Retrieval (CBVR) increasingly important, yet traditional 

similarity measures often fail to capture high-er-order dependencies between video features. This paper introduces a CBVR pipeline that 

uses a novel non-square determinant kernel as the direct similarity score with a faster Chio-like algorithm that reduces matrix order by four 

in each step. Experiments show an average execution-time decrease of about 25 % compared to the standard Chio-like method and 3.1 % 

compared to its modified version. Integrating this kernel into the CBVR demonstrates that the Chio-enhanced determinant kernel outper-

forms similarity measures across benchmark vid-eo datasets. By demonstrating superior retrieval efficiency and accuracy, the proposed 

meth-od is well-suited for efficient and accurate similarity evaluation in large-scale or real-time CBVR applications. 

 
Keywords: Content-Based Video Retrieval; Determinant Kernels; Non-Square Determinants; Enhanced Chio Method; Similarity Score. 

1. Introduction 

The very fast growing of video data on the internet, surveillance systems, and digital libraries has created an urgent demand for efficient 

video retrieval systems. Unlike metadata-based retrieval, which depends on textual annotations, Content-Based Video Retrieval (CBVR) 

focuses on analyzing the intrinsic content of videos, such as colors, textures, motion, and spatial-temporal patterns. The challenge of 

similarity measurement, which is at the core of CBVR, is how to identify the videos in a database that share higher similarity to a query 

video. Traditional metrics like trace kernels, Euclidean distance, and cosine similarity have been applied extensively. These methods are 

computationally simple but they mostly use vector-based comparisons, which might miss more profound structural relationships in feature 

matrices. Recently, determinant kernels have emerged as promising similarity functions. By considering the determinant of feature matrix 

products, these kernels inherently capture multi-dimensional correlations. However, their adoption has been limited by the computational 

overhead of determinant calculation, particularly for non-square matrices that arise in CBVR when video shots of different lengths are 

compared. In our previous work [1] introduced an enhanced Chio-like method to compute non-square determinants efficiently. This paper 

takes the next step by providing an experimental validation of determinant kernels within a full CBVR pipeline. This article has two 

complementary goals: (i) to review and synthesize determinant-based similarity functions and non-square determinant computation strate-

gies in CBVR, and (ii) to experimentally assess an enhanced Chio-like algorithm that reduces determinant order by four at each step, 

enabling practical determinant-kernel similarity evaluation for variable-length video shots. 

2. Related Work 

The Content Based Video Retrieval (CBVR) is considered one of the most practical methods for attaining high-quality video retrieval [2]. 

The integration of video content offers great opportunities for enhancing actual search engines, indicating that the area of CBVR holds 

promise for creating more efficient video search engines in the future. Most online video retrieval systems function by indexing and re-

trieving videos using text linked to them [3]. The core of video retrieval lies in extracting features. Different types of features exist, such 

as color features, texture features, and shape features [4], which can be obtained from images and video data. The most powerful aspect of 

video retrieval is based on color. In particular, the color histogram is an easy but efficient method [5]. Kernel-based multimedia retrieval 

methods have proven effective in several applications such as shape recognition, image retrieval [6], and event detection [7]. Many methods 

start by creating a kernel function using supervised data [8], on which a classifier, such as support vector machines (SVM), is developed. 

Numerous recent efforts [9] have created kernel methods for semi-supervised metric learning too. In [10], two algorithms for kernel-based 

metric learning utilizing pairwise similarity constraints (Kernel-A and Kernel-B) are presented. Authors in [11] created an extension of the 

Kernel-b method presented in [10]. Moreover, there exists a range of query types that consist of example-based queries sketch-based 

queries [12] object-based queries [13], keyword-based queries, natural language-based queries [14], and combination-based queries [15]. 

http://creativecommons.org/licenses/by/3.0/
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This paper explores query by example. When a query comes in, the most similar shots can be retrieved using a similarity method. To obtain 

a recorded video, measures of similarity are essential. There are many similarity techniques nowadays, including: combination-based 

matching [16], ontology-based matching [17], text matching [18], and feature matching [19]. This paper introduces a novel similarity 

calculation method using a determinant kernel approach based on the features extracted. Deep metric learning trains an embedding such 

that similar videos are close under cosine and Euclidean distance. These approaches can provide strong semantic retrieval but usually 

require labeled pairs/triplets and significant training resources. In contrast, determinant-kernel similarity is training-free once features are 

extracted and provides a matrix-level score that captures higher-order dependencies across key frames. The approaches are complementary: 

the determinant kernel can also be computed on deep embeddings, combining learned representations with matrix-level similarity [20-21]. 

Kernel functions determine the inner product of the shot-feature matrices and produce a real number. Various kernel functions are available, 

such as KPCA, KLDA, RBF, and Fisher kernel [22]. In essence, kernel functions function on vectors and square matrices; however, the 

representation matrices of real data, such as shot-feature matrices, are not square. Almost all current techniques reduce input non-square 

matrices to make them compatible with kernel functions, leading to a loss of certain data. In this study, we have broadened the idea of the 

determinant concerning non-square feature matrices processing. We will proceed with the kernel presented in [22] for non-square matrices 

based on the non-square determinant definition [23] and utilize Chio-like techniques modified by the authors [24] and [25], evaluating the 

efficacy of the resulting kernels by retrieving movie video clips where shots are manually segmented. Kernels and determinants represent 

two essential concepts in linear algebra, especially regarding matrices. A matrix is a set of numbers arranged in rows and columns so as to 

form a rectangular array. The kernel of a matrix consists of the set of vectors that yield a zero vector when multiplied by the matrix. The 

determinant of a matrix is a scalar quantity derived from its elements that signifies specific characteristics of the matrix. Kernels and 

determinants find applications across various fields, such as physics, engineering, economics, and computer science. In computer science, 

image processing uses kernels as well as determinants [26]. 

 Kernels are mathematical functions that accept two inputs and calculate a similarity metric between them. Determinant kernels are a 

specific type of kernel that employs the determinant of matrices (commonly obtained from feature or covariance matrices) to measure the 

similarity between two data points or sets of features. In CBVR, determinant kernels are utilized by incorporating them into different phases 

of the retrieval process: extracting features, calculating similarity through determinant kernels, and ordering results according to the simi-

larity scores. CBVR has evolved from manual descriptors toward deep representations, and from simple vector distances toward learned 

similarity functions. However, variable-length shots naturally form non-square feature matrices, and forcing these into square representa-

tions can discard structural information. Determinant kernels provide matrix-level similarity that captures higher-order dependencies, but 

their use in CBVR is constrained by the computational cost of non-square determinant evaluation. This gap motivates the enhanced Chio-

like method evaluated in this work. 

3. Methodology 

The methodology in this research is comprised of an analytical approach as well as simulation with Matlab and a video dataset. In our 

simulation, we selected about 500 video shots which were manually annotated and splitted and where during sampling process of selection 

of key-frames, we always selected larger number of key-frames for database videos. By simulation we have compare the processing effi-

ciency of video retrieval of newly developed Chio-like algorithm against earlier one [24] and [25]. Although the algorithms' pseudocode 

are generalized to be executed in any environment, for this simulation we have used in MATLAB 2021b version environment, in Asus 

ROG Flow Z13, with 12th Gen Intel(R) Core(TM) i7-12700H, 16.0 GB of RAM, NVIDIA GeForce RTX 3050 GPU. For this simulation 

we have used a video dataset segmented into precise shots. During the video transformation process for video retrieval purposes, initially 

the features of the query video as well as the features of the videos in the database are transformed and represented with the relevant 

matrices. Features in our case are colors. Although we use color histograms as the baseline feature representation, the proposed similarity 

computation is agnostic to feature type. Any per-frame/shot descriptor (e.g., LBP texture, motion descriptors, optical-flow statistics, or 

deep CNN/video embeddings) can be arranged into a shot-feature matrix, after which the same Gram-matrix and non-square determinant 

kernel computation applies. Further, the features of the videos, in order to compare their similarity, are transformed into the matrix known 

as the Gram matrix, which represents the scalar product of dots (further dot product) between two matrices. After creating the Gram matrix, 

the kernel-determinant is calculated for video retrieval. The input to the kernel determinant function is a scalar product from the feature 

matrices. The Kernel function takes the input points (features) and returns a real number that represents the level of their similarity, while 

the kernel itself in this case is calculated by means of the determinant. Since videos generate non-square feature matrices due to their 

dynamicity, their kernel is very complex to calculate depending on the size of the feature matrix. Two feature matrices were compared 

using the determinant kernel for non-square matrices where the output is a real number; the determinant-kernel produces a real-valued 

similarity score whose absolute magnitude can be very small; therefore, in retrieval we interpret it comparatively, where higher scores 

indicate higher similarity between the two shots. Determinant-kernel scores may appear very small in absolute magnitude because the 

determinant combines correlation information across multiple key frames into a single scalar value, and its scale depends on the size of the 

matrices involved. This behavior is normal for determinant-based similarity measures in high-dimensional settings. In our CBVR pipeline, 

the determinant score is used as a similarity indicator: for a fixed query, database shots that are more similar produce higher scores than 

less similar shots. To ensure consistent interpretation of similarity scores, we apply the same feature normalization procedure to all key-

frame descriptors before forming the Gram matrix. In addition, we report determinant scores consistently (in scientific notation) and inter-

pret retrieval outcomes using score ordering for each query. This makes the comparison transparent and ensures that the ranking reflects 

similarity rather than differences in raw feature scaling. If A is feature-matrix of a shot with m key frames and B is feature-matrix of a shot 

with n key frames, then for Cmxn(m ≤ n) we have: 

 

Cmxn = A ∗ BT                                                                                                                                                                                               (1) 

 

Following the works of authors in [24] and [25], we have enhanced further the mathematical and algorithmic model which is published in 

our previous [1] by which we have performed the simulations and the results are presented in the result section and discussion. In the 

following we will present initially the two initial theorems and algorithms of above mentioned authors which have provided the foundation 

in our new theorem 3 and corresponding algorithm det_Chio3: 

 

Theorem 1: [24] (Chio’s-like method for rectangular determinants): For rectangular determinants of the order 𝑚 × 𝑛, in cases for 

2 × 3, 2 × 4 and 3 × 4, the following formula holds: 



International Journal of Basic and Applied Sciences 507 

 
 

|

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

|

m×n

=
|Ac|

a11
m−2 + (−1)m |

a12 a13 ⋯ a1n

a22 a23 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am2 am3 ⋯ amn

|

m×(n−1)

                                                                                           (2) 

 

Where: 

 

|Ac| = ||

|
a11 a12

a21 a22
| ⋯ |

a11 a1n

a21 a2n
|
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|
a11 a12

am1 am2
| ⋯ |

a11 a1n

am1 amn
|

||

(m−1)×(n−1)

                                                                                                                                   (3) 

 

And a11 ≠ 0. 

Proof of Theorem 1: See Theorem 2.2 in [24]. 

 

Theorem 2: [25] Suppose that 𝐴 is rectangular matrix of order 𝑚 × 𝑛, 𝑚 > 3 and 𝑚 ≤ 𝑛 − 1, its determinant can be calculated using 

formula below: 

 

|

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

|

m×n

=                                                                                                                                                                       (4) 

 

=  
|Ac1|

|
a11 a12
a21 a22

|
m−3 + (−1)m |
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a22 − a21 a23 ⋯ a2n

⋮ ⋮ ⋱ ⋮
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|

m×(n−1)

  

 

Where: 

 

|Ac1| =

|

|
|

a11 a12 a13
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a31 a32 a33

| ⋯ |

a11 a12 a1n

a21 a22 a2n
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|
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|

a11 a12 a13
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| ⋯ |

a11 a12 a1n

a21 a22 a2n

am1 am2 amn

|
|

|

(m−2)×(n−2)

                                                                                                            (5) 

 

And 

 

 |
a11 a12

a21 a22
| ≠ 0. 

 

Proof of Theorem 2: See Theorem 4 in [25] 

Following the approach of authors in [24] and [25] of using Chio-like methods for non-square determinants we have further improved, 

since our approach reduces determinant for four orders. 

 

Theorem 3: Suppose that 𝐴 is rectangular matrix of order 𝑚 × 𝑛, 𝑚 > 5 and 𝑚 ≤ 𝑛 − 1, its determinant can be calculated using formula 

below: 

 

|

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

|

m×n

=  

 

=  
|Ac2|

|

a11 a12 a13 a14

a21 a22 a23 a24
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|

m−5  + |
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⋮ ⋮ ⋮ ⋮ ⋱ ⋮
am1 am2 am4 − am3 am5 ⋯ amn

|

m×(n−1)

                                                                                        (6) 

 

+ |

a12 − a11 a14 − a13 ⋯ a1n
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⋮ ⋮ ⋱ ⋮
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|

m×(n−2)

+ (−1)m |

a12 − a11 a13 ⋯ a1n
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⋮ ⋮ ⋱ ⋮
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|

m×(n−1)
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                                                                         (7) 

 

Proof of Theorem 3: See Theorem 3 in [1]. 

In the following is the corresponding algorithm of Theorem 3 as well as essential steps of the algorithms of Theorem 1 and 2 essential to 

our simulation: 

Pseudocode of det_Chio3 algorithm for Theorem 3 [1]: (Enhanced Chio’s-like) method to calculate rectangular determinants of order 

m × n, m > 5 and m ≤ n − 1 

 

Step 1: Check edge cases 

 if m > n 

   d = 0 

   return d 

end 

if m == n or m < 5 

   d = Radic_Definition(A) // use Radic or standard determinant 

   return d 

end 

 

Step 2: Calculate Pivot Block 

 

Pivot = det(A(1:4, 1:4)) // 4×4 determinant 

if Pivot == 0 

   Interchange rows to make Pivot ≠ 0 

   Pivot = det(A(1:4, 1:4)) // recompute 

end 

 

Step 3: Build Condensed Matrix B 

Initialize B = zeros(m−4, n−4) 

   for i = 5 to m 

   for j = 5 to n 

  B(i−4, j−4) = det(A([1,2,3,4,i], [1,2,3,4,j])) // 5×5 determinant 

   end 

 end 

 

Step 4: Compute Subtracted Columns 

 

Sub1 = A(:,2) − A(:,1) // m×1 

 

Sub2 = A(:,4) − A(:,3) // m×1 

 

Step 5: Recursive Chio4 Calls 

T1 = det_Chio4(B) 

T2 = det_Chio4([A(:,1:2) Sub2 A(:,5:n)]) // m×(n−1) 

T3 = det_Chio4([Sub1 Sub2 A(:,5:n)]) // m×(n−1) 

T4 = det_Chio4([Sub1 A(:,3:n)]) // m×(n−2) 

 

Step 6: Combine Determinants 

 

d = T1 / Pivot^(m−5) + T2 + T3 + (−1)^m * T4 

 

return d 

 

Essential step of the algorithm of Theorem 1 [24]: 

Step 5: Calculate the final result of non-square determinant 

 

d = 1/A(1,1)^(m - 2) * det_Chio(B) + (-1)^m * det_Chio(A(1:m, 2:n)); 
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Step 5: Display the result of the determinant 

Essential step of the algorithm of Theorem 2 [25]: 

Step 4: Calculate the result of non-square determinant 

 

Sub1 = A(:,2) − A(:,1) //m×1 

 

d=det_Chio2(B)/Pivot^(m- 3)+(1)^m*det_Chio2([Sub1 A(:,3:n)]); 

 

In the following is shown the pseudocode if the simulation: 

 

load "query" 

Query ← QueryFeatureMatrix 

 

for each file in filenames: 

 

 load featureMatrix from file 

 A ← DataSetFeatureMatrix 

 

 B ← Query × transpose(A) 

 

 start timer 

 det1 ← det_C1(B) 

 t1 ← elapsed time 

 

 start timer 

 det2 ← det_C2(B) 

 t2 ← elapsed time 

 

 start timer 

 det3 ← det_C4(B) 

 t3 ← elapsed time 

 

 Δ12 ← t1 − t2 

 Δ13 ← t1 − t3 

 Δ23 ← t2 − t3 

 

 P12 ← 100 × (t1 / t2 − 1) 

 P13 ← 100 × (t1 / t3 − 1) 

 P23 ← 100 × (t2 / t3 − 1) 

 

end for 

4. Results and Discussion 

This section evaluates the performance of the enhanced Chio-like method within the determinant-kernel CBVR pipeline. Computation time 

and similarity score behavior were examined across about 500 video shots comparisons using three determinant computation methods: the 

original Chio-like method (Theorem 1), the modified version (Theorem 2), and the proposed enhanced method. In the following we have 

tested the video retrieval by generating similarity scores as well as execution time of the algorithm presented above and compared with the 

execution time of algorithms based on Theorem 1 (see: Algorithm 2.3 in [24]), and Theorem 2 (see: P2 in [25]), and the results are presented 

in the following Table 1: 

 
Table1: Similarity Scores and Processing Efficiency 

Shot Nb Similarity Score Theorem1 Theorem2 Theorem3 1-3 2-3 1-3% 2-3% 

14 3.44E-40 3.87 2.96 2.84 1.03 0.12 27% 4.2% 

7 1.41E-39 4.38 3.32 3.24 1.14 0.09 26% 2.6% 

8 1.56E-39 5.91 4.50 4.36 1.55 0.14 26% 3.0% 
17 3.35E-34 3.82 2.92 2.84 0.99 0.08 26% 2.9% 

18 7.62E-34 3.84 2.96 2.86 0.98 0.10 25% 3.3% 
36 4.28E-33 0.00 0.00 0.00 0.00 0.00 27% 2.2% 

40 9.40E-33 5.76 4.42 4.58 1.18 0.16 20% 3.7% 

3 9.57E-33 3.81 2.92 2.87 0.94 0.06 25% 1.9% 
18 1.93E-32 0.10 0.07 0.07 0.04 0.00 35% 2.8% 

6 4.52E-32 0.00 0.00 0.00 0.00 0.00 30% 3.8% 

18 8.15E-32 3.77 3.03 2.90 0.87 0.13 23% 4.4% 
4 2.39E-31 0.94 0.69 0.71 0.23 0.01 25% 2.1% 

3 4.14E-31 3.72 2.83 2.89 0.83 0.06 22% 2.1% 

33 7.91E-31 4.19 3.07 2.98 1.21 0.09 29% 2.9% 
7 1.16E-30 3.76 2.89 2.84 0.92 0.05 24% 1.8% 

41 1.22E-29 4.26 3.09 2.99 1.26 0.09 30% 3.0% 

29 6.11E-29 3.72 3.03 2.94 0.79 0.09 21% 2.9% 
16 8.65E-29 0.01 0.01 0.01 0.00 0.00 27% 1.9% 

24 2.06E-28 0.09 0.06 0.07 0.02 0.00 25% 2.8% 

38 3.36E-28 3.78 2.90 3.02 0.76 0.12 20% 4.3% 
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36 4.53E-28 3.83 2.97 3.11 0.72 0.14 19% 4.8% 

42 5.25E-28 6.02 4.57 4.43 1.59 0.14 26% 3.0% 

40 8.37E-28 0.56 0.39 0.41 0.15 0.01 27% 2.7% 

13 1.07E-27 0.02 0.02 0.02 0.01 0.00 24% 4.7% 

25 2.52E-27 3.74 2.84 2.96 0.78 0.11 21% 4.0% 
11 4.44E-27 0.00 0.00 0.00 0.00 0.00 26% 4.9% 

63 6.29E-27 3.93 2.98 2.92 1.01 0.06 26% 1.9% 

4 7.30E-26 0.00 0.00 0.00 0.00 0.00 18% 2.0% 
5 8.02E-26 3.80 2.89 2.82 0.98 0.07 26% 2.6% 

37 3.82E-25 0.18 0.13 0.13 0.04 0.00 25% 3.7% 
   Average improvement 25.0% 3.09% 

 

Beyond computational efficiency, an important conceptual advantage of determinant‑kernel similarity is its ability to reflect higher‑order 

(multilinear) dependencies across the entire key‑frame feature matrix. Vector-based similarities such as cosine and Euclidean similarity 

typically require pooling frame information into a single descriptor, which can suppress cross‑frame dependency structure. In contrast, 

determinant-based similarity operates at the matrix level and is sensitive to joint correlation structure across multiple frames; it naturally 

penalizes redundancy among key‑frame feature vectors (driving the determinant magnitude toward zero) and yields higher scores when 

correlations across frames are jointly consistent. This provides a mechanism to exploit multi-frame structure that may be under-represented 

in purely vectorized similarity measures. 

4.1. Computational efficiency and similarity behaviour of determinant kernels 

Table 1 shows that the proposed method achieves the fastest computation time for every individual shot in the dataset. Across about 500 

executions, it attains an average execution time reduction of 25% compared to Theorem 1 and 3.1% compared to Theorem 2. The improve-

ment is consistent across all trials, indicating that reducing determinant order by four in each step—produces a measurable and stable 

computational benefit. The enhanced algorithm maintains both structural equivalence and identical determinant outputs while reducing 

intermediate operations, which explains the consistent speed increase. All three methods output identical similarity scores for every shot, 

confirming that the computational optimization does not alter the determinant value. The determinant magnitudes are in the range of 

approximately 10⁻³¹ to 10⁻⁶⁰, reflecting the high-dimensional Gram-matrix products commonly produced in video-feature correlations: 

database video shots visually more similar to the query video shot consistently yield higher determinant values, while unrelated shots 

produce smaller values. This behavior aligns with the determinant-volume interpretation of the similarity kernel used in the experiment, 

where higher cross-correlation between key frame distributions leads to larger determinant values. Figure 1 illustrates this behavior for 

high-similarity and low-similarity examples, where score differences correspond to observable differences in visual content. In the follow-

ing is presented the graphical view Figure1 of the comparison presented on Table1: 

 

 
Fig. 1: Runtime Comparison of Determinant Computation Methods (Theorem 1: Original Chio-Like; Theorem 2: Modified; Theorem 3: Enhanced) for the 
Representative Query–Shot Comparisons Listed in Table 1. 

 

Highest similarity score is achieved with itself that is 3.82E-25. The experimental findings demonstrate that determinant-based similarity 

functions are practical and effective for Content-Based Video Retrieval when combined with an efficient determinant computation algo-

rithm. The enhanced Chio-like method provides a clear computational advantage without modifying the mathematical output of the deter-

minant kernel. The ability of determinant kernels to capture higher-order dependencies is clearly reflected in the similarity-score distribu-

tion: visually similar shots consistently produce higher determinant values. This behavior supports the view that determinants encode multi-

perspective correlation structures across all key frames, unlike vector-based similarity measures that collapse frame information into low-

dimensional descriptors. Another key insight is that the optimized algorithm scales well with dataset size. The consistent 25% speed-up 

over Theorem 1 and the further 3.1% gain over Theorem 2 show that the enhanced method reduces computation while preserving the 

structural properties of determinant kernels. This efficiency makes determinant kernels suitable for large-scale or near-real-time CBVR 

systems, where traditional determinant computation would be very costly. 
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5. Conclusion and Future Work 

This work demonstrates that determinant kernels can be applied efficiently and effectively in Content-Based Video Retrieval when sup-

ported by an optimized Chio-like determinant algorithm. The enhanced method reduces the determinant order by four per iteration, resulting 

in a consistent 25% faster performance over the standard Chio-like method and 3.1% faster performance compared to its modified variant, 

while preserving identical similarity outputs. The results confirm that determinant kernels can be computed efficiently without sacrificing 

retrieval performance. Future work will explore optimized implementations in lower-level languages, the integration of learning-based 

feature representations, and the application of the determinant kernel to additional domains such as video classification and cross-modal 

retrieval. On the other hand, scalability on the for large-scale CBVR can be addressed by (i) offline pre-computation of shot-level feature 

matrices, (ii) candidate-set pruning using inexpensive approximate similarity measures or approximate nearest-neighbour indexing, and 

(iii) batched determinant computations on GPU/parallel hardware. Together with a lower-level implementation of det_Chio3, these strate-

gies enable near-real-time deployment. 
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