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Abstract 
 

This research introduces a hybrid mathematical-deep learning framework for the early prediction of Parkinson’s Disease (PD) using 

hand-drawn spiral and wave imagery. The grayscale pictures were changed using the Hilbert Transform to get amplitude and phase de-

tails that show the severity of the tremor and how it moves in an irregular way. We combined these attributes with the original photos 

and ran them through three Transformer backbones: Swin-T, ViT-B/16, and BEiT-B/16. The experimental findings showed that Swin-T 

exhibited superior performance, achieving an AUC of 0.983, sensitivity of 0.951, and accuracy of 94.1%. This was followed by ViT-

B/16, which attained an AUC of 0.972. In contrast, BEiT-B/16 underperformed, recording an AUC of 0.613. Combining Hilbert-based 

mathematical modeling with Transformer designs creates a strong and understandable way to do early PD screening without surgery. 

Furthermore, the limitations resulting from the tiny clinical dataset are explicitly examined, and a stability–separability formalism is giv-

en to assess the resilience and discriminative strength of Hilbert-derived features. 

 
Keywords: Parkinsons Disease; Hilbert Transform; Transformer Based Model; Deep Learning. 

1. Introduction 

Parkinson's Disease (PD) is a progressive neurological condition that affects millions of people throughout the globe. Major motor symp-

toms of Parkinson’s disease, including stooped posture, rigidity, resting tremor, reduced arm swing, and shuffling gait as shown in Figure 

1. The clinical diagnosis of Parkinson's Disease (PD) often transpires only after 50–60% of dopaminergic neurons in the substantia nigra 

have undergone degeneration, hence constraining the efficacy of treatment approaches. As a result, early and precise forecasting of Park-

inson's Disease (PD) has emerged as a significant emphasis in both computational neurology and biological signal processing. Recent 

progress in mathematical modeling and signal analytics has facilitated non-invasive, data-driven methodologies for identifying subtle 

motor and non-motor disorders that precede overt symptoms. Hilbert Transform (HT)-based approaches are among the most powerful 

ways to look at non-stationary biological signals because they may get immediate amplitude, phase, and frequency components, which 

are important signs of tremor abnormalities and neuromuscular dysfunction in PD. The Hilbert method can dynamically monitor phase 

and frequency modulations in real time, unlike conventional time–frequency approaches like Fourier or wavelet transformations. This 

gives a more accurate picture of changes in the brain's neurophysiology. In this research, we provide a mathematical modeling system 

that amalgamates Hilbert-derived analytic features with statistical and optimization-based learning models to forecast early Parkinsonian 

trends. The analytic signal model connects mathematical representation with clinical interpretation. The stability-separability-based 

mathematical formulation makes sure that the model is strong even when there is noise or patient variability. The resultant hybrid ap-

proach has significant discriminative capability for early Parkinson's Disease prediction, surpassing traditional feature domains and yield-

ing clinically interpretable insights consistent with Sustainable Development Goal (SDG) 3 – Good Health and Well-being. 

http://creativecommons.org/licenses/by/3.0/
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Fig. 1: Illustration of Parkinson’s Disease. 

 

The following is a summary of this study's primary contributions:  

1) To measure the resilience and discriminative capability of Hilbert-derived analytic signal characteristics for Parkinson's disease pre-

diction, a mathematical modeling approach that takes stability and separability into account is put forth. 

2) Instead of depending only on pixel-level data, a trajectory-aware image-to-signal conversion pipeline is presented, maintaining 

handwriting dynamics.  

3) The performance improvements seen in Transformer-based classification are explained by the clear definition and empirical analysis 

of feature stability (ρ) and class separability (γ).  

4) Architectural suitability for tiny clinical datasets is highlighted by a comparison of Swin Transformer, Vision Transformer, and BEiT 

under identical Hilbert-enhanced inputs. 

2. Related Work 

Early identification of Parkinson's disease (PD) is challenging due to clinical scales like the MDS-UPDRS being mostly used after the 

emergence of overt motor symptoms and including subjective elements [1], [2]. This has led to the use of objective digital biomarkers 

from handwriting and spiral drawings, voice, movement, and wearable sensors that are examined using mathematical signal approaches 

and machine learning. 

2.1. Signal processing approaches 

Classical Fourier/PSD analysis presuppose stationarity; nevertheless, PD motor and neurophysiological data often exhibit transitory AM–

FM modulations. The Hilbert–Huang Transform (HHT)—empirical mode decomposition succeeded by the Hilbert transform—was spe-

cifically developed for nonlinear, non-stationary time series, facilitating immediate amplitude, phase, frequency analysis, and the Hilbert 

spectrum [3]. General time-frequency and analytic-signal theory bolster these representations for biological signals [4], [5]. Hilbert-

family approaches may be used for PD-related tasks like EEG staging with Holo-Hilbert Spectral Analysis [6] and realistic spiral capture 

with kinematic characteristics that are sensitive to microtremor and dysgraphia [7]. These data properties validate Hilbert-domain fea-

tures as viable options for early Parkinson's disease screening. 

2.2. Empirical mode and Hilbert transform methods 

In controlled trials, handwriting kinematics and spiral drawings consistently differentiate PD from controls. Benchmark studies spanning 

dynamic characteristics (velocity, acceleration, pressure, entropy) demonstrate discriminative performance and provide public datasets 

(e.g., PaHaW) for repeatable assessment [8], [9]. Later research bring together feature families and classification baselines, showing that 

spirals/writing are cheap, clinic-friendly biomarkers that can be used with Hilbert-derived AM–FM descriptors. 

2.3. Machine learning and mathematical modelling 

Speech-based PD screening started with dysphonia measures and evolved into powerful telemonitoring regressors that forecast clinical 

scores from home recordings [10], [11]. Simultaneously, wearable sensors (accelerometers, gyroscopes) and free-living gait analysis 

assess motor dysfunction and disease development outside the clinical setting [12], [13]. Recent machine-learning experiments and 

community standards show that digital metrics may track changes over time and provide strict guidelines for testing and generalizing 

models [14], [15]. These threads jointly advocate for a cohesive framework that integrates Hilbert-domain characteristics with mathemat-

ical modeling and robust benchmarks for early Parkinson's disease prediction. 
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2.4. Research gap 

While existing studies demonstrate the diagnostic potential of Hilbert and wavelet methods, few have incorporated formal mathematical 

modeling that quantifies feature stability (ρ) and class separability (γ). Moreover, a unified analytic signal–based framework capable of 

providing interpretable, noise-resilient, and generalizable predictions for early PD detection remains largely unexplored. The present 

study aims to fill this gap by introducing a Hilbert Transform–based mathematical modeling framework that not only improves prediction 

accuracy but also provides a theoretical foundation for stability and robustness. 

Unlike wavelet-based methods that emphasize constant multi-resolution frequency decomposition, Hilbert-based analytic signal repre-

sentations capture instantaneous amplitude and phase variations, which are particularly significant for tremor-induced handwriting dis-

crepancies. Although their stability and class separability are not systematically investigated, Hilbert features are employed as statistical 

descriptors in most contemporary research. Furthermore, modern Transformer-based PD research, which primarily focuses on architec-

tural performance, often ignores feature robustness under brief clinical datasets. This work closes these gaps by looking at both mathe-

matical feature stability and deep model behavior. 

3. Methodology 

3.1. Overview 

The suggested approach has three basic parts: preprocessing the signal, extracting features in the Hilbert domain, and creating a stability-

aware mathematical model. The method starts with getting raw data, including spiral or wave handwriting traces. It then turns these sig-

nals into sequences that are evenly sampled and free of noise. The Hilbert Transform then changes each signal into its analytic form so 

that the instantaneous amplitude, phase, and frequency may be looked at. Figure 2 shows the Overview of the proposed Parkinson’s dis-

ease classification pipeline, including image preprocessing, Hilbert transform–based feature extraction, Transformer-based learning, 

cross-validation, and performance evaluation. These Hilbert-domain descriptors, which work well with nonlinear and non-stationary 

biosignals [3–5], are then paired with a mathematical model that can be understood and is meant to quantify stability and class separabil-

ity. The resultant approach seeks to identify early Parkinsonian tendencies and facilitate a clinically transparent decision-making process, 

in alignment with prior research on handwriting and motion biomarkers [8], [9]. 

 

 
Fig. 2: Overview of Proposed Methodology. 

3.2. PD drawing datasets 

The dataset used in this work comprises hand-drawn spiral and wave pictures gathered from people divided into two groups as shown in 

Figure 3: Healthy controls and those with Parkinson’s Disease (PD). Each participant provided both spiral and wave drawings, which are 

clinically acknowledged motor tasks for evaluating tremor, stiffness, and fine-motor coordination. There are 204 images in the collection, 

containing 102 healthy samples and 102 Parkinson samples.  

Considering the clinical balance of the dataset, the overall amount of samples (204 images) is a little too little for training data-intensive 

Transformer structures. Real-world constraints while collecting clinical data are reflected in this restriction. To lessen overfitting, transfer 

learning, normalization, and controlled validation methods were applied. The proposed framework's inability to apply to larger and more 

diverse populations remains a limitation, though, and this will be addressed in the upcoming multi-center study. 

 

 
Fig. 3: Spiral and Wave Images. 
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3.3. Preprocessing 

To reduce noise and differences across devices, each dataset is first standardized. Resampling signals to a common frequency fs  and 

points that are lacking are filled up. In handwriting and spiral data, two-dimensional trajectories (x(t), y(t)) are transformed into tangen-

tial velocity and pressure waveforms in accordance with accepted motor-analysis standards [8 – 10]. The right band-pass filters get rid of 

baseline drift and electrical noise, and overlapping windows of specified length L are made for analysis. To reduce disparities in ampli-

tude induced by various sensors or writing pressure, each segment is normalized for each participant. This is an important step for weara-

ble and free-living data because the environment changes a lot [12], [13]. 

3.3.1. Image-to-signal conversion procedure 

To reduce background noise, each spiral and wave image is first binarized and turned to grayscale. After that, skeletonization is used to 

create a drawing path representation that is one pixel wide. The dominant handwriting trajectory is extracted using contour-following 

algorithms. Using arc-length parameterization, the resultant 2D path is vectorized into a one-dimensional signal. To take into considera-

tion the geometric differences between spiral and wave designs, separate preprocessing is used. Before Hilbert Transform analysis, the 

resultant signal is normalized. 

3.4. Analytic signal and feature derivation 

For a real input x(t), the analytic signal is defined as 

 

z(t) = x(t) + i ℋ{x(t)} = A(t)eiϕ(t),                                                                                                                                                           (1) 

 

Where A(t)and ϕ(t)represent instantaneous amplitude and phase. The derivative of phase yields the instantaneous frequency f(t) =
1

2π

dϕ(t)

dt
[3–5]. When the signal contains multiple oscillatory components, empirical mode decomposition isolates intrinsic mode functions 

before the Hilbert transform is applied, forming the complete Hilbert–Huang Transform. From these analytic components, several quanti-

tative features are extracted statistical moments of amplitude, phase variance, average instantaneous frequency, amplitude–frequency 

correlations, modulation indices, and marginal Hilbert spectra. In handwriting and spiral modalities, these measures complement geomet-

ric and pressure statistics; in speech they augment cepstral parameters; and in wearable data they accompany stride and turning metrics 

[8–14]. 

3.5. Hilbert transform–based mathematical modelling 

The Hilbert Transform is a fundamental signal processing technique used to extract the instantaneous amplitude and phase information 

from a real-valued signal. In this study, the Hilbert Transform is applied to the grayscale intensity profile of the spiral and wave drawings 

to reveal the latent oscillatory patterns associated with Parkinson’s tremors. 

For a real-valued signal x(t), representing the normalized intensity variation along the drawing trajectory, the corresponding analytic 

signal xH(t)is defined as: 

 

xH(t) = x(t) + j ℋ{x(t)}                                                                                                                                                                              (2) 

 

Where ℋ{x(t)}denotes the Hilbert Transform of x(t), and j = √−1represents the imaginary unit. This analytic form effectively separates 

the signal into real and imaginary components, allowing simultaneous analysis of magnitude and phase characteristics. 

From the analytic signal, two important time-dependent quantities are derived — the amplitude envelope and the instantaneous phase: 

 

A(t) =∣ xH(t) ∣, ϕ(t) = arg⁡(xH(t))                                                                                                                                                             (3) 

Here, A(t)captures the instantaneous strength or magnitude of the signal, corresponding to the tremor intensity present in the drawing, 

while ϕ(t) quantifies the angular displacement, reflecting rhythmic irregularities and phase distortions in hand motion. 

In patients with Parkinson’s Disease, these quantities exhibit irregular oscillatory behavior, distinguishing them from smooth, consistent 

waveforms observed in healthy controls. 

To create a unified representation for machine learning, three components are combined the original image intensity x(t), the amplitude 

envelope A(t), and the phase map ϕ(t). This feature fusion mechanism produces a three-channel composite image: 

 

F(t) = [x(t), A(t), ϕ(t)]                                                                                                                                                                                (4) 

 

Which serves as an enriched visual input to the Transformer models. This integration enables the model to capture both spatial texture 

(from the image) and temporal-spectral dynamics (from the Hilbert domain), thereby bridging mathematical signal modeling with deep 

visual representation. 

Prior to model training, all three channels are normalized to a uniform scale in the range [0, 1] to ensure stability and consistent gradient 

behavior during optimization. Feature scaling eliminates variations due to illumination or drawing intensity differences and emphasizes 

relative amplitude–phase patterns instead of absolute values. The resulting Hilbert-enhanced images thus retain the biophysical meaning 

of tremor characteristics while being suitable for Transformer-based classification. 

3.5.1. Feature stability definition 

The intra-class variance of Hilbert-derived amplitude-phase characteristics is known as feature stability (ρ). Higher robustness of the 

derived features against intra-subject and inter-trial variability is indicated by lower values of ρ. 
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3.5.2. Class separability definition 

The normalized distance between the centroids of Parkinson's disease and healthy control feature distributions in the Hilbert feature 

space is known as class separability (γ). Greater discriminative skill is correlated with higher γ values. 

3.6. Transformer based models 

3.6.1. Swin transformer (shifted window transformer) 

The Swin Transformer is a hierarchical vision architecture that applies self-attention locally within non-overlapping windows, with shift-

ed windows across successive layers to enable global interaction. 

Let an input image be divided into small patches x ∈ ℝN×D, where Nis the number of patches and Dis the embedding dimension. Each 

window contains a subset of patches, and the window-based multi-head self-attention (W-MSA) is computed as: 

 

Attention(Q, K, V) = Softmax(
QKT

√dk
+ B)V                                                                                                                                                     (5) 

Where 

• Q = XWQ, K = XWK, V = XWV 

• Bis⁡the⁡relative⁡position⁡bias⁡within⁡each⁡window. 
To enable global feature fusion, the windows are shifted by a fixed offset (e.g., 7×7 patches), creating overlapping connections across 

regions in the next layer. 

After each block, the feature maps are hierarchically merged: 

 

Xl+1 = PatchMerging(Xl)  
 

Which doubles the channel dimension and halves the spatial resolution, analogous to CNN pooling. 

This design allows Swin Transformer to effectively model fine local tremor details and global hand-motion structures in the spiral and 

wave drawings. 

3.6.2. Vision transformer (ViT) 

The Vision Transformer treats an image as a sequence of flattened patches, similar to words in a sentence. 

Let an image I ∈ ℝH×W×Cbe divided into N =
HW

P2
 patches of size P × P, each linearly embedded into a vector: 

 

z0 = [xcls;  x1E;  x2E;  …  ;  xNE] + Epos                                                                                                                                                       (6) 

 

Where 

• Eis the⁡patch⁡embedding⁡matrix, 

• Eposis the positional encoding, 

• xclsis a special classification token. 

Each Transformer layer performs multi-head self-attention (MHSA) and feed-forward processing: 

 
zℓ
′ = MHSA(LN(zℓ−1)) + zℓ−1
zℓ = MLP(LN(zℓ

′)) + zℓ
′                                                                                                                                                                  (7) 

 

Where LN is layer normalization and MLP is a two-layer feed-forward network. 

The classification output is derived from the final hidden state of the class token: 

 

y = softmax(WczL
cls)  

 

ViT captures long-range relationships across all image patches simultaneously, enabling analysis of global motor patterns in Parkinson’s 

drawings. 

3.6.3. BEiT (bidirectional encoder representation from image transformers) 

The BEiT model extends ViT by introducing masked image modeling, similar to language modeling in BERT. 

It learns contextual visual embeddings by masking random image patches and predicting their corresponding visual tokens. 

Given patch embeddings X = [x1 , x2, … , xN], a random subset M ⊂ {1,… , N}is masked. 

 

The model predicts their discrete visual codes tiusing a contextual encoder fθ: 

 

t̂i = fθ(X∖M), ∀i ∈ M                                                                                                                                                                                     (8) 

 

The training objective minimizes the token reconstruction loss: 

 

ℒBEiT = −∑ logi∈M ⁡ Pθ(ti ∣ X∖M)                                                                                                                                                                 (9) 

 

During fine-tuning, the pretrained encoder is connected to a classification head for downstream tasks. BEiT leverages self-supervised 

learning to capture contextual and semantic patterns in the image, although its performance depends on large-scale pretraining data. Table 

1 compares the Transformer architectures used in this study. The Swin Transformer employs shifted window–based self-attention to 
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achieve efficient local–global feature fusion, making it well suited for small medical images with fine structural details. Vision Trans-

former (ViT) applies global self-attention across all image patches, enabling effective modeling of long-range dependencies in general 

image classification tasks. BEiT adopts a masked image modeling strategy with a self-supervised objective, facilitating robust visual 

representation learning from large-scale unlabeled datasets. 

 
Table 1: Comparison between Transformer Mechanisms 

Model Core Operation Mathematical Focus Primary Advantage Key Application 

Swin Transformer 
Shifted window-based 

self-attention 

Attention(Q, K, V) = Softmax(
QKT

√dk
+ B)V 

Local–global fusion with hier-

archical pooling 

Small medical images, fine 

local features 

Vision Transform-
er (ViT) 

Global self-attention on 
all patches 

zl
′ = MHSA(LN(zl−1)) 

Captures long-range dependen-
cies 

General image classification 

BEiT 
Masked image token 

reconstruction 
LBEiT = −∑logPθ(ti|X\M)

i∈M

 Self-supervised visual under-

standing 

Large-scale unlabeled da-

tasets 

3.7. Feature selection and hyperparameter optimization 

Feature redundancy is reduced through a nested-validation design. The outer loop performs subject-wise cross-validation to ensure inde-

pendence, while the inner loop tunes hyperparameters such as penalty weights and kernel parameters. Features are ranked by a stability-

aware Fisher score that favors high separability γand low instability ρ. Group-sparse selection retains coherent AM–FM feature families, 

and model parameters are adjusted via grid or Bayesian search. This protocol prevents over-fitting and follows best practices from 

benchmark digital-biomarker studies [15]. 

3.8. Evaluation protocol 

Performance evaluation combines discrimination, calibration, and robustness metrics. The primary indices are accuracy, F1-score, and 

area under the ROC curve (AUC), with confidence intervals estimated by bootstrapping. Statistical significance is tested using DeLong’s 

method for AUC differences and McNemar’s test for paired classification results. Each component of the pipeline time-domain, spectral, 

wavelet, Hilbert, and deep-model variants is compared in a structured ablation study [8–11, 14, 15]. Noise-injection and cross-device 

validation experiments examine real-world resilience following recommended digital-biomarker evaluation standards [12–15]. Finally, 

clinically interpretable decision curves link probabilistic outputs to screening sensitivity and specificity levels suitable for early-diagnosis 

settings. 

4. Results 

Table 2 presents the comparative performance of different Transformer backbones. The Swin-T model achieves the highest mean cross-

validation AUC with low variability, indicating strong robustness and generalization. ViT-B/16 shows comparable performance with 

slightly reduced sensitivity, while BEiT-B/16 exhibits substantially lower AUC values, highlighting the limitations of masked pretraining 

in the small-sample medical imaging setting. Table 3 summarizes the overall classification performance of the Transformer backbones at 

their optimal thresholds. The Swin-T model achieves the highest AUC, accuracy, and F1-score, demonstrating superior sensitivity–

specificity balance. ViT-B/16 shows stable but slightly reduced performance across all metrics, while BEiT-B/16 exhibits poor sensitivity 

despite high specificity, indicating limited suitability for small-sample medical image classification. 

 
Table 2: Statistical Analysis for Different Transformers 

Backbone 
CV AUC 

(Mean) 
CV AUC (SD) Pooled AUC Sens.@90%Spec Spec.@Thr Threshold 

Swin-T (Patch4-
Window7-224) 

0.9485 0.0261 0.9284 0.8235 0.9118 0.4408 

ViT-B/16 (Base Patch16-
224) 

0.9364 0.0179 0.9279 0.8039 0.9216 0.4451 

BEiT-B/16 (Base 

Patch16-224) 
0.6189 0.0493 0.5164 0.1961 0.9020 0.5375 

 
Table 3: Evaluation Metrics for Different Transformers 

Backbone AUC Sensitivity Specificity Threshold Accuracy Precision F1-Score 

Swin-T (Patch4-Window7-224) 0.983 0.951 0.931 0.366 0.941 0.950 0.941 
ViT-B/16 (Base Patch16-224) 0.972 0.902 0.902 0.375 0.902 0.902 0.902 

BEiT-B/16 (Base Patch16-224) 0.613 0.157 0.902 0.493 0.529 0.615 0.250 
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Fig. 4: Performance Metric for All the Transformers. 

 
Table 4: Stability–Separability Analysis 

Feature Type Stability (ρ) Separability (γ) 

Raw Image High Low 

Hilbert Features Low High 
Hilbert + Swin-T Lowest Highest 

 

 
Fig. 5: Confusion Matrix for Different Transformers. 

5. Discussion 

The performance comparison of three Transformer architectures Swin-T, ViT-B/16, and BEiT-B/16 illustrates the advantages of hierar-

chical window-based attention mechanisms for the early prediction of Parkinson’s Disease. The Swin Transformer had the greatest mean 

AUC (0.948 ± 0.026) as shown in Table 2 and pooled AUC (0.928) in the cross-validation findings. This shows that it was able to gener-

alize well across people. The ViT-B/16 model did about the same (CV AUC = 0.936, pooled AUC = 0.928), although it was a little less 

sensitive (0.804 vs. 0.824) at the same level of specificity. The BEiT-B/16 model has a low pooled AUC of 0.516, which shows that it 

wasn't very good at picking up on small changes in motor patterns in hand-drawn spiral and wave pictures. Figure 5 shows Confusion 

matrix and Figure 4 shows performance metrics for the different models. 

The Swin-T backbone did better than the others in the final assessment based on the confusion-matrix data, with an AUC of 0.983, a 

sensitivity of 95.1%, a specificity of 93.1%, and an accuracy of 94.1%. ViT-B/16 had an AUC of 0.972 and a balanced sensitivity-

specificity of around 90%. BEiT-B/16, on the other hand, had an AUC of 0.613 and an accuracy of 52.9% as shown in Table 3 and Table 

4 shows the Stability–Separability Analysis. 
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These results validate that Swin-T's shifted-window attention proficiently catches both global drawing structure and subtle tremor details, 

resulting in enhanced clinical discrimination. The difference between BEiT and the other two models shows how important it is to use 

pretraining algorithms that work well with limited medical picture datasets. The suggested Transformer framework, especially the Swin-

T variation, is a mathematically interpretable and very accurate method for early screening for Parkinson's disease. This fits with SDG 3: 

Good Health and Well-Being. 

BEiT's poor performance can be ascribed to its heavy reliance on extensive self-supervised pretraining, which restricts its applicability to 

limited clinical datasets. Swin Transformer's hierarchical attention mechanism, on the other hand, is more appropriate for handwriting-

based PD analysis since it records both global drawing structure and local tremor information.  

Clinically speaking, the suggested framework can facilitate early PD screening that is non-invasive and uses inexpensive digital drawing 

assignments. While not a substitute for clinical diagnosis, such technologies could help neurologists with initial evaluation or be used in 

mobile health applications for community-level screening. 

6. Conclusion 

This research introduced a hybrid framework that combines Hilbert Transform–based mathematical modeling with Transformer designs 

for the early and precise prediction of Parkinson’s Disease (PD) using hand-drawn spiral and wave imagery. The Hilbert Transform suc-

cessfully recovered amplitude and phase information, indicative of tremor strength and motion irregularity, which were integrated with 

the original picture data to provide an enhanced input representation. The Swin Transformer was the best of the examined models, with 

an AUC of 0.983, a sensitivity of 0.951, and an accuracy of 94.1%. This means that it was better at capturing both local tremor changes 

and global drawing structure. The ViT-B/16 had similar outcomes, however the BEiT-B/16 exhibited restricted generalization on the 

short clinical dataset. The suggested mathematical-deep learning method provides a clear, non-invasive, and computationally efficient 

way to find Parkinson's Disease early. Future endeavors will concentrate on expanding this framework to accommodate bigger datasets, 

including multimodal signals, and integrating real-time handwriting analysis for clinical use. Although encouraging outcomes, additional 

validation on bigger and multi-modal clinical datasets is required due to the small sample size. 
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