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Abstract 
 

Avoiding injuries is crucial for athletic performance. Despite the difficulty in predicting injuries, new technologies and data science appli-

cations may offer valuable information. The goal was to apply machine learning to predict in juries in runners based on complete training 

data. Over a seven-year span, 74 elite middle- and long-distance runners were used to test injury prediction. Two methods of analysis were 

used. Initially, a time series was created that represents the training load for the preceding seven days, with ten features describing the 

training for each day. These characteristics combined subjective information on training effectiveness and training effort level with data 

from a watch (such as duration and distance). The average area under the ROC-AUC curve for the day approach were produced to be 

0.9978 by a prediction system based on Random Forest Classifier machine learning model. The machine learning-based method predicts 

a significant percentage of injuries when the model is built using training data recorded on a daily basis in athlete training. All things 

considered, the results showcase the benefits of applying machine learning to forecast injuries and also customize athlete training regimens. 

 
Keywords: Random Forest Classifier; Machine Learning; Injury Prediction; Data Sampling. 

1. Introduction 

Injuries in endurance sports like running disrupt training, impair performance, and jeopardize athletes’ careers, often caused by intense 

training loads, poor biomechanics, and inadequate recovery [1, 2]. Traditional injury prevention methods are subjective and fail to address 

dynamic risk factors, such as variations in train ing intensity and fatigue levels [3]. Machine learning offers a data-driven approach to injury 

prediction by analyzing vast amounts of training and movement data, enabling proactive measures [4], [5].  

Individualized load monitoring and stress-recovery balance are critical in reducing injuries across sports like soccer, rugby, and cricket [6 

– 8]. Recent advancements in machine learning, such as XGBoost and GPS data integration, have improved injury prediction accuracy and 

interpretability [9 – 11]. However, challenges remain, including sport-specific limitations and the need for larger datasets [12], [13]. This 

paper proposes a machine learning framework to predict injuries in runners, leveraging training load data to enhance athlete safety and 

optimize performance [14 – 16]. The framework integrates both subjective and objective data, such as GPS metrics, to provide accurate 

and actionable insights for injury prevention [17 – 19]. Sudden increases in weekly running distance beyond 30 percent raise injury risks 

in novice runners, highlighting the need for gradual progression [20]. Aerobic fitness measures failed to predict success in young cyclists, 

underscoring the need for broader talent identification criteria [21]. 

This research [22] demonstrated that accelerometers can validly and reliably collect kinematic data from surfers and their boards, producing 

waveform signals comparable to motion-capture systems. The study found that different surfing manoeuvres generate distinct acceleration 

patterns and that significant differences exist between complete and incomplete bottom-turn–to–top-turn combinations. Overall, it provides 

the first detailed evaluation of lower-body and surfboard acceleration during common surfing manoeuvres, contributing important new 

evidence to surfing performance research.  

This study [23] examined how physiotherapists reason clinically when identifying and treating upper-limb movement difficulties after 

stroke, using a mixed-methods design involving surveys, interviews, and recorded treatment-session reflections. Findings showed that 

clinical decisions were mainly influenced by therapists’ experience, theoretical knowledge, service structure, and holistic factors such as 

sensory and emotional aspects of stroke, while service users valued sensory experiences of movement and desired more collaborative 

discussion. Overall, the study highlights the flexible yet structured nature of physiotherapy decision-making post-stroke and emphasizes 

the importance of integrating service-user perspectives in rehabilitation. 
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Injuries in endurance sports like running can disrupt training, impair performance, and jeopardize athletes’ careers. Traditional injury pre-

vention methods are often subjective and fail to address dynamic risk factors. There is need for a data-driven approach using machine 

learning to predict injuries, enabling proactive measures to enhance athlete safety and optimize training. 

The following paper begins with an introduction that highlights the importance of injury prevention and the limitations of traditional 

methods in machine learning. The methodology details a five-stage workflow which includes data pre-processing to model deployment. 

The results and discussion section evaluates model performance using visualizations like confusion matrix and ROC curve. Finally, the 

conclusion summarizes findings, suggests future improvements for broader applicability, and concludes with references 

2. Methods 

The five sequential steps of the athlete injury-risk prediction workflow are shown in Figure 1: data preprocessing, correcting class imbal-

ance, feature selection, model training, and deployment through a user interface. High predictive accuracy and useful interpretability for 

sport-science professionals were the two main goals of the workflow's design. Each step converts unprocessed athlete monitoring data into 

useful and physiologically based risk insights. 

Stage 1: Data Preprocessing  

Structured preprocessing was applied to raw athlete-monitoring data from a professional Dutch endurance squad from 2012 to 2019. Train-

ing load variables, session kinds, and strength sessions were all documented on a weekly basis.  

Preprocessing is involved in: 

• Using domain-appropriate imputation (such as forward-fill for weekly summaries) to handle missing values.  

• Eliminating physiologically implausible outliers, such as negative session counts. 

• Standardisation where necessary to enable model-based load metrics comparison.  

Because minor discrepancies might have a disproportionate impact on injury prediction models, our procedures guaranteed consistency 

throughout a longitudinal dataset, which is especially crucial.  

In order to prevent leaking, temporal integrity was maintained by processing all data before splitting. A chronological train–test split was 

employed to preserve the temporal structure of the weekly data, with the first 80% of the data being used for training and the last 20% set 

aside for testing. This keeps future training weeks from affecting earlier forecasts. 

Stage 2: Resolving Dataset Imbalance in Stage Two  

The initial dataset (575 injury weeks vs. 42,223 non-injury weeks) was extremely unbalanced. Due to the rarity of injury episodes in elite 

endurance sports, this imbalance may cause a model to consistently predict "no injury".  

They employed a combination approach:  

1) ADASYN oversampling, concentrating on injury cases that are challenging to learn, to create artificial minority samples.  

2) Random undersampling to shrink the size of the majority class. 

As a result, there were 30,129 injury entries and 42,000 non-injury entries, making the distribution more evenly distributed. 

Overfitting Precautions: The model may learn minority patterns as a result of aggressive oversampling.  

• Oversampling was only used on the training set, never on the validation or testing sets, in order to decrease this risk. 

• To prevent excessive replication of damage patterns, two distinct imbalance techniques (ADASYN + undersampling) were employed. 

• To identify indications of oversampling-induced overfitting, precision-recall analysis and confusion-matrix interpretation are included 

in the later model evaluation (Section 3). 

Stage 3: Feature Selection  

Recursive Feature Elimination (RFE) on the training set with cross-validation was used for feature selection after balancing. The top ten 

characteristics kept for modelling were as follows:  

Physiological explanation of specific traits  

• Strength training (ranked highest): By influencing tissue exhaustion and motor-unit recruitment stability, variations in neuromuscular 

load might modify injury risk.  

• High-intensity and interval training: Musculoskeletal strain is known to be increased by sudden increases in anaerobic load, particularly 

in endurance athletes. 

• Frequency of rest days: Inadequate recuperation impairs tissue adaptability and raises the risk of soft-tissue injuries.  

• Seasonality (Date): Pre-competition and early-season conditioning stages frequently exhibit unique injury patterns.  

Incorporating these biologically interpretable characteristics improves the model's credibility and usefulness for athletes. 

Stage 4: Model Training and Testing  

The chronologically earlier part of the dataset was used to train three models (Logistic Regression, Random Forest (RF), and XGBoost), 

which were then assessed using the temporal hold-out set. Among the evaluation metrics were: Precision, recall, F1-score, and accuracy, 

andROC-AUC. 

The model with the greatest AUC (0.9997) was Random Forest. However, considering the exceptionally high performance, possible over-

sampling-related overfitting was investigated using:  

• Balanced accuracy 

• Analysis of false positives and false negatives 

• Comparison with simpler models (Logistic Regression) 

Section 3 provides a detailed discussion of model performance.  

Stage 5: Front-End User Interface  

The trained RF model was serialised as a pickle object and implemented into a front-end interface for practical use by coaches. Weekly 

load metrics and outputs can be entered into the interface.  

• Injury-risk probability 

• Explanation of contributing features (via feature importance ranking) 

This closes the gap between the results of machine learning and practical coaching processes. 
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Fig. 1: Proposed Workflow for Athlete Injury-Risk Prediction. 

3. Results and Discussion 

This chapter treats the entire development process that dates back to the first stages of design and ends with the later stages of testing and 

implementation. The purpose of any particular section would be to give a clear understanding of how the solution was constructed and how 

it was implemented in a practical way. 

3.1. Data pre-processing and balanced dataset 

Only 1.34% of the 42,798 weekly athlete records in the raw dataset were marked as injury weeks. The initial and balanced distributions 

are displayed in Figures 2 and 3.  

Using density-based sampling in ADASYN, more injury-labelled samples are balanced with realistic physiological variance.  

 

 
Fig. 2: Injury Data Count Before Sampling. 

 

 
Fig. 3: Injury Data Count After Sampling. 
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3.2. Feature selection 

Figure 4 depicts the relative significance of characteristics chosen using Recursive Feature Elimination (RFE) based rankings, which 

showed that:  

• High-intensity/tough sessions were likewise highly predictive; 

• Strength-training count and variability were top predictors; and  

• Rest-day metrics and interval-session frequency moderately predictive 

• Seasonality (Date) that records annual load cycles 

These findings are consistent with the injury-risk theory in endurance sports, where inadequate recovery and abrupt load spikes are signif-

icant factors. 

 

 
Fig. 4: Bar Plot for RFE. 

3.3. Model training and testing 

Table 1 provides an overview of the findings. Because injury-load connections are non-linear, logistic regression performed poorly. Metrics 

for Random Forest and XGBoost were exceptionally high: RF AUC is 0.9997, and XGB AUC is 0.9976. 

Interpretation of confusion matrix: 

RF yielded the following results despite correctly predicting the majority of injury and non-injury samples: 119 false negative results and 

12 false positive results. Strong performance is indicated by such few errors, but they also raise the possibility of oversampling-driven 

overfitting, which needs to be noted in restrictions. 

 
Table 1: Model Comparison Table 

Model Class Precision Recall F1-Score ROC-AUC Score Accuracy 

Logistic Regression 
0 0.69 0.75 0.72 

0.7142 0.6567 
1 0.59 0.52 0.55 

XGBoost 
0 0.99 0.96 0.99 

0.9976 0.9918 
1 0.96 0.99 0.99 

Random Forest Classifier 
0 0.99 0.99 0.99 

0.9997 0.9929 
1 0.98 0.98 0.99 

 

 
Fig. 5: Confusion Matrix for Random Forest Model 

 

In order to forecast an athlete's risk of injury, this ROC curve in Figure 6 compares the outcomes of models like XGBoost, Logistic 

Regression, and Random Forest Classifier. The top-left region is hugged by the RF and XGB curves, indicating strong discriminative power. 

The curve of logistic regression is far closer to performance at the chance level. 
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Fig. 6: ROC Curve for Random Forest Classifier. 

3.4. Practical implications for coaches 

This model helps coaches:  

• Track weekly shifts in risk instead of depending solely on instinct;  

• Recognise high-load weeks that need for proactive recovery techniques  

• Using objective risk assessments to support return-to-play decisions; 

• modifying the micro cycle structure (interval sessions, rest days); and 

• Planning customised strength training based on injury susceptibility 

The interface offers comprehensible insights that complement regular coaching procedures. 

4. Limitations and Future Work 

• Generalizability: Patterns may vary for sprinters, team sports, or young athletes; data comes from a single elite Dutch endurance squad.  

• Oversampling risks: ADASYN might provide artificial instances that are too similar to noise, which would boost model performance.  

• Temporal correlation: Daily load swings within a week may not be captured by weekly statistics.  

• Feature omissions: Sleep and HRV, among other physiological indicators, were excluded.  

• Model complexity: Despite feature importance analysis, highly effective ensemble models might still be somewhat opaque.  

Future research could investigate different imbalance-handling techniques including focus loss or cost-sensitive learning, validate the 

model on external cohorts, and incorporate richer physiological information. 

5. Conclusions 

The research aims to predict the injury risk in athletes using machine learning approach. Of all the models evaluated, the random forest 

classifier shows the highest performance in the data set used. Achieving an accuracy of 99.29% and an outstanding ROC-AUC score of 

0.9997, the model effectively identifies injury risks with remarkable reliability. These precise predictions can aid in early intervention and 

the implementation of preventive strategies to safeguard athletes. 
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