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Abstract

This research introduces a hybrid mathematical-deep learning framework for the early prediction of Parkinson’s Disease (PD) using
hand-drawn spiral and wave imagery. The grayscale pictures were changed using the Hilbert Transform to get amplitude and phase de-
tails that show the severity of the tremor and how it moves in an irregular way. We combined these attributes with the original photos
and ran them through three Transformer backbones: Swin-T, ViT-B/16, and BEiT-B/16. The experimental findings showed that Swin-T
exhibited superior performance, achieving an AUC of 0.983, sensitivity of 0.951, and accuracy of 94.1%. This was followed by ViT-
B/16, which attained an AUC of 0.972. In contrast, BEiT-B/16 underperformed, recording an AUC of 0.613. Combining Hilbert-based
mathematical modeling with Transformer designs creates a strong and understandable way to do early PD screening without surgery.
Furthermore, the limitations resulting from the tiny clinical dataset are explicitly examined, and a stability—separability formalism is giv-
en to assess the resilience and discriminative strength of Hilbert-derived features.
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1. Introduction

Parkinson's Disease (PD) is a progressive neurological condition that affects millions of people throughout the globe. Major motor symp-
toms of Parkinson’s disease, including stooped posture, rigidity, resting tremor, reduced arm swing, and shuffling gait as shown in Figure
1. The clinical diagnosis of Parkinson's Disease (PD) often transpires only after 50-60% of dopaminergic neurons in the substantia nigra
have undergone degeneration, hence constraining the efficacy of treatment approaches. As a result, early and precise forecasting of Park-
inson's Disease (PD) has emerged as a significant emphasis in both computational neurology and biological signal processing. Recent
progress in mathematical modeling and signal analytics has facilitated non-invasive, data-driven methodologies for identifying subtle
motor and non-motor disorders that precede overt symptoms. Hilbert Transform (HT)-based approaches are among the most powerful
ways to look at non-stationary biological signals because they may get immediate amplitude, phase, and frequency components, which
are important signs of tremor abnormalities and neuromuscular dysfunction in PD. The Hilbert method can dynamically monitor phase
and frequency modulations in real time, unlike conventional time—frequency approaches like Fourier or wavelet transformations. This
gives a more accurate picture of changes in the brain's neurophysiology. In this research, we provide a mathematical modeling system
that amalgamates Hilbert-derived analytic features with statistical and optimization-based learning models to forecast early Parkinsonian
trends. The analytic signal model connects mathematical representation with clinical interpretation. The stability-separability-based
mathematical formulation makes sure that the model is strong even when there is noise or patient variability. The resultant hybrid ap-
proach has significant discriminative capability for early Parkinson's Disease prediction, surpassing traditional feature domains and yield-
ing clinically interpretable insights consistent with Sustainable Development Goal (SDG) 3 — Good Health and Well-being.
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Fig. 1: Illustration of Parkinson’s Disease.

The following is a summary of this study's primary contributions:

1) To measure the resilience and discriminative capability of Hilbert-derived analytic signal characteristics for Parkinson's disease pre-
diction, a mathematical modeling approach that takes stability and separability into account is put forth.

2) Instead of depending only on pixel-level data, a trajectory-aware image-to-signal conversion pipeline is presented, maintaining
handwriting dynamics.

3) The performance improvements seen in Transformer-based classification are explained by the clear definition and empirical analysis
of feature stability (p) and class separability (y).

4) Architectural suitability for tiny clinical datasets is highlighted by a comparison of Swin Transformer, Vision Transformer, and BEiT
under identical Hilbert-enhanced inputs.

2. Related Work

Early identification of Parkinson's disease (PD) is challenging due to clinical scales like the MDS-UPDRS being mostly used after the
emergence of overt motor symptoms and including subjective elements [1], [2]. This has led to the use of objective digital biomarkers
from handwriting and spiral drawings, voice, movement, and wearable sensors that are examined using mathematical signal approaches
and machine learning.

2.1. Signal processing approaches

Classical Fourier/PSD analysis presuppose stationarity; nevertheless, PD motor and neurophysiological data often exhibit transitory AM—
FM modulations. The Hilbert-Huang Transform (HHT)—empirical mode decomposition succeeded by the Hilbert transform—was spe-
cifically developed for nonlinear, non-stationary time series, facilitating immediate amplitude, phase, frequency analysis, and the Hilbert
spectrum [3]. General time-frequency and analytic-signal theory bolster these representations for biological signals [4], [5]. Hilbert-
family approaches may be used for PD-related tasks like EEG staging with Holo-Hilbert Spectral Analysis [6] and realistic spiral capture
with kinematic characteristics that are sensitive to microtremor and dysgraphia [7]. These data properties validate Hilbert-domain fea-
tures as viable options for early Parkinson's disease screening.

2.2. Empirical mode and Hilbert transform methods

In controlled trials, handwriting kinematics and spiral drawings consistently differentiate PD from controls. Benchmark studies spanning
dynamic characteristics (velocity, acceleration, pressure, entropy) demonstrate discriminative performance and provide public datasets
(e.g., PaHaW) for repeatable assessment [8], [9]. Later research bring together feature families and classification baselines, showing that
spirals/writing are cheap, clinic-friendly biomarkers that can be used with Hilbert-derived AM—FM descriptors.

2.3. Machine learning and mathematical modelling

Speech-based PD screening started with dysphonia measures and evolved into powerful telemonitoring regressors that forecast clinical
scores from home recordings [10], [11]. Simultaneously, wearable sensors (accelerometers, gyroscopes) and free-living gait analysis
assess motor dysfunction and disease development outside the clinical setting [12], [13]. Recent machine-learning experiments and
community standards show that digital metrics may track changes over time and provide strict guidelines for testing and generalizing
models [14], [15]. These threads jointly advocate for a cohesive framework that integrates Hilbert-domain characteristics with mathemat-
ical modeling and robust benchmarks for early Parkinson's disease prediction.
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2.4. Research gap

While existing studies demonstrate the diagnostic potential of Hilbert and wavelet methods, few have incorporated formal mathematical
modeling that quantifies feature stability (p) and class separability (y). Moreover, a unified analytic signal-based framework capable of
providing interpretable, noise-resilient, and generalizable predictions for early PD detection remains largely unexplored. The present
study aims to fill this gap by introducing a Hilbert Transform—based mathematical modeling framework that not only improves prediction
accuracy but also provides a theoretical foundation for stability and robustness.

Unlike wavelet-based methods that emphasize constant multi-resolution frequency decomposition, Hilbert-based analytic signal repre-
sentations capture instantaneous amplitude and phase variations, which are particularly significant for tremor-induced handwriting dis-
crepancies. Although their stability and class separability are not systematically investigated, Hilbert features are employed as statistical
descriptors in most contemporary research. Furthermore, modern Transformer-based PD research, which primarily focuses on architec-
tural performance, often ignores feature robustness under brief clinical datasets. This work closes these gaps by looking at both mathe-
matical feature stability and deep model behavior.

3. Methodology

3.1. Overview

The suggested approach has three basic parts: preprocessing the signal, extracting features in the Hilbert domain, and creating a stability-
aware mathematical model. The method starts with getting raw data, including spiral or wave handwriting traces. It then turns these sig-
nals into sequences that are evenly sampled and free of noise. The Hilbert Transform then changes each signal into its analytic form so
that the instantaneous amplitude, phase, and frequency may be looked at. Figure 2 shows the Overview of the proposed Parkinson’s dis-
ease classification pipeline, including image preprocessing, Hilbert transform—based feature extraction, Transformer-based learning,
cross-validation, and performance evaluation. These Hilbert-domain descriptors, which work well with nonlinear and non-stationary
biosignals [3—5], are then paired with a mathematical model that can be understood and is meant to quantify stability and class separabil-
ity. The resultant approach seeks to identify early Parkinsonian tendencies and facilitate a clinically transparent decision-making process,
in alignment with prior research on handwriting and motion biomarkers [8], [9].
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Fig. 2: Overview of Proposed Methodology.

3.2. PD drawing datasets

The dataset used in this work comprises hand-drawn spiral and wave pictures gathered from people divided into two groups as shown in
Figure 3: Healthy controls and those with Parkinson’s Disease (PD). Each participant provided both spiral and wave drawings, which are
clinically acknowledged motor tasks for evaluating tremor, stiffness, and fine-motor coordination. There are 204 images in the collection,
containing 102 healthy samples and 102 Parkinson samples.

Considering the clinical balance of the dataset, the overall amount of samples (204 images) is a little too little for training data-intensive
Transformer structures. Real-world constraints while collecting clinical data are reflected in this restriction. To lessen overfitting, transfer
learning, normalization, and controlled validation methods were applied. The proposed framework's inability to apply to larger and more
diverse populations remains a limitation, though, and this will be addressed in the upcoming multi-center study.

Fig. 3: Spiral and Wave Images.
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3.3. Preprocessing

To reduce noise and differences across devices, each dataset is first standardized. Resampling signals to a common frequency fg and
points that are lacking are filled up. In handwriting and spiral data, two-dimensional trajectories (x(t), y(t)) are transformed into tangen-
tial velocity and pressure waveforms in accordance with accepted motor-analysis standards [8 — 10]. The right band-pass filters get rid of
baseline drift and electrical noise, and overlapping windows of specified length L are made for analysis. To reduce disparities in ampli-
tude induced by various sensors or writing pressure, each segment is normalized for each participant. This is an important step for weara-
ble and free-living data because the environment changes a lot [12], [13].

3.3.1. Image-to-signal conversion procedure

To reduce background noise, each spiral and wave image is first binarized and turned to grayscale. After that, skeletonization is used to
create a drawing path representation that is one pixel wide. The dominant handwriting trajectory is extracted using contour-following
algorithms. Using arc-length parameterization, the resultant 2D path is vectorized into a one-dimensional signal. To take into considera-
tion the geometric differences between spiral and wave designs, separate preprocessing is used. Before Hilbert Transform analysis, the
resultant signal is normalized.

3.4. Analytic signal and feature derivation
For a real input x(t), the analytic signal is defined as
2(t) = x() + i H{x(D)} = A(D)e!®®, (1)

Where A(t)and ¢(t)represent instantancous amplitude and phase. The derivative of phase yields the instantaneous frequency f(t) =
1 dg®
2m dt

before the Hilbert transform is applied, forming the complete Hilbert—Huang Transform. From these analytic components, several quanti-

tative features are extracted statistical moments of amplitude, phase variance, average instantaneous frequency, amplitude—frequency
correlations, modulation indices, and marginal Hilbert spectra. In handwriting and spiral modalities, these measures complement geomet-
ric and pressure statistics; in speech they augment cepstral parameters; and in wearable data they accompany stride and turning metrics
[8—-14].

[3—5]. When the signal contains multiple oscillatory components, empirical mode decomposition isolates intrinsic mode functions

3.5. Hilbert transform—based mathematical modelling

The Hilbert Transform is a fundamental signal processing technique used to extract the instantaneous amplitude and phase information
from a real-valued signal. In this study, the Hilbert Transform is applied to the grayscale intensity profile of the spiral and wave drawings
to reveal the latent oscillatory patterns associated with Parkinson’s tremors.

For a real-valued signal x(t), representing the normalized intensity variation along the drawing trajectory, the corresponding analytic
signal xy (t)is defined as:

xu () = x(V) +j H{x(®D} @

Where H {x(t)}denotes the Hilbert Transform of x(t), and j = v —1represents the imaginary unit. This analytic form effectively separates
the signal into real and imaginary components, allowing simultaneous analysis of magnitude and phase characteristics.
From the analytic signal, two important time-dependent quantities are derived — the amplitude envelope and the instantaneous phase:

A =1 x4 (0 |, d(0) = arg (xu (V) 3
Here, A(t)captures the instantaneous strength or magnitude of the signal, corresponding to the tremor intensity present in the drawing,
while ¢(t) quantifies the angular displacement, reflecting rhythmic irregularities and phase distortions in hand motion.
In patients with Parkinson’s Disease, these quantities exhibit irregular oscillatory behavior, distinguishing them from smooth, consistent
waveforms observed in healthy controls.

To create a unified representation for machine learning, three components are combined the original image intensity x(t), the amplitude
envelope A(t), and the phase map ¢(t). This feature fusion mechanism produces a three-channel composite image:

FO) = [x(), A, (D] “)

Which serves as an enriched visual input to the Transformer models. This integration enables the model to capture both spatial texture
(from the image) and temporal-spectral dynamics (from the Hilbert domain), thereby bridging mathematical signal modeling with deep
visual representation.

Prior to model training, all three channels are normalized to a uniform scale in the range [0, 1] to ensure stability and consistent gradient
behavior during optimization. Feature scaling eliminates variations due to illumination or drawing intensity differences and emphasizes
relative amplitude—phase patterns instead of absolute values. The resulting Hilbert-enhanced images thus retain the biophysical meaning
of tremor characteristics while being suitable for Transformer-based classification.

3.5.1. Feature stability definition

The intra-class variance of Hilbert-derived amplitude-phase characteristics is known as feature stability (p). Higher robustness of the
derived features against intra-subject and inter-trial variability is indicated by lower values of p.
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3.5.2. Class separability definition

The normalized distance between the centroids of Parkinson's disease and healthy control feature distributions in the Hilbert feature
space is known as class separability (y). Greater discriminative skill is correlated with higher y values.

3.6. Transformer based models

3.6.1. Swin transformer (shifted window transformer)

The Swin Transformer is a hierarchical vision architecture that applies self-attention locally within non-overlapping windows, with shift-
ed windows across successive layers to enable global interaction.

Let an input image be divided into small patches x € RN*P_ where Nis the number of patches and Dis the embedding dimension. Each
window contains a subset of patches, and the window-based multi-head self-attention (W-MSA) is computed as:

Attention(Q, K, V) = Softmax(f + B)V ®)
Where

o Q=XWgK=XW,V=XW

e Bis the relative position bias within each window.

To enable global feature fusion, the windows are shifted by a fixed offset (e.g., 7x7 patches), creating overlapping connections across

regions in the next layer.
After each block, the feature maps are hierarchically merged:

QKT
dg

X141 = PatchMerging(X))

Which doubles the channel dimension and halves the spatial resolution, analogous to CNN pooling.
This design allows Swin Transformer to effectively model fine local tremor details and global hand-motion structures in the spiral and
wave drawings.

3.6.2. Vision transformer (ViT)

The Vision Transformer treats an image as a sequence of flattened patches, similar to words in a sentence.
Let an image I € RH*W*Che divided into N = b7 patches of size P X P, each linearly embedded into a vector:

zg = [Xas; X1E; %2E; .. 5 XNE] + Epos 6)

Where
e Eis the patch embedding matrix,
® E,is the positional encoding,

® x.sis a special classification token.
Each Transformer layer performs multi-head self-attention (MHSA) and feed-forward processing:

zj) = MHSA(LN(Zp—1)) + Zo_q

Z = MLP(LN(z})) + z} (M

Where LN is layer normalization and MLP is a two-layer feed-forward network.
The classification output is derived from the final hidden state of the class token:

y = softmax(W,zf!s)

VIT captures long-range relationships across all image patches simultaneously, enabling analysis of global motor patterns in Parkinson’s
drawings.

3.6.3. BEIT (bidirectional encoder representation from image transformers)
The BEIT model extends ViT by introducing masked image modeling, similar to language modeling in BERT.

It learns contextual visual embeddings by masking random image patches and predicting their corresponding visual tokens.
Given patch embeddings X = [X4, Xy, ..., Xy], @ random subset M € {1, ..., N}is masked.

The model predicts their discrete visual codes tjusing a contextual encoder fg:

t =fo(X\m), VieM ()
The training objective minimizes the token reconstruction loss:

Lggir = — Xiemlog Po(ti | X\m) ©)
During fine-tuning, the pretrained encoder is connected to a classification head for downstream tasks. BEiT leverages self-supervised

learning to capture contextual and semantic patterns in the image, although its performance depends on large-scale pretraining data. Table
1 compares the Transformer architectures used in this study. The Swin Transformer employs shifted window—based self-attention to
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achieve efficient local-global feature fusion, making it well suited for small medical images with fine structural details. Vision Trans-
former (ViT) applies global self-attention across all image patches, enabling effective modeling of long-range dependencies in general
image classification tasks. BEiT adopts a masked image modeling strategy with a self-supervised objective, facilitating robust visual
representation learning from large-scale unlabeled datasets.

Table 1: Comparison between Transformer Mechanisms

Model Core Operation Mathematical Focus Primary Advantage Key Application
. QK"
. Shifted window-based Attention(Q,K,V) = Softmax(——  Local-global fusion with hier- ~ Small medical images, fine

Swin Transformer . [d . .

self-attention BYV k archical pooling local features

+

Vision Transform-  Global self-attention on r_ Captures long-range dependen- . . .
er (VAT) ol gt z; = MHSA(LN(z_,)) cies General image classification
BEIT Masked imgge token [—r Z log Py (t;|X\m) Self-s.upervised visual under- Large-scale unlabeled da-

reconstruction &= standing tasets

3.7. Feature selection and hyperparameter optimization

Feature redundancy is reduced through a nested-validation design. The outer loop performs subject-wise cross-validation to ensure inde-
pendence, while the inner loop tunes hyperparameters such as penalty weights and kernel parameters. Features are ranked by a stability-
aware Fisher score that favors high separability yand low instability p. Group-sparse selection retains coherent AM—FM feature families,
and model parameters are adjusted via grid or Bayesian search. This protocol prevents over-fitting and follows best practices from
benchmark digital-biomarker studies [15].

3.8. Evaluation protocol

Performance evaluation combines discrimination, calibration, and robustness metrics. The primary indices are accuracy, F1-score, and
area under the ROC curve (AUC), with confidence intervals estimated by bootstrapping. Statistical significance is tested using DeLong’s
method for AUC differences and McNemar’s test for paired classification results. Each component of the pipeline time-domain, spectral,
wavelet, Hilbert, and deep-model variants is compared in a structured ablation study [8—11, 14, 15]. Noise-injection and cross-device
validation experiments examine real-world resilience following recommended digital-biomarker evaluation standards [12—15]. Finally,
clinically interpretable decision curves link probabilistic outputs to screening sensitivity and specificity levels suitable for early-diagnosis
settings.

4. Results

Table 2 presents the comparative performance of different Transformer backbones. The Swin-T model achieves the highest mean cross-
validation AUC with low variability, indicating strong robustness and generalization. ViT-B/16 shows comparable performance with
slightly reduced sensitivity, while BEiT-B/16 exhibits substantially lower AUC values, highlighting the limitations of masked pretraining
in the small-sample medical imaging setting. Table 3 summarizes the overall classification performance of the Transformer backbones at
their optimal thresholds. The Swin-T model achieves the highest AUC, accuracy, and Fl-score, demonstrating superior sensitivity—
specificity balance. ViT-B/16 shows stable but slightly reduced performance across all metrics, while BEiT-B/16 exhibits poor sensitivity
despite high specificity, indicating limited suitability for small-sample medical image classification.

Table 2: Statistical Analysis for Different Transformers

CV AUC

Backbone i) CV AUC (SD) Pooled AUC Sens.@90%Spec Spec.@Thr Threshold
Swin-T (Patch4-
Window7-224) 0.9485 0.0261 0.9284 0.8235 09118 0.4408
;’;I)'B/ 16 (Base Patchl6- o344 0.0179 0.9279 0.8039 09216 0.4451
BEIT-B/16 (Base
Patch16-224) 0.6189 0.0493 0.5164 0.1961 0.9020 0.5375

Table 3: Evaluation Metrics for Different Transformers
Backbone AUC Sensitivity Specificity Threshold Accuracy Precision F1-Score
Swin-T (Patch4-Window7-224) 0.983 0.951 0.931 0.366 0.941 0.950 0.941
ViT-B/16 (Base Patch16-224) 0.972 0.902 0.902 0.375 0.902 0.902 0.902

BEiT-B/16 (Base Patch16-224) 0.613 0.157 0.902 0.493 0.529 0.615 0.250
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Performance Metrics Across Transformer Backbones
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Fig. 4: Performance Metric for All the Transformers.
Table 4: Stability—Separability Analysis
Feature Type Stability (p) Separability (y)
Raw Image High Low
Hilbert Features Low High
Hilbert + Swin-T Lowest Highest
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Fig. 5: Confusion Matrix for Different Transformers.

5. Discussion

The performance comparison of three Transformer architectures Swin-T, ViT-B/16, and BEiT-B/16 illustrates the advantages of hierar-
chical window-based attention mechanisms for the early prediction of Parkinson’s Disease. The Swin Transformer had the greatest mean
AUC (0.948 £ 0.026) as shown in Table 2 and pooled AUC (0.928) in the cross-validation findings. This shows that it was able to gener-
alize well across people. The ViT-B/16 model did about the same (CV AUC = 0.936, pooled AUC = 0.928), although it was a little less
sensitive (0.804 vs. 0.824) at the same level of specificity. The BEiT-B/16 model has a low pooled AUC of 0.516, which shows that it
wasn't very good at picking up on small changes in motor patterns in hand-drawn spiral and wave pictures. Figure 5 shows Confusion
matrix and Figure 4 shows performance metrics for the different models.

The Swin-T backbone did better than the others in the final assessment based on the confusion-matrix data, with an AUC of 0.983, a
sensitivity of 95.1%, a specificity of 93.1%, and an accuracy of 94.1%. ViT-B/16 had an AUC of 0.972 and a balanced sensitivity-
specificity of around 90%. BEiT-B/16, on the other hand, had an AUC of 0.613 and an accuracy of 52.9% as shown in Table 3 and Table
4 shows the Stability—Separability Analysis.
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These results validate that Swin-T's shifted-window attention proficiently catches both global drawing structure and subtle tremor details,
resulting in enhanced clinical discrimination. The difference between BEiT and the other two models shows how important it is to use
pretraining algorithms that work well with limited medical picture datasets. The suggested Transformer framework, especially the Swin-
T variation, is a mathematically interpretable and very accurate method for early screening for Parkinson's disease. This fits with SDG 3:
Good Health and Well-Being.

BEiT's poor performance can be ascribed to its heavy reliance on extensive self-supervised pretraining, which restricts its applicability to
limited clinical datasets. Swin Transformer's hierarchical attention mechanism, on the other hand, is more appropriate for handwriting-
based PD analysis since it records both global drawing structure and local tremor information.

Clinically speaking, the suggested framework can facilitate early PD screening that is non-invasive and uses inexpensive digital drawing
assignments. While not a substitute for clinical diagnosis, such technologies could help neurologists with initial evaluation or be used in
mobile health applications for community-level screening.

6. Conclusion

This research introduced a hybrid framework that combines Hilbert Transform—based mathematical modeling with Transformer designs
for the early and precise prediction of Parkinson’s Disease (PD) using hand-drawn spiral and wave imagery. The Hilbert Transform suc-
cessfully recovered amplitude and phase information, indicative of tremor strength and motion irregularity, which were integrated with
the original picture data to provide an enhanced input representation. The Swin Transformer was the best of the examined models, with
an AUC of 0.983, a sensitivity of 0.951, and an accuracy of 94.1%. This means that it was better at capturing both local tremor changes
and global drawing structure. The ViT-B/16 had similar outcomes, however the BEiT-B/16 exhibited restricted generalization on the
short clinical dataset. The suggested mathematical-deep learning method provides a clear, non-invasive, and computationally efficient
way to find Parkinson's Disease early. Future endeavors will concentrate on expanding this framework to accommodate bigger datasets,
including multimodal signals, and integrating real-time handwriting analysis for clinical use. Although encouraging outcomes, additional
validation on bigger and multi-modal clinical datasets is required due to the small sample size.
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