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Abstract 
 

Understanding battery State of Health (SoH) and State of Charge (SoC) predictions highly ensure reliability, safety, and longevity in energy 

storage systems, especially for electric vehicles and smart grids. This novel hybrid-type framework enables the successive application of 

machine learning and deep learning models in SOC and SOH estimations. A one-of-a-kind blend of Linear Regression, XG-Boost, 

Recurrent Neural Networks (RNN), Bi-directional LSTM, and hybrid LSTM-GRU is suggested to capture as many temporal and non-

linear patterns in battery behavior as possible. K-Best feature selection is used to enhance model generalization by keeping only the most 

important input features. Contrary to the existing unexplainable models, our approach leverages explainable AI methods-SHAP and LIME-

to explain model decisions and magnitude of feature impact. Real-world battery datasets weighed experimentally underline the superiority 

of our approach from both accuracy and interpretability perspectives over traditional means. This paper's novelty lies in a hybrid modeling 

architecture, an interpretable learning pipeline, and a consideration of both predictive ability and interpretability. This framework has 

enormous potential to draw the innovations forward in intelligent battery management systems. 

 
Keywords: Hybrid Deep Learning; Recurrent Neural Networks; Bi-directional LSTM; Hybrid LSTM-GRU; Machine Learning. 

1. Introduction 

Battery systems are on their way to becoming the pinnacle of modern technological advances, especially for electric vehicles, rechargeable 

storage systems for renewable energies, and portable electronics and unmanned systems. The global shift toward clean energies and elec-

trification has sold the idea that the reliability, safety, and efficiency of batteries are fast emerging as critical consideration points. Therefore, 

estimating the essential battery performance parameters, SOH and SOC, has become imperative to such regard. These parameters serve as 

important keys for aiming at battery condition monitoring, life forecasting, or energy optimization. 

State of Charge is a term that describes the charge remaining in the battery in relation to maximum capacity, essentially quantifying how 

much energy one can draw. On the other hand, SOH describes the general condition of the battery in terms of its nominal capacity compared 

to a brand-new battery. If not properly calculated, the parameters may incur early failure, unsafe operation, or improper energy management. 

Consequently, these parameter estimations have been traditionally carried out by Coulomb counting, open-circuit voltage measurement, 

and the like, which unfortunately suffer from a set of limitations including noise in sensor readings, temperature dependence, accumulation 

of large errors, and application to specific operation cases only. 

Machine learning (ML) and deep learning (DL) methods have lately become potent alternatives with an emphasis on data and their capacity 

to seize nonlinearities and complex dependencies in battery operation. Yet, in most previous works, the models are either specific or cannot 

be generalized, interpreted, nor adapted in real-time. This study tries to fill these gaps by proposing a hybrid, explainable, and feature-opti-

mized framework for SOC and SOH estimation. 

The most important contribution of this work involves simultaneous implementation of multiple models: Linear Regression, XG-Boost, 

Recurrent Neural Networks (RNN), Bidirectional LSTM (Bi-LSTM), and the hybrid LSTM-GRU architecture. Each method looks into 

certain temporal and non-temporal dependencies. Linear Regression and XG-Boost are good with direct and nonlinear effects, while RNNs, 

Bi-LSTMs, and GRUs try to understand the time-series sequence that is inherent to battery usage and degradation patterns. 

The K-Best feature selection method to improve the quality of input data and avoid overfitting. This method filters out redundant and irrel-

evant features, retaining those of utmost consideration according to their statistical scoring criteria. The improvement of model accuracy and 

efficiency-based computations for training and inferencing would be other improvements contributed. 

The methodological aspects are quintessentially selected through several vital steps: (1) data gathering and preprocessing from the set of 

real-world lithium-ion battery datasets; (2) selection of statistical and domain-related features through K-Best; (3) training-testing- valida-

tion of the candidates through multiple algorithms; (4) assessment of performances using the RMSE, MAE, and R² metrics; and (5) analysis 
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of interpretations through XAI methods. The splitting of training-testing datasets ensures robustness and generalizability with a focus on 

application cases reflecting real-world operating conditions, such as varying discharge and ambient temperature conditions or cycling 

patterns. 

The direct operational value of these work interventions lies in sturdy support for battery management systems (BMS), as SOC and SOH 

estimation affects optimal charging/discharging scheduling and thus avoids overcharging or deep discharging and prevents scheduling for 

preventive maintenance. Also, because the model is explainable, it can be used for regulatory compliance and decision support in energy-

critical systems. 

This work is unusual in existing literature because it simultaneously addresses three main challenges: (1) it fights the integration of time-

series modeling with static predictors; (2) it is more transparent due to an explainability tool; (3) features are optimized to facilitate the 

generalization procedure. There are numerous works that place emphasis on prediction accuracy only; in contrast, our framework balances 

the priority among interpretability and feature efficiency. 

The remainder of the paper is organized as follows: Section II presents related works and existing techniques applied for SOC and SOH 

estimation. Section III presents the proposed system architecture and feature selection method. The modeling techniques and training 

procedures are described in Section IV. Section V presents the experimental results and comparative analysis. Section VI discusses real-

world implications and limitations, allowing for further deployment in real-time scenarios. The work is concluded in Section VII with 

remarks on future enhancements. 

In conclusion, accurate and interpretable estimation of SOC and SOH with the hybrid ML/DL model shows good potential for intelligent 

energy systems. Our research provides a solid base for practical deployments in BMS by merging precision, interpretability, and robustness 

within a single framework. 

2. Related Work 

Battery State of Charge (SOC) and State of Health (SOH) estimation need to be accurate to ensure dependable energy storage-system 

operations. First, customary methods-i.e., Coulomb counting and equivalent circuit modeling-fail due to error accumulation, temperature 

dependency, and lack of adaptability [1], [2]. Keeping that in mind, machine learning- and deep learning-based data-driven techniques have 

now emerged to take their place. This is because batteries do not behave in a linear manner in degradation, and they show dynamic behavior. 

Being linear, models such as Linear Regression are simple and interpretable, and yet fail to account for nonlinearities in real-world battery 

behavior [3]. Therefore, ensemble methods like Extreme Gradient Boosting, XG-Boost, have found more adoption due to its high accuracy 

and robustness. Reference [4] showed that XG-Boost models for SOH prediction had a near 20% decrease in RMSE compared to the 

classic techniques. In addition to this, XG-Boost offers feature importance, thus interpretable far better than any other black-box method. 

Battery diagnosis represents an area where recurrent neural networks, mainly LSTM and GRU networks, shine with their long sequential 

data capabilities. Initially, LSTM networks were utilized in [5] for SOH prediction from cycle data by learning temporal relationships, achiev-

ing an average MAE of less than 1%. A hybrid LSTM-GRU method was likewise proposed in [6] which showed better convergence ability 

and stability in prediction than either individual method. 

Combining both linear and backward temporal processing for learning yields better structures and solutions for data representation. Refer-

ence [7] utilized Bi-LSTM architecture to estimate SOH and concluded that it generalizes better under various discharge rates and ambient 

conditions. 

The CNN-own track [8] is a novel hybrid framework of CNN and LSTM for simultaneous extraction of spatial and temporal characteristics, 

aiding in feature extraction and decreasing training time. Another line of studies like [9] works on classification features with raw-sensor 

data as input of 1D CNN before feeding the outputs to a sequential model in the first stage-and this has evidently boosted the performance. 

Interpretation of the model becomes a necessity for the practical impost of Battery Management Systems (BMSs). Hence, we frequently see 

XAI tools, such as SHAP and LIME, integrated into battery prediction models. Reference [10] used SHAP with a tree-based model to 

demonstrate how temperature and cycle count had stronger degradation effects on SOH. In a similar way, [11] used LIME to provide local 

surrogate explanations to support model debugging and trust. 

Feature selection remains an important step in ML pipelines. In [12], the authors used the K- Best algorithm to exclude irrelevant features, 

potentially improving training speed, as well as generalization. In fact, this was useful in eliminating redundancy within high-dimensional 

datasets of batteries. Recursive feature elimination, or RFE, has also been put to use, although it is considered computationally expensive 

[13]. 

Other significant attempts include other forms of metaheuristic optimization procedures, for instance, PSO [14], wherein PSO is used to 

optimize the parameter settings of the LSTM prediction model for SOH. The hybrid PSO-LSTM model produces a lower prediction error 

than traditional techniques such as grid search tuning. 

Finally, in [15], a review of ML models for battery diagnostics finds that hybrid architectures and transfer learning are increasingly receiv-

ing attention; however, they stress the need for datasets and common evaluation protocols that can be used to benchmark model perfor-

mances for different chemistries and use cases. 

The literature review reveals that hybrid DL models (LSTM-GRU, CNN-LSTM), ensemble ML methods (XG-Boost), and interpreting 

tools (SHAP, LIME) have yielded good results in predicting SOC and SOH. However, for example, developing a universal model that 

works under a variety of conditions still remains a challenge. Building on these insights, the present work proposes a novel combination of 

these models with interpretable feature selection and explanation frameworks. 

3. System Design and Architecture 

It gives a platform to the Li-ion chemical battery-based data-centric modular architecture of SOC and SOH prediction systems, whose 

design priorities are accuracy, interpretability, and real-time execution [16]. The system framework consists of data preprocessing, feature 

selection, model training, performance evaluation, integration of explanations, and design modules. 

Starting at the ingestion layer, the system collects battery datasets by experimentally recording voltage, current, temperature, and cycle 

information from the batteries. These datasets may be subjected to noise, missing values, and redundant entries; these are removed by the 

data preprocessing module [17]. Besides, normalization using Min-Max or Z-score, along with outlier removal or categorical encoding, 

can be taken into consideration for data preprocessing to attain standardization and stability across the dataset [18]. 
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Post preprocessing and feature selection takes the preprocessed data and applies the K-Best method to extract inputs bearing the statistically 

highest relevance with respect to the target variables- SOC and SOH [19]. So, feature selection decreases the dimensionality of the data, 

helps to avoid overfitting [20], and leads to faster convergence in training of the models. 

At the core, the layer consists of an ensemble of prediction models comprising linear regression, XG-Boost, RNN, Bi-LSTM, and hybrid 

LSTM-GRU. Each one of them is trained independently, with the dataset being split into time-series and statistical data through training; 

hence, they learn temporally and non-temporally. Hyper-parameter tuning follows a cross-validation scheme to locate the best set of pa-

rameters for each algorithm 

For transparency, the explainability layer uses SHAP and LIME to interpret predictions made by the models. They give both a visual and a 

numerical interpretation of feature importance, helping an end-user understand which variables impact information-gathering predictions 

for SOC and SOH the most. 

 

 
Fig. 1: Architecture. 

 

Therefore, the architecture shown in Figure1, is a scalable, explainable, and highly accurate framework that can be integrated easily into 

BMSs, thus enabling proactive monitoring and intelligent decision- making. 

4. Data set 

In the utmost general sense, this study is concerned with estimating the SoC and SoH with precision in a real-life battery dataset with 

29,180 rows and 7 columns really is considered. In the arrangement of rows and columns, the dataset was read into a Pandas Data-Frame, 

after which the data was processed and analyzed. Given this, time in rows describes observations at a certain instant of the battery during 

charging or discharging. 

Parameters in consideration in the Data are: 

• Voltage_Measured: Voltage across the battery at the measured point, in volts. 

• Current_Measured: Current through the battery at the measured point, in amperes. 

• Temperature_Measured: Temperature of the working battery, in degree Celsius. 

• SoC: Actual state of charge, which tells us how much capacity is left in the battery, in percentage. 

• cycle_number: Number of charge-discharge cycles that the battery has undergone. 

• battery_id: Unique identifier labeled to each battery unit. 

• SoH: State of Health, indicating how far battery condition has degraded as compared to the original capacity. 

There is no missing value across all columns making the dataset complete, so that it can be well employed for model training and evaluation. 

The cycle_number and battery_id offer context identifiers to trace performance across time and units, while Voltage, Current, and Tem-

perature stand as input features to determine SoC and SoH. 

Such a dataset allows for the formation of time series as well as cross-section data, thus perfect for the training of traditional regression 

models and advanced neural networks, such as RNN and LSTM. A rich multidimensional view of battery behavior under changing condi-

tions is essential for accurate and understandable prediction. 

4.1. Data set analysis 

EDA is a synthesizing view that describes various characteristics of the dataset with a view to obtaining useful patterns for modeling battery 

performance. It contains 29,180 records-all seven features intact-and is an ideal forerunner to predictive modeling. Variables are voltage 

measured, current, temperature, SoC, SoH, cycle number, and battery ID. 
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Fig. 2: Distribution Plot After Outlier Removal. 

 

Distribution plots were constructed for all numerical features after eliminating outliers. Figure 1 exhibits that voltage is normally distributed 

around 3.45 V; this means that the battery voltage remains stable in most battery cycles. Current measurements show a multimodal distri-

bution, with most of the measurements lying on -2.05 A and -1.95 A under a steady-state discharge condition. Temperature was bimodal, 

with two prominent peaks indicating that the battery is subjected to good and harsh thermal environments. SoC also seems fairly distributed 

from 0% to 100%, at least for the states of charge found in this dataset. In contrast, SoH appears narrowly centered from 70 to 95% with a 

quite long tail that goes beyond the 100% mark, probably because of a recalibration error. A right skewness was noted on the cycle number 

distribution, suggesting that many of these battery instances were encountered in their earlier operational trials. 

The linear dependence among the variables was verified by means of the Pearson correlation matrix, presented in Figure 2. Analysis shows 

a strong correlation of 0.79 between the voltage and the SoC, indicating that voltage is a good representation of current charge level. A mild 

positive correlation of 0.27 shown through voltage and SoH specifies that voltage trends can be helpful in long-term health estimation. On 

the other hand, temperature is weakly correlated to SoC (-0.33) with a weak positive influence on SoH (0.24), therefore having its weak 

share in the ongoing battery aging processes. Current shows very low levels of correlation to both target variables, implying that it may 

indirectly represent short-term dynamics instead of contributing to long-term health prediction. The two main targets, SoC and SoH, on the 

other hand, show little correlation (0.01), thereby backing their independency; therefore, they should be modeled independently. 

 

 
Fig. 3: Correlation Matrix. 

 

Z-score methods and visual inspections were used for enlarged value recognition and removal lest these values could distort model training. 

This, in turn, helped improve normality in the features and stabilized the learning process without really changing much of the size or 

diversity of the dataset. Further, the cleaned dataset proves a strong signal to the learning algorithms, with balanced feature distributions 

and pertinent correlations for fine SOC and SOH predictions. 

5. Datapre Processing 

Preprocessing becomes one primary step in any data-driven system, which, in turn, determines the performance, predictive power, and re-

sulting accuracy and generalizability of the model. In estimating battery SoC and SoH, more attention has been paid to ensuring data 

integrity, noise reduction, dimensionality reduction, and preparation for model training. 

5.1. Missing value analysis 

The raw data contained 29,180 observations and seven features. An initial audit confirmed no missing values, whether Voltage_measured, 

Current_measured, Temperature_measured, SoC, SoH, cycle_number, or battery_id. From the dataset summary, the non-null count for 

each column corresponded to the total number of rows; thus, imputation or interpolation was not required. 
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5.2. Outlier detection and removal 

To avoid that extreme values would bias the learning process, outlier detection based on Z-score analysis was applied. A data point with a 

Z-score value greater than 3 or less than - 3 was considered an outlier. This method effectively caught some feature values considered to be 

anomalous, such as in Temperature_measured and Voltage_measured, showing heavy tails. These were removed to further stabilize the data 

distribution and ease model convergence. The cleaning stage was deemed valuable upon visual inspection of distribution plots (given above 

in Figure 1), showing much smoother and symmetric histograms after cleaning. 

5.3. Feature engineering and k-best feature selection 

In addition to the initial cleaning stage, feature engineering was undertaken to emphasize temporal and statistical trends apparent in battery 

behavior. New attributes such as Rolling_Mean_Voltage, Smoothed_Voltage, Rolling_Std_Voltage, Normalized_Voltage, Discharge_Ef-

ficiency, and Current_to_Voltage_Ratio were introduced. These features were created through moving average and standard deviation 

calculations in sliding windows or using ratio-type transformations, so that these attributes could better capture the divergence and 

degradation patterns. 

 

 
Fig. 4: Top Features for SoC Estimation. 

 

 
Fig. 5: Top Features for SoH Estimation. 

 

Feature construction is followed by K-Best feature selection performed separately for SoC and SoH estimation. This method ranks and se-

lects features for top-k predictive power based on a statistical test that could be the regression test. For SoC estimation, as presented in Figure 

3, the leading contributing features are Normalized_Voltage, Voltage_measured, and Rolling_Std_Voltage. In this sense, voltage-based 

signals are highly indicative of the present charge state. For SoH prediction, shown in Figure 4, more contributory features include Roll-

ing_Mean_Voltage, Smoothed_Voltage, Normalized_Voltage, and Temperature_measured, which correspond to usage and degradation ef-

fects over time. 

5.4. Dataset splitting 

To robustly evaluate the study, the dataset was randomly partitioned into training and testing sets with an 80:20 ratio. The training set 

was used to fit the learning models and optimize hyperparameters by performing cross-validation; the test set was left entirely 

untouched to measure the generalization performance of each algorithm on new, unseen data. Given the regression values of the targets 

(SoC and SoH), stratified splitting was not applied. Random shuffling was applied instead to keep representative distributions in both 

subsets. Such a multi- step preprocessing pipeline made sure that the models were trained on clean, informative, and well-structured data 

that would, in turn, lead to better prediction power and interpretability. 
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6. Methodology 

The following section describes the end-to-end workflow used in the prediction of State of Charge (SoC) and State of Health (SoH) for 

lithium-ion batteries using machine learning and deep learning models. The methodology consists of model selection, training, validation, 

and interpretability. A hybrid modeling approach is used to leverage the advantages of temporal sequence learning and non-linear pattern 

recognition. Furthermore, explainable AI techniques are applied for the transparent revelation of feature influence and model decisions. 

Finally, the entire pipeline is configured such that it can be scaled up, be accurate, and stay generalizable for different battery conditions. 

6.1. Linear regression 

Linear Regression serves as a basic baseline model for estimation of continuous variables like State of Charge (SoC) and State of Health 

(SoH). A linear relationship is assumed between features and the target, as this setup is more suitable when the direct dependencies are 

present and when the features are well-engineered and free of multicollinearity. 

The model's underlying process fits a linear equation in the form: 

 

𝑦 ̂= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛                                                                                                                                                             (1) 

 

Where 𝑦^ is the predicted output (either SoC or SoH) 𝑥1, 𝑥2, … , 𝑥𝑛 are the input features selected using the K-Best algorithm, 𝛽0, 𝛽1, … , 

𝛽𝑛 are the model coefficients learned during training. They are optimized by minimizing the Mean Squared Error (MSE) between the 

actual and predicted values. 

 

𝑀𝑆𝐸 = 
1 

∑𝑚 (𝑦 − 𝑦̂ )2                                                                                                                                                                             (2) 

 

𝑚 𝑖=1 1 1 

 

Where m is the number of training samples. 

The linear regression approach was used in this study through the scikit-learn library. Before training, all feature data was standardized 

with Z-score normalization, so magnitude of a coefficient would not be biased due to changing scales of the feature. There was no use of 

any kind of regularization for this baseline parameter setting, so it remained a pure evaluation for linear relationships. Separate models 

were generated for SoC and SoH using a set of best- ranked features that were suitably selected for each via the K-Best selection. 

6.2. XG-boost 

Extreme Gradient Boosting or XG-Boost, for short, is a next-generation ensemble- learning algorithm that builds a sequence of decision trees 

with the aim of improving the prediction accuracy basically by "correcting" the errors made by an antecedent set of trees. Given its efficacy 

in terms of speed, scalability, and proficient handling of non-linear feature interactions for structured tabular datasets, it naturally fits our 

purpose of estimation of State of Charge (SoC) and State of Health (SoH) of lithium-ion cells with engineering telemetry data. So, XG-Boost 

gains improvement by learning on the residual errors one after another, in which each successive tree fits the latest residuals of the difference 

between the real and predicted values. The iteration of this process either stops after a preset number of iterations or whenever the perfor-

mance stops improving on validation data. One distinctive attribute, among many others, when differentiating XG-Boost from others is its 

built-in regularization that essentially penalizes the more complex ones to avoid any sort of overfitting. 

Separate models of XG-Boost regression were developed for SoC and SoH prediction purposes. The input features for each model were se-

lected by a K-Best attribute selection method so that only the most relevant attributes contributed to the learning. Hyperparameter optimiza-

tion was then executed wherein the number of estimators (trees), tree depth, learning rate, and proportion of the samples and features were 

tuned for each round of training. 

XG-Boost has shown extreme competence in modeling the intricate and complex non-linear relationships inherent in battery data. Never-

theless, it proved to be so brilliant in SoH estimation because long-term degradation patterns are complex and subtle. This model gave the 

best performance with missing or noisy values, thus realizing robustness in real-life applications. 

By exhibiting its native capability for feature importance ranking, XGBoost offers better explainability. Beyond that, it complements tools 

like SHAP in delineating which sensor signals and derived metrics most heavily influence model predictions. 

6.3. Recurrent neural network (RNN) 

Recurrent Neural Networks are a specific set of neural architectures designed to work with sequential data; a memory has to somehow be 

retained through hidden states with respect to the input, which means that for time-related issues like battery health monitoring, where 

signals such as voltage, current, and temperature change over time, RNNs find applications. 

In contrast with traditional feedforward neural networks treating each input independently, an RNN follows a feedback loop such that 

information can be preserved from one time step to another. This mechanism allows the network to capture the temporal dependencies 

required to study the battery degradation pattern or charging/discharging behavior through cycles. 

In this work, RNNs were used to forecast SoC and SoH. As input to the network, sequences of sensor data and other features were provided, 

including Voltage_measured, Current_measured, Temperature_measured, and some computed features such as Rolling_Mean_Voltage. 

These sequences were presented as multi-dimensional arrays with multiple time steps per sample, letting the RNN learn representations 

spanning time. 

Separate RNN training was conducted for SoC and SoH estimation. Key training parameters were chosen using a grid search: number of 

hidden units, sequence length, learning rate, and batch size. The network was trained using mean squared error as the loss function, with 

convergence speed maximized via the Adam optimizer. 

While RNNs could, in principle, achieve reasonable accuracy for short-term dependencies in the data, they fail to model the long-range 

trends due to the vanishing gradient problem. This drawback motivated the use of architectures such as LSTMs and GRUs, which could 

theoretically remember over longer sequences. 



290 International Journal of Basic and Applied Sciences 

 
Nonetheless, the RNN model served as a very good baseline, capable of modeling immediate temporal dependencies and thereby furnishing 

a relative benchmark for the deep models employed for this paper. 

7. Bidirectional Long Short-Term Memory (Bi-LSTM) 

Bidirectional Long Short-Term Memory (Bi-LSTMs) is a somewhat complex extension of recurrent neural networks that process sequential 

data from both directions-that is, from past to future and from future to past. This architecture allows the model to have the entire context 

in time-series data, which is greatly needed in battery analytics since prior usage and upcoming conditions affect the present state. 

While in normal RNNs or unidirectional LSTMs, the input is read in the forward direction only, Bi-LSTMs apply two LSTM layers in parallel: 

one from the start of the sequence to the end (forward) and one from the end to the start (backward). Their outputs are merged at every time 

step to allow the model to associate dependencies in both forward and backward temporal directions. This also makes Bi-LSTMs a suitable 

candidate for predicting battery SoH, where the degradation behavior is not only dependent on past cycles but also on the immediate trends. 

LSTM layers can remember things using internal memory and gating to regulate what kind of information should be allowed to go through 

in every time step. Thus, it solves the vanishing gradient problem faced by regular RNNs, making LSTMs stronger in apprenticing sequen-

tial patterns over longer time windows. 

During the current project, Bi-LSTM models for SoC and SoH estimation were trained independently using sequential features such as 

voltage, current, temperature, and their statistical summaries like rolling averages. The model configuration consisted of a single bidirec-

tional LSTM layer having 64 hidden units, followed by a dropout layer, serving as a regularizer, and ended with a dense output layer that 

performs regression prediction. 

Adam was used as the optimizer, and MSE was used as the loss function during training. In order to select the best weights and, therefore, 

reduce overfitting whatsoever and promote better generalization once validation loss stops to improve, early stopping has been implemented 

in the training process. Bi-LSTM came out far better than the unidirectional LSTMs or standard RNNs, particularly for predicting SoH 

because it takes into account information from both backward and forward time steps. 

8. LSTM + GRU Hybrid Model 

This model captures two most powerful sequence deep models, namely LSTM and GRU, in order to leverage each other's individual ad-

vantages to compensate for their limitations while modeling complex temporal patterns in battery telemetry data. The architecture is pro-

posed for maximizing any time-series-based task accuracy, such as SoC or SoH prediction, while also making the learning process more 

efficient. 

LSTM layers help keep long-term dependencies between time sequences. They have more control with gating mechanisms: forget gate, 

input gate, and output gate. Such control allows the model to choose what is relevant and what to discard through time. The method, hence, 

can be suitable to model slowly varying battery behavior, such as SoH degradation over hundreds of cycles. 

GRU layers, by contrast, offer a simpler architecture with fewer gates, making training faster and less computationally demanding without 

much sacrifice on performance. The GRU is controlled by update and reset gates, leading to an elegant design that is good at modeling short- 

term variations and recent trends in charging or discharging cycles that influence SoC. 

In the hybrid architecture proposed, the first layer is an LSTM layer that captures long-range dependencies and deeper temporal features 

from sequences of sensor readings such as voltage, temperature, and current. It is then followed by a GRU layer that healthily refines the 

extracted temporal features to capture finer and more recent temporal dynamics. Modeling of this kind allows the model to generalize well 

across battery behavior that presents slow or fast-changing trends. 

The entire construction is as follows: 

• An LSTM layer with 64 hidden units with return sequences set to True, 

• A GRU layer with 32 units to apply short-term temporal refinement, 

• A dropout layer for averting overfitting through training, 

• A fully connected dense layer with linear activation for regression output. 

Depending on the time window, the input sequences are prepared from sensor readings and engineered features; then the 3D tensors are 

reshaped into (samples, time steps, features). Both SoCs and SoHs are treated independently as two regression problems, where two separate 

models are trained for each target variable. 

Adam optimization is used for training and tuning the parameters. A learning rate was incorporated for tuning, while the loss function is 

taken care of by MSE. A validation loss assessment is carried out; hence early stopping is employed to prevent over-fitting and avoid 

wasting computations. This hybrid structure is a trade-off between LSTM for long-term dependency modeling and GRU for speed and 

efficiency, better fit for real battery performance prediction problems. 

The experiments proved that the LSTM+GRU hybrid model outperformed pure LSTM, GRU, and simple RNN models in prediction accu-

racy and convergence speed. The architecture tends to suit its adaptations for variable conditions in the number of batteries subjected to 

testing, thus rendering it well-suited and robust in predictive maintenance. 

9. Explainability with Lime 

To truly provide interpretability to the model and to build a degree of trust in the SoC and SoH predictions, an explainable AI technique, LIME 

(Local Interpretable Model- Agnostic Explanations) was used. LIME aims to explain the decisions made by complex machine learning 

models by approximating these models locally using simple interpretable models, such as linear regressors. Hence, it explains how the 

model arrives at an individual decision and not the global interpretation thereof. 

Contrary to global feature importance scores that tell us which features are generally important, local explanations by LIME perturb the input 

data around a particular prediction and look at the change in output. Then, a simple, interpretable surrogate model is fit to a small neigh-

borhood around the instance to determine which features contributed most strongly, either positively or negatively, to that particular predic-

tion. This provides a level of transparency for single instances that are essential to understanding and handling of edge cases and outliers 

for critical applications, such as battery health monitoring. 
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LIME explains predictions generated by the SoC estimation method of the XGBoost model and by the SoH estimation method of the RNN 

model in this work. The LIME plots reflected how certain feature values influenced predictions: Rolling_Std_Voltage, Voltage_measured, 

Temperature_measured, and Time_in_20_40. In SoC prediction, voltage features mostly exhibited varying positive or negative influ-

ences depending on their ranges. For SoH predictions, time-series derived and cycle-related features weighed more since they 

indicated battery aging patterns. 

Integrating LIME served several main reasons: 

• Transparency: domain experts understood the individual model decision through LIME explanations 

• Feature validation: helped affirm that the features selected by K-Best actually influenced prediction 

• Debugging: Could check for features possibly biased and/or against the model. 

• Auditing: Provided an explanation behind a model decision that could be digested by non-technical stakeholders. 

Hence, LIME became a linguistic link from black-box modeling to human interpretability. It increased accountability in the predictive 

framework by associating the logic beneath prediction with domain knowledge, especially in high-impact domains such as predictive 

maintenance and battery state forecasting. 

10. Results 

This segment presents performance evaluation measures for the various predictive systems developed using machine learning and deep 

learning methods. The goals subject to estimation are the State of Charge (SoC) and the State of Health (SoH) of lithium-ion batteries. 

Model accuracies are quantitatively measured using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and R² Score statistics. 

Model performances are then compared between the tasks to deduce the best performing model and generalization ability. To substantiate 

the numerical results, prediction plots and error distributions are also presented for. 

11. SOC Result: Linear Regression 

Despite the model being linear in nature, the description points to a decent predictive accuracy when it comes to SoC prediction through 

Linear regression. From the scatter plot one observes that the predicted SoC values sit well along the diagonal reference line with the actual 

SoC values, barring some dispersion towards the lower and mid-range charge levels. Based on this model, the MSE achieved was 75.20, 

which represents the mean of squared differences between actual and predicted values. Based on RMSE, which is the square root of MSE, 

the average SoC prediction errors stand at less than 9%, slightly acceptable for a baseline estimate. 

 

 
Fig. 6: Actual vs Predicted for SoC by Linear Regression. 

 

The MAE was 6.83, which means that this average error measurement is indifferent to the directions taken by individual errors. Of greater 

importance, however, was that the R² score was 0.91, implying that 91% of the variation in SoC can be explained by the input features 

employed in this regression. Though normal LinearRegression isn't conceived for continuous regression problems such as SoC prediction, 

here it well serves as a robust benchmark against which more complex methods can be evaluated while, considering its simplicity, it does a 

rather fine job. 

XG-Boost: 

The XG-Boost-based State-of-Charge prediction is looked into for evaluation of accuracy and was found to be far better as compared to 

Linear regression and other simpler models. The purple dots in the scatter plot lie tightly along the red diagonal, indicating good conformity 

with the ideal where predicted SoC equals actual SoC. The tight grouping along the equality line indicates Very High Accurate Model. 
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Fig. 7: Actual vs Predicted for SoC by XGBoost. 

 

The squared value of the difference between the actual and predicted values has an average of 3.93, which is almost negligible. The low 

value of RMSE-1.98 means that the predictions lie in the range of error of around 2 percentage points on the average. An error of deviation 

of approximate 1.14 units from the actual SoC values is shown by MAE. 

Most importantly, the R² score of 0.995 shows that about 99.5% of variability in SoC values is explained by the XG-Boost model, which 

means that there is a high possibility of a strong generalization of this model on the test set. Such results indicate that XG-Boost is capable 

of capturing nonlinearity and interaction among input features and remains one of the best- performing systems for SoC estimation in this 

study. 

 

 
Fig. 8: Lime Explanation for SoC by XG Boost. 

 

 
Fig. 9: Overall Lime Explanation by XG Boost. 

 

LIME explanations of State of Charge prediction show that the greatest negative contributions were from Rolling_Std_Voltage, Tempera-

ture_measured and Rolling_Mean_Voltage, in that order. These lowered the predicted SoC, shown by the downward direction of red bars 

in the bar chart. Current_to_Voltage_Ratio and Discharge_Efficiency made positive contributions that slightly elevated the prediction. 

Interactive LIME output further supports that minute fluctuations in voltage stability and temperature substantially influence SoC estima-

tion. This interpretability legitimates feature relevance and increases model decision-making process trust by unmistakably demonstrating 

feature influence on individual predictions. 

RNN: 

 
Fig. 10: Actual vs Predicted for SoC by RNN. 
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The Recurrent Neural Network (RNN) SoC prediction model has an average performance in following temporal relationships in the battery 

time-series data. As observed from the plot, the majority of predicted values fall on the red ideal reference line, with increased dispersion 

compared to XG-Boost. The model reached an MSE of 40.04 and RMSE of 6.32, reflecting higher error values compared to ensemble 

methods. The MAE of 4.75 is a reasonable average error of prediction, and the R² value of 0.95 still indicates high explanatory power. 

Generally, the RNN can learn short-term patterns but loses long-range accuracy, which indicates the necessity for deeper architectures. 

 

 
Fig. 11: Lime Explanation for SoC by RNN. 

 

 
Fig. 12: Overall Lime Explaination by RNN. 

 

The LIME explanation of the SoC prediction based on RNN shows that the feature Time_in_20_40 accounts most for degrading the 

SoC prediction. The other features that account for lower predictions are Temperature_measured, Rolling_Std_Voltage, and Volt-

age_measured, showing some importance in affecting the output of the model. No feature outweighed the other in the stated prediction 

scenario, as visualized. This imbalance, which suggests that the RNN might be overly sensitive to certain voltage and time-related features, 

may result in underprediction or unstable outputs and thus provides further motivation for more stable sequence models such as Bi-LSTM to 

be implemented in the future. 

BI-LSTM: 

 

 
Fig. 13: Loss Curve for Bi-LSTM. 

 

Training with validation loss curves and actual versus predicted plots evidenced that the Bi- LSTM method gave the strongest performance 

and generalization. At the appendence of loss during training, the model observed no overfitting phenomenon since the two curves started 

to converge at around epoch 40. Most of the predicted SoC values lie close to the ideal axis reference line in the scatter plot, being equally 

good in terms of prediction accuracy for the entire SoC value range. 
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Fig. 14: Actual vs Predicted for SoC by Bi- LSTM. 

 

In terms of numerical indicators, the model yielded an MSE of 26.24 and an RMSE of 5.12, which signify quite low errors in predictions. 

The MAE value of 3.64 points toward a small deviation between actual values and predicted SoC. An R² score of 0.968, equally astonishing, 

reveals that 96.8 % of the variation in SoC could be accounted for by the model. The Bi-LSTM, for its part, could satisfactorily represent past 

and future dependencies and thus perform well in sequence-based learning tasks, much better than a standard RNN or linear model. 

 

 
Fig. 15: Lime Explanation for SoC by Bi-LSTM. 

 

The level explanation for the Hybrid LSTM + GRU model on SoC prediction reveals features named feature_5, feature_1, and feature_4 

to have the most significant positive impact on the output, thus raising the predicted SoC value. These could be factors relating to time or 

voltage trends. Contrarily, feature_8 and feature_9 degrade the prediction, almost suggesting if certain thresholds exist (low temperature or 

efficiency) that decrease the expected SoC. The diagram portrays a very well-grounded local explanation in which LIME reveals factors 

that support and suppress the model decision for that particular instance, thereby improving interpretability of a relatively complex sequen-

tial model. 

Hybrid Model 

 
Fig. 16: Loss Curve for Hybrid Model. 

 

 
Fig. 17: Actual vs Predicted for SoC by Hybrid Model. 



International Journal of Basic and Applied Sciences 295 

 
The powerful learning might have been acquired by using SoC prediction through the LSTM + GRU approach. The training and validation 

loss values rapidly decreased and remained steady all along training without overfitting; hence, the convergence was good. The actual- 

predicted plot shows a close alignment with the red diagonal line of the ideal presentation, which reveals the model's efficacy in capturing 

temporal dependencies in SoC data. 

The MSE of 33.37 and RMSE of 5.78 mean that the model explains 96% of SoC variance. With an MAE of 4.18 and an R² of 0.96, an 

expected SoC level can be regarded as a highly accurate estimate. This ties the system among the most suitable deep learning architectures 

for battery charge estimation at reasonable accuracy. 

 

 
Fig. 18: Lime Explanation for SoC by Hybrid Model. 

 

The LIME explanation for the Hybrid LSTM+GRU SoC prediction enlightens us about the features that influenced a certain prediction 

and to what extent. The strongest positive contributions were paid by feature_5, followed by feature_1, and then feature_4, 

which possibly denote time in range, voltage, and temperature insofar as these features push the predicted SoC upward-the sign for 

better battery charge conditions. Feature_8 stands as the most negative factor being in all probability suggestive of degradation trends or 

inefficiencies. Slightly weaker negative influences came into play from feature_9, feature_7, and feature_0 to give more preciseness to 

the prediction. Such an equal mix of positive and negative contributions is, on the one hand, confirmation to this single instance 

that the model managed to understand in a very detailed fashion, from a battery-state point of view. 

Comparisons: 

 
Model MSE RMSE MAE RÂ² Score 

Linear Regression 75.2008 8.6718 6.8384 0.9096 

XGBoost 3.9385 1.9846 1.1448 0.9953 

RNN 40.0459 6.3282 4.7477 0.9519 
Bi-LSTM 26.2446 5.123 3.6487 0.9684 

Hybrid Model 33.3700 5.7766 4.1781 0.9598 

12. SOH Result 

Linear Regression: 

 

 
Fig. 19: Actual vs Predicted for SoH by Linear Regression. 

 

While the SoH prediction did fairly well using a Linear Regression model, it failed to grasp the upward non-linear degradation trends char-

acteristic of the battery dataset. Almost all predicted values clustered in a somewhat narrow band that substantially deviated from the ideal 

45- degree diagonal line on the actual vs. predicted-soH plot. The model recorded MSE and RMSE values of 32.88 and 5.73, which corre-

spond to a fairly average error. It registered an MAE of 4.65. However, the R² value was only 0.33, so the model managed to explain just 

33% of the variance in the SoH, making this model ill-suited for long-term battery aging trend prediction 

XG Boost: 
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Fig. 20: Actual vs Predicted for SoH by XGBoost. 

 

The XG-Boost model for SoH prediction enjoys high accuracy and efficiency than any other methods considered. The scatter plot shows 

points lying close to the red diagonal line, confirming the accuracy of the model's predictions for the entire SoH range. The MSE obtained 

was 3.65, while the RMSE obtained was 1.91, denoting small magnitudes of error in the prediction. Contrastingly, the MAE was measured 

to be 1.23, implying the average prediction is just about one unit away from the real SoH values. To my best knowledge, this model stands 

apart, having an R² score of 0.93, meaning that about 92% of the variance in SoH is explained, way above any other benchmarking method. 

 

 
Fig. 21: Lime Explanation for SoH by XGBoos. 

 

 
Fig. 22: Overall Lime Explanation by XGBOOST. 

 

According to the LIME explanation for SoH prediction by the XG-Boost model, Discharge_Efficiency exerted the maximum detrimental 

effect on the predicted value, with Rolling_Mean_Voltage, Rolling_Std_Voltage, and SoH_trend taking secondary positions. These fea-

tures worked in opposition toward lowering the prediction generated by the model, therefore, pressing strongly toward the degradation-

related prediction. Instantaneously brought upward pressure on the prediction were Normalized_Voltage, Temperature_measured, and Cur-

rent_to_Voltage_Ratio. The plot presents demonstration of a well-balanced but very critical detriment toward discharge-related and voltage-

related metrics as considered in modeling the long-term battery health. LIME brings to light the factors behind every prediction to ensure full 

transparency when estimating SoH. 

RNN: 
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Fig. 23: Actual vs Predicted for SoH by RNN. 

 

The RNN SoH prediction model performed moderately, points in the scatter plot spreading to some extent away from the ideal diagonal. It 

followed the general trend; however, the model did not seem to properly capture the long-term degradation pattern. This is why predictions 

were compressed in the 75-90 band, regardless of the actual SoH value. Quantitatively, the MSE was 24.08 with an RMSE of 4.91 and an 

MAE of 3.79 - values that indicate strong prediction errors. An R^2 of 0.51 means that the model accounts for just over half of the variation 

in SoH. This dismissal of a high R^2 puts into perspective the drawback of the RNN in understanding more intricate temporal dynamics in 

battery health. 

 

 
Fig. 24: Lime Explanation for SoH by RNN. 

 

 
Fig. 25: Overall Lime Explanation by RNN. 

 

According to the LIME explanation offered for the RNN's SoH prediction, Normalized_Voltage and Discharge_Efficiency were the major 

positive contributors, driving the predicted value up markedly. These features stand to represent operational health and consistency of the 

particular battery. Other features, such as Current_measured and Current_to_Voltage_Ratio, exerted relatively small positive influences. 

Conversely, Rolling_Std_Voltage and Smoothed_Voltage pushed down slightly on the prediction, meaning that perhaps variability in volt-

age is a sign of degradation. The LIME visualization may thus be interpreted at least somewhat intuitively, with respect to local feature 

influences, to reveal both factors that support and oppose individual predictions of SoH, thereby facilitating a transparent look at the 

reasoning behind the model. 

BI-LSTM: 
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Fig. 26: Loss Curve for Bi-Lstm. 

 

The so-called predictive Bi-LSTM model has a moderate success in detecting temporal dependencies but at the same instance keeps training 

stable. The loss curve displays a steady convergence, with early stabilization of training and validation losses, thus indicating good gener-

alization behavior and lack of overfitting. Numerically, it shows an MSE of 19.01, an RMSE of 4.36, and an MAE of 3.32, implying 

relatively controlled errors. An R² value of 0.61 means that the model is capable of explaining 61% of the variability in SoH and is better 

at doing so than the RNN and linear models but the performing of XG-Boost is superior to it. Though this has been made somewhat 

successful in smoothing SoH prediction, further tuning shall bring about improvements in long-term degradation modeling. 

 

 
Fig. 27: Actual vs Predicted for SoH by Bi-LSTM. 

 

Figure 27 displays state-of-the-art scatter plots about SoH prediction with Bi-LSTM. As is visible, it agrees mostly with the ideal line, with 

some spreading out and underestimation beyond the higher SoH values. Almost all predicted points are densely clustered along the diago-

nal, pointing to the model's ability to extract meaningful temporal patterns from the data. The model provides the most accurate predictions 

for SoH in the middle range and tends to squeeze values at either end. This is consistent with its ~0.61 reported R² score, depicting a 

moderate explanation level. The Bi-LSTM learned in a stable fashion and was, in general, superior to simple recurrent architectures in 

predictive performance. 

 

 
Fig. 28: Lime Explanation for SoH by Bi-LSTM. 

 

 
Fig. 29: Overall Lime Explanation by Bi-LSTM. 



International Journal of Basic and Applied Sciences 299 

 
This is a LIME explanation of predicting SoH by Bi-LSTM, where feature_2 and feature_5 were hugely contributing in an opposite direction 

for the SoH prediction, implying Normalized Voltage and Discharge Efficiency representing healthy states in the realm of battery behavior 

being stable and efficient. On the contrary, feature_9 and feature_8-perhaps corresponding to Voltage Variability and Degradation Trend-

are negatively affecting the SoH value and hence reduce the Predicted SoH. Next come Temperature_measured, Rolling_Mean_Voltage, 

and Current_measured, contributing in smaller positive and negative amounts. So, this LIME visualization implies that the model makes 

sense from the standpoint of battery health as per domain knowledge concerning voltage quality and efficiency indicators. 

Hybrid Model 

 

 
Fig. 30: Loss Curve for Hybrid Model. 

 

Predicting SoH with the Hybrid LSTM + GRU model performs the best characteristics of fitting, thus affording predictive precision 

as well as convergence stability. Both training and validation loss values diminish abruptly and commence to flatten afterward, thereby 

signifying that the speeds of learning are higher, with little overfitting. Being able to generalize well for the SoH range, the cluster of points 

between the actual and predicted values lie closely along the ideal diagonal. 

The MSE stands at 5.44, RMSE at 2.33, and MAE at 1.60, reflecting a low error in prediction. The once R² at 0.89 level of explanation means 

that it has so far explained the variation in SoH at nearly 89%, against conventional RNN and Bi-LSTM models. This proves that merging 

the long-term memory of an LSTM with the more efficient GRU of the battery health forecast in a rather complex time-dependent scenario 

brings further upgrade in their predictive ability. 

 

 
Fig. 31: Actual vs Predicted for SoH by Hybrid Model. 

 

 
Fig. 32: Lime Explanation for SoH by Hybrid Model. 

 

LIME-dependent rationale computation of SoH means Normalized_Voltage, Discharge_Efficiency, and Smoothed_Voltage pushed the 

predicted value down in the sense that lower voltage stability and lower discharge efficiency imply bad surface health of batteries. Roll-

ing_Std_Voltage, Temperature_measured, and Voltage_measured had opposing effects with small positive effects on the estimate; thus, 

they somewhat increased the predicted value of SoH. This explanation gives a balanced picture of the opposing weights of features in 
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influencing the output. Such local interpretability really strengthens the claim of the model in exposing feature interplay for each and every 

one of the predictions throughout the entire complicated deep learning pipeline. 

Comparison: 

 
Model MSE RMSE MAE RÂ² Score 

Linear Regression 32.8824 5.7343 4.6487 0.3297 

XGBoost 3.6489 1.9102 1.228 0.9256 
RNN 24.0804 4.9072 3.7934 0.5091 

Bi-LSTM 19.0057 4.3596 3.3233 0.6126 
Hybrid LSTM + GRU 5.4355 2.3314 1.5981 0.8892 

13. Conclusion 

Several machine learning and deep learning models were considered in this study for performing accurate SoC and SoH estimations of 

lithium-ion batteries. From the SoC prediction perspective, classical models such as Linear Regression achieved moderate performance, 

limited by their inability to address non-linear relations effectively. In contrast, XG-Boost took the prediction to the next level, with an R² 

value exceeding 0.99. Both recurrence structures RNN and Bi-LSTM outperformed others in modeling temporal sequences, while Bi-

LSTM generalized better. However, the Hybrid LSTM + GRU model outperformed them all, offering a balance between accuracy and 

efficiency with an R² score of 

0.96 and minimal RMSE. 

A similar trend was seen for SoH prediction-N-rather underperforms to capture long-term degradation patterns. XG-Boost, however, ex-

celled, with an R² score of 0.93 and minimum error metrics-interactions modeling complex. Deep models like Bi-LSTM and Hybrid LSTM + 

GRU better captured temporal dependencies than RNNs, whereas the hybrid model balanced accuracy and stability the best (R² ≈ 0.89). 

While XG-Boost worked best for the structured data, the Hybrid LSTM + GRU model was best for time-series-based battery monitoring, 

making them both useful within a smart battery management system. 

14. Future Enhancement 

Future enhancements to this battery SoC and SoH prediction framework can focus on the expansion of the scope and performance of the 

models. Real-time data from IoT-enabled sensors may serve the purpose of health monitoring in a continuous manner and dynamic learning. 

Transfer learning methods can be applied for adapting models trained on one type of battery to another, thus minimizing the retraining 

effort. Applying hybrid explainable AI approaches, e.g., SHAP-LIME fusion, can give an additional layer of interpretability to interested 

parties. Additionally, datasets with a variety of operating conditions and aging cycles will add to generalization power. Improved accuracy 

can be gained through Advanced architectures such as Transformers for time series and Physics-Informed Neural Networks (PINNs), which 

allow for domain knowledge to be measured. Lastly, embedding this system into a real-time BMS would look after predictive maintenance 

and lead to safer and efficient energy storage operations, thereby living batteries in industrial applications. 
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