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Abstract 
 

Lane detection in complex driving environments remains challenging due to issues such as poor visibility, occlusions, and intricate lane 

topologies. To address these challenges, this paper proposes MPDDNet, a novel multi-scale parallel network that integrates two key com-

ponents: a Direction-aware Adaptive Multi-scale Feature Fusion (DAM-FF) module and a Deformable Non-local (DF-NL) module. The 

DAM-FF module explicitly embeds directional priors into multi-scale feature fusion through adaptive weighting and direction-aware spa-

tial attention, significantly enhancing detailed feature representation in challenging scenarios. The DF-NL module combines multi-scale 

feature fusion with deformable attention mechanisms, enabling efficient global context modeling while implicitly incorporating structural 

priors of lane geometry. Through parallel integration, these modules achieve synergistic optimization of local details and global semantics. 

Extensive experiments on three benchmarks demonstrate that MPDDNet establishes new state-of-the-art performance, achieving 83.03% 

F1 score and 63.54% mF1 score on the CULane dataset. Our method also achieves remarkable results on the LLAMAS and TuSimple 

benchmarks, with 97.80% F1@50 and 98.40% F1 score, respectively. The consistent superiority across all three datasets and various 

challenging scenarios validates our approach's robustness and generalization capability, providing an effective solution for lane detection 

in complex environments. 
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1. Introduction 

The rapid development of autonomous driving technology puts forward extremely high requirements for environmental perception systems. 

As a key basis for autonomous vehicle positioning, path planning, and decision-making, the accuracy and robustness of Lane Detection 

are very important [1 - 3]. Despite the remarkable progress of deep learning-based detection methods in recent years, it is still a great 

challenge to achieve high-precision lane line perception in complex, dynamic environments in the real world [1]. 

A large number of studies [4 - 7] have shown that for lane detection in complex environments, the current mainstream models mainly 

follow two technical routes to improve the robustness of the model. First, it is committed to optimizing Multi-scale Feature Fusion. For 

example, the CLRNet [4] introduces a cross-layer recursive refinement mechanism to deeply fuse deep semantic features and shallow detail 

features, thus achieving excellent performance. Second, they focus on enhancing Global Context Modeling. For example, HGLNet [8] uses 

a Deformable Attention mechanism [9] to capture long-distance dependencies in images adaptively. To better understand the overall to-

pology of complex scenes. These methods perform well on datasets with a single environment (e.g., TuSimple [10]), but generally face 

two key types of challenges when dealing with complex real-world scenarios: 

1) Challenges of detail perception and multi-scale fusion: Lane lines in complex environments often become blurred or broken due to 

occlusion, dramatic illumination changes, and other factors (see Fig. 1 (a, b)). Although the mainstream methods [4], [8], [11], [12], 

[14], [15] generally adopt multi-scale feature fusion strategies (such as FPN[15] and its variants), the fusion process mostly relies on 

predefined or static weight mechanisms, which makes it difficult to adaptively enhance the subtle features of weakly visible regions 

and suppress background interference at the same time. Although previous studies have attempted to improve this problem by intro-

ducing recursive refinement, feature recalibration, or a lightweight pyramid structure [4], [16], most of these methods fail to explicitly 

incorporate the inherent directional and structural priors of lane lines, resulting in a bottleneck in the perception and recovery ability 

of slender lane structures in extreme scenarios. 

2) Challenges of global semantic modeling and structured reasoning: In scenes such as intersections and severe occlusion (see Fig. 1 (c, 

d)), the complex topology of lane lines is easy to confuse with visually similar distractors, which requires a strong global context 

reasoning ability of the model. Existing methods [17 - 20] typically leverage mechanisms such as proposal-based context aggregation 
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[4] or deformable attention [8] to capture long-range dependencies. However, the former heavily relies on the accuracy of the initial 

proposal. At the same time, the latter lacks directional constraints on lane geometry (such as vertical continuity and horizontal paral-

lelism) due to its isotropic search mechanism, which is prone to capturing irrelevant noise, and there is still room for improvement in 

inference efficiency and accuracy. Although some studies have explored the introduction of topological constraints or BEV transfor-

mation, they rely on additional data or complex calculations, and are difficult to be widely applied. 

 

  
(a) Dazzle  (b) No line 

  
(c) Crowded (c)Night add Crowded 

Fig. 1: Illustrations of Hard Cases for Lane Detection. (a) Dazzle—Where Bright Light Sources Cause Glare, Making It Difficult to Detect Lane Markings; 

(b) No Line—Where Lane Markings Are Absent Or Worn Out, Causing A Lack of Reference for Detection; (c) Crowded—Where Dense Traffic Or Sur-
rounding Objects Obscure Lane Boundaries; and (d) Night and Crowded—A Combined Challenge Where Low-Light Conditions and Congestion Together 

Complicate the Detection Process. 

 

To address the above challenges, this study aims to address two key issues: (1) How to construct an adaptive multi-scale feature fusion 

mechanism to accurately enhance lane features and suppress background noise in complex degraded environments? (2) How to design an 

efficient global context modeling framework to accurately reason about lane topology by explicitly embedding directional structural priors, 

thus significantly reducing false detections? 

To this end, this paper proposes a novel Direction-aware Lane Attention Network (MPDDNet) to cope with the above challenges. The core 

innovation of this work is embodied in the design of two closely integrated modules: 

1) Direction-aware Adaptive Multi-scale Feature Fusion Module (DAM-FF): By integrating the channel and spatial attention mechanisms 

and introducing the direction-aware convolution, the module realizes the adaptive weighted fusion of multi-scale features to effectively 

enhance the detailed feature representation of the lane structure in a complex environment, while suppressing the interference of back-

ground noise. 

2) Deformable Non-Local Module (DF-NL): This module captures multi-scale context using convolutions with different dilation rates 

By embedding DAM-FF and DF-NL into a unified network architecture, MPDDNet realizes the collaborative enhancement from local 

detail awareness to global semantic reasoning. Experiments on several public benchmarks show that the comprehensive performance of 

the proposed method is significantly better than the existing advanced models, especially in challenging scenes (e.g., occlusion, glare, 

intersection, night, curve, etc.), showing better robustness and accuracy. 

The main contributions of this paper can be summarized as follows: 

1) We propose a novel Multi-scale Parallel Network with Deformable Non-local and Direction-aware Fusion (MPDDNet). The network 

features a parallel architecture comprising two dedicated modules: the Direction-aware Adaptive Multi-scale Feature Fusion (DAM-

FF) module for capturing fine-grained local details and structural cues, and the Deformable Non-local (DF-NL) module for modeling 

long-range global dependencies. This design provides a unified and efficient solution for lane detection in complex environments. 

2) We design a direction-aware adaptive Multi-scale feature fusion module (DAM-FF), which adaptively enhances the detailed feature 

representation of lane lines through dynamic weight allocation and direction-aware convolution, and effectively improves the locali-

zation accuracy of the model in challenging scenes such as occlusion and illumination change. 

3) We develop a deformable nonlocal module (DF-NL) that integrates multi-scale feature fusion with deformable attention mechanisms. 

By employing dilated convolutions with different receptive fields to predict sampling offsets, the module implicitly incorporates di-

rectional priors of lane structures while maintaining computational efficiency through sparse sampling. This design enables effective 

global context modeling specifically tailored for lane topology reasoning in complex environments. 

The rest of this paper is organized as follows: Section II reviews the related research work; The third part introduces the overall framework 

and core modules of MPDDNet in detail. Section 4 gives the experimental results and analysis. Finally, Section 5 concludes the paper. 

2. Related Work 

2.1. Representative methods for lane detection 

According to the representation form of lane lines adopted by deep learning models, existing methods can be roughly divided into three 

categories: segmentation-based methods, anchor-based methods, and parametric curve-based methods. Various methods have their unique 

advantages and limitations, which jointly promote the development of lane detection technology. 

Segment-based methods treat lane detection as a pixel-level classification task, aiming to predict for each pixel whether it belongs to a lane 

line or not. SCNN [19] is the pioneering work in this field, which captures the long-distance spatial relationship of lane lines through the 

information transfer mechanism between slices, and significantly improves the performance. However, its high computational overhead 

makes it difficult to meet the requirements of real-time applications. On this basis, RESA [21] proposed a circular feature shift aggregator, 
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which realized the extraction and integration of global features with higher efficiency. Although these methods can achieve pixel-level 

high-accuracy localization, their inherent disadvantages, such as high computational complexity and cumbersome post-processing steps 

(such as clustering pixels into complete lane instances), limit their application. More importantly, the lane line is regarded as a set of 

discrete pixels rather than an entity with an overall structure, which makes it difficult to ensure the coherence of the lane line in scenarios 

such as occlusion. 

Anchor-based methods regress the exact lane line position through preset anchors, which can be mainly divided into two categories: row 

anchors and line anchors. Row anchor methods (such as UFLD [22]) define the detection problem as selecting cells that may contain lane 

points on a predetermined row, and their structure is simple and fast. However, the strong vertical prior constraint limits their flexibility, 

and the row-level prediction is difficult to effectively capture the long-distance global context. CondLaneNet [23] introduces conditional 

convolution, which first locates the lane starting point and then detects it based on line anchors, which improves the processing ability of 

complex topological structures, but its performance is affected in scenarios where the starting point is difficult to accurately identify. Line 

anchor methods, such as LaneATT [18], use predefined line segments as anchors to predict the lane lines by regression offset. CLRNet [4] 

is the current representative model with leading performance, which deeply fuses multi-scale features by a cross-layer recursive refinement 

mechanism and aggregates global context information by ROIGather operation to achieve excellent detection accuracy. However, its multi-

scale fusion strategy is relatively naive, and the efficiency of the ROIGather operation highly depends on the quality of the initial proposal. 

If the proposal is inaccurate, the subsequent refinement process is difficult to recover from the error. 

The method based on a parametric curve uses parametric models (such as polynomials and Bezier curves) to directly represent the overall 

shape of the lane line, and completes the detection by regression model parameters. PolyLaneNet [24] uses polynomial regression and 

achieves efficient inference speed. LSTR [25] combines the Transformer architecture and uses the self-attention mechanism [26] to capture 

global features for regression parameters. The advantage of this class of methods is that the output representation is compact, the inference 

speed is fast, and the continuity of the lane is naturally guaranteed. However, the performance of the proposed method is very sensitive to 

parameter prediction errors, especially the high-order coefficients. A small deviation may lead to significant distortion of the lane shape, 

so that the stability and accuracy of the proposed method are still lower than those of the previous two methods under complex topology 

structures (such as road intersections). 

2.2. Multi-scale feature fusion in lane detection 

Multi-scale feature fusion is a key technology to improve the performance of dense prediction tasks, such as object detection and semantic 

segmentation [15], [27]. The core of multi-scale feature fusion is to effectively integrate feature maps from different depths of the network: 

shallow features contain rich detail and location information, while deep features carry high-level semantic information. In the field of 

general computer vision, Feature Pyramid Network (FPN) [15] and its subsequent improved schemes (such as PANet [27]) have become 

the classical paradigm for multi-scale feature fusion. FPN builds a multi-scale feature pyramid with strong semantic information by laterally 

connecting deep semantic features with shallow high-resolution features through a top-down path. PANet, on the other hand, adds bottom-

up path enhancement to FPN to improve the flow of bottom features to top features. However, the limitations of these generic paradigms 

emerge when they are directly applied to the lane line detection task. Lane lines have unique visual properties: they are usually slender, 

continuous, and strongly directional structures. General-purpose multi-scale fusion strategies (e.g., simple element-by-element addition or 

lane concatenation) are inherently task-agnostic, failing to embed a targeted design for structural priors such as lane lines. For example, 

the lane line features become extremely weak in scenes with partial occlusion, shadows, or resolution degradation. The general fusion 

mechanism is difficult to enhance these weak but critical lane features adaptively, while effectively suppressing the texture interference in 

the background (such as tire indentation, road repair marks). Although some advanced lane detection models (such as CLRNet [4]) deepen 

feature utilization by introducing a cross-layer recursive refinement mechanism, the basis of their multi-scale fusion is still relatively naive, 

and they fail to explicitly guide the network to pay attention to the structural characteristics of lane lines, thus limiting the detail recovery 

ability in extreme scenarios. Therefore, the existing multi-scale fusion methods often fail to achieve pixel-level accurate localization while 

maintaining high semantic understanding in the face of complex environments. This fully demonstrates that designing an adaptive fusion 

mechanism that can sense the direction and structure of the lane lines is crucial to improving the robustness of the model in challenging 

scenarios. The direction-aware Adaptive Multi-scale Feature Fusion module (DAM-FF) proposed in this paper is designed to address this 

challenge. 

2.3. Global context modeling in lane detection 

In complex driving scenarios such as intersections and heavy occlusion, lane detection faces two fundamental challenges: accurately rea-

soning about lane topology and recovering occluded visual cues. Traditional Convolutional Neural Networks (CNNs), constrained by their 

inherent local receptive fields, struggle to establish direct long-range dependencies between pixels, which is crucial for understanding 

slender structures like lane lines [19], [7], [28]. 

2.3.1. Relationship between global context and long-range dependencies 

In lane detection, global context modeling and the establishment of long-range dependencies are fundamentally complementary concepts: 

the former represents the objective, while the latter serves as the key mechanism to achieve this goal [29]. Although traditional Convolu-

tional Neural Networks (CNNs) can progressively expand their receptive fields through hierarchical stacking, enabling higher-level features 

to contain rich semantic information, this expansion of receptive fields remains local and gradual [30], [31]. This inherent limitation makes 

it difficult to establish the direct long-range associations required for lane structures. For instance, when partial occlusion occurs in lane 

markings, relying solely on local features proves inadequate for inferring the trajectory of obscured sections, necessitating the establishment 

of direct connections with distant visible lane segments. The geometric characteristics of lane lines dictate that their detection must consider 

global spatial relationships. Specifically, as spatially extended structures, the coherence between local segments of lane lines requires long-

range connections to ensure structural continuity. Furthermore, in complex intersection scenarios, the convergence and divergence rela-

tionships among multiple lane lines can only be accurately resolved from a global perspective. Additionally, under partial occlusion con-

ditions, recovering complete lane markings necessitates full utilization of contextual information from unobstructed regions. 
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2.3.2. Technical development pathways 

Architectural innovations based on self-attention [26] mechanisms have introduced new paradigms for global context modeling. The self-

attention mechanism achieves long-range dependency modeling by computing global correlations among sequence elements. Wang et al. 

[32] introduced this concept to the visual domain through the Non-local module, which directly computes pairwise relationships between 

spatial positions. Dosovitskiy et al. [33] further demonstrated the potential of pure Transformer architectures in visual tasks through Vision 

Transformer. To enhance efficiency, Zhu et al. [9] proposed Deformable DETR, which employs deformable attention to achieve sparse 

sampling. 

In the field of lane detection, these technical advancements have primarily manifested through two pathways: 

1) End-to-End Transformer Architectures (e.g., LSTR [25], O2SFormer [34]) formulate lane detection as a sequence prediction problem, 

leveraging the Transformer's global modeling capability to directly output lane parameters. While these methods exhibit powerful 

global reasoning capabilities, they demand substantial data resources and show limitations in detail recovery. 

2) Hybrid Enhancement Architectures incorporate attention modules while maintaining CNN backbones. SCNN [19] achieves infor-

mation propagation along row and column directions through slice-wise convolution; CLRNet [4] employs ROI attention to refine lane 

proposals; LaneFormer [9] designs row-column dual-axis attention; while CondFormer [35] and HGLNet [8] explore the integration 

of conditional convolutions with attention mechanisms. 

In recent years, emerging trends that fuse parametric representations with hybrid architectures have further pushed the performance bound-

ary. For instance, LaneFormer [9] achieves more efficient long-range dependency modeling within a hybrid architecture through its novel 

row-column dual-axis attention mechanism. These advancements collectively illustrate a converging trend in lane detection technology 

towards greater efficiency and accuracy. 

2.3.3. Current challenges and improvement directions 

Current approaches in lane detection continue to face two fundamental limitations that hinder their performance in complex scenarios. First, 

the post-hoc correction dependency prevalent in methods like CLRNet restricts global modeling to the detection head stage, where effec-

tiveness becomes heavily reliant on the output quality of preceding network layers, making it particularly challenging to rectify initial 

errors propagated through the network. Second, existing methods generally lack explicit modeling of inherent structural priors such as the 

strong directionality and continuity characteristics of lane lines, consequently requiring extensive training data to implicitly learn these 

geometrically constrained patterns. To address these critical issues, this paper proposes the Deformable Non-local Module (DF-NL), which 

strategically performs global interaction on mid-level backbone features rather than postponing it to later stages. By guiding deformable 

offset learning through direction-aware constraints and integrating multi-scale feature fusion, the DF-NL module enables more targeted 

global context modeling that explicitly incorporates lane structural priors. This design not only facilitates early error correction in the 

feature extraction process but also significantly enhances the reliability of lane topology reasoning in challenging environments such as 

severe occlusions and complex intersections, thereby providing a more robust foundation for lane structure understanding. 

3. Method 

To address the challenges of lane detection in complex environments, such as loss of details, insufficient global context modeling, and 

scale change, this paper proposes MPDDNet, a multi-scale parallel network that integrates the Direction-aware Adaptive Multi-scale Fea-

ture Fusion module (DAM-FF) and the Deformable Non-local module (DF-NL), and the structure diagram is shown in Figure 2. MPDDNet 

adopts a segmentation-based lane line representation method, optimizes local details and global semantics through a parallel dual-path 

architecture, and uses a dynamic fusion strategy to realize scene-adaptive feature integration, aiming to improve the robustness and accu-

racy of the model in various challenging scenarios. 

3.1. Overall architecture 

Many existing lane detection models often struggle to strike the best balance between preserving the fine details of the lane and under-

standing the global topology when dealing with complex scenes. To address the challenge of balancing fine-grained lane details with global 

topological understanding in complex scenes, we propose MPDDNet with a novel parallel dual-path architecture, as illustrated in Fig. 2. 

The network employs ResNet [36] as the backbone to extract multi-scale feature maps {C2, C3, C4, C5}. These features are then fed into 

two core modules for parallel processing: 

1) DAM-FF pathway: focusing on enhancing local details and directional structures. This module applies a carefully designed attention 

mechanism to the features of each scale independently, and then performs upsampling fusion to preserve the fine geometric information 

of the lane to the maximum extent. 

2) DF-NL pathway: focuses on capturing long-range dependencies and global context. The module receives features at all scales, uses a 

deformable attention mechanism to efficiently model the global relationship between pixels, and is particularly good at reasoning about 

the topology of occluded lanes. 

Finally, the Adaptive Dynamic Feature Fusion (AD-FF) module adaptively calculated the weights according to the specific content of the 

input image, and weighted fused the "detailed features" and "global features" output by the two pathways. The fused features are finally 

fed into a lightweight decoder to generate pixel-wise lane line segmentation maps. This parallel design clearly divides the labor, avoids the 

possible information loss caused by the serial structure, and enables the network to flexibly respond to the needs of different scenarios. 
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Fig. 2: Overall Architecture Diagram of MPDDNet. 

3.2. Direction-aware adaptive multi-scale feature fusion module (DAM-FF) 

3.2.1. Motivation and problem analysis 

The traditional Feature Pyramid Network (FPN) and its variants have obvious limitations in lane detection. FPN and its related variants 

employ a top-down approach for feature fusion, integrating different-scale features through simple element-by-element addition or concat-

enation. However, this general fusion mechanism fails to fully consider the unique geometric properties of lane lines, which are slender, 

continuous, and strongly directional. In challenging scenes with partial occlusion, illumination changes, or resolution degradation, weak 

lane features are easy to be submerged by background noise in the fusion process, resulting in loss of detailed information. The DAM-FF 

module is proposed to overcome the above "invisible" problem. The core idea is to explicitly embed the directional prior into the multi-

scale fusion process, so that the network can adaptively enhance the lane line structure response while suppressing irrelevant background 

interference. 

3.2.2. Module structure design 

The overall architecture of DAM-FF is shown in Fig. 3 and contains three key components: Efficient Channel Attention (ECA), Direction 

Aware Spatial Attention (DASA), and an Adaptive Multi-Scale Weight Fusion (AMWF) mechanism. The DAM-FF first independently 

refines the multi-scale features (C2-C5) with channel and direction-aware spatial attention. The refined features are then up-sampled to a 

common scale and fused by the Adaptive Multi-scale Weighting Fusion (AMWF) mechanism. 

 

 
Fig. 3: Illustration of the DAM-FF Module. 

 

The core design principle of the DAM-FF module follows an "optimize-before-fuse" strategy, where each multi-scale feature map Fi ∈
RC×Hi×Wi(with i ∈ {2,3,4,5}) extracted from the backbone network undergoes sequential channel and spatial augmentation before fusion. 

a) Efficient Channel Attention (ECA) 

Firstly, we designed an ECA module with reference to ECA-Net [37]. The channel dimension calibration is performed on the features of 

each scale independently. The specific method is to perform a global average pooling operation on each channel in space, and the Sigmoid 

activation function is used to generate the channel weight, which is multiplied by Fi, and the important feature channels at each scale are 

enhanced through cross-channel interaction. Channel feature enhancement of the ECA module is computed as in (1). 

 

Fi
eca = Fi ⊗ Sigmoid (Conv1Dk(GAP(Fi)))                                                                                                                                              (1) 

 

Where GAP represents the global average pooling operation, Conv1Dk is the one-dimensional convolution with kernel size k, and ⊗ rep-

resents the broadcast multiplication of channel direction. 

b) Direction Aware Spatial Attention (DASA) 

The direction aware spatial attention mechanism serves as a core component of the DAM-FF module, with its design motivated by the 

strong directional structural characteristics inherent to lane lines in real-world scenarios. This mechanism effectively captures spatial 
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context information of lane markings through multi-scale convolution operations, significantly enhancing the model's perception capability 

for slender lane structures. 

For the channel-calibrated features Fi
eca, vertical and horizontal convolutions are employed to capture directional priors of lane lines, 

formulated as shown in Equation (2): 

 

Fi
att = Fi

eca ⊗  (αi ∙ σ(Conv1×K(Fi
eca)) + βi ∙ σ(ConvK×1(Fi

eca)))                                                                                                           (2) 

 

Where Conv1×K  and ConvK×1  represent one-dimensional convolutions in vertical and horizontal directions, K ∈ {3,7,7}, The parame-

ters αi and βi are learnable balance coefficients, and Fi
att denotes the output feature after direction-aware enhancement, where σ denotes 

the sigmoid function.  

c) Adaptive Multi-scale Weight Fusion (AMWF) 

Traditional multi-scale feature fusion methods usually use simple feature concatenation or element-wise addition operations, which im-

plicitly assume that all scale features contribute equally to the final task. However, in the practical application of lane detection, the infor-

mation carried by feature maps at different scales exhibits significant differences: shallow features contain rich spatial details but are more 

prone to noise. In contrast, deep features possess strong semantic information but lack spatial resolution. Simple fusion strategies cannot 

dynamically adjust the relative importance of each scale feature according to the specific content of the input image. Inspired by the success 

of attention mechanisms in feature selection, we propose the Adaptive Multi-scale Weight Fusion (AMWF) module. The core innovation 

of this module is to introduce a lightweight weight generation network, which can automatically learn the optimal fusion weight of each 

scale feature according to the current input features, to replace the traditional hand-designed fusion strategy. 

Given a direction-aware enhanced multi-scale feature Fi
att firstly, the AMWF module unifies all scale features to the maximum scale by 

bilinear interpolation upsampling operation, and the upsampled feature map is denoted as F̃i. Then, a lightweight weight generation network 

Φ is designed to automatically calculate the weight W of the importance of each scale based on the input features, as defined in Equation 

(3): 

 

W = Softmax (Φ(F̃i))                                                                                                                                                                                  (3) 

 

Subsequently, the fused feature F1 is obtained by performing a weighted aggregation of all upsampled features according to the learned 

weights, formulated in Equation (4):  

 

F1 = ∑ wi ∙5
i=2 F̃i                                                                                                                                                                                            (4) 

 

Where wi ∈ W denotes the weight for the i-th scale feature.  

3.3. Multi-scale deformable nonlocal module (DF-NL) 

3.3.1. Design motivation and problem analysis 

Lane detection in complex driving environments demands effective modeling of long-range dependencies to accurately infer lane topology 

under challenging conditions such as severe occlusion and complex intersections. While attention-based methods have demonstrated re-

markable capability in capturing global contextual relationships between pixels, their direct application to lane detection faces significant 

limitations [30], [38]. The fundamental challenge lies in the computational complexity of standard self-attention mechanisms. As these 

operations compute pairwise relationships across all spatial positions, their complexity scales quadratically with feature map size, reaching 

O((HW)2), which makes it difficult to be used in practical applications when dealing with high-resolution feature maps.  

Our approach draws inspiration from the deformable attention paradigm, which addresses the computational bottleneck through learnable 

sampling offsets that enable sparse, content-aware feature aggregation. However, while deformable mechanisms significantly improve 

computational efficiency, they exhibit a critical limitation in lane detection applications: the lack of explicit directional priors. Lane struc-

tures possess inherent geometric properties characterized by strong directional continuity, yet standard deformable attention requires ex-

tensive training data to implicitly learn these structural patterns.  

3.3.2. DF-NL module structure 

To address these limitations, we propose the Multi-scale Deformable Non-local Module (DF-NL), as illustrated in Fig. 4, which funda-

mentally improves upon standard Non-local modules by replacing their computationally expensive dense global interactions with an effi-

cient deformable sparse sampling mechanism. This architectural innovation effectively overcomes the quadratic complexity bottleneck of 

conventional global modeling while preserving expressive power. Specifically, DF-NL introduces two key enhancements: multi-scale 

feature fusion with adaptive dilation strategies and direction-aware deformable attention. The module first integrates features across mul-

tiple scales and then employs a multi-scale dilation strategy for offset prediction that implicitly incorporates directional priors inherent in 

lane geometry. This synergistic combination enables precisely tailored global context modeling for lane structures, capturing long-range 

dependencies while maintaining sensitivity to directional characteristics. 

The DF-NL module receives the multi-scale feature map Fi ∈ RC×Hi×Wi  (where i ∈ {2,3,4,5}) from the backbone network. Firstly, the size 

of the Fi feature map is uniformly adjusted to be the same as the F5 feature map through the bilinear interpolation downsampling operation 

to ensure that all feature maps are consistent in the spatial dimension. Subsequently, all the adjusted feature maps are concatenated in the 

channel dimension to form a fused feature containing multi-scale information. Finally, a 1×1 convolutional layer, batch normalization layer, 

and ReLU activation function were used to fuse and reduce the dimension of the concatenated features, generating a unified feature repre-

sentation Ff for subsequent processing in the DF-NL module.  
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Fig. 4: Illustration of the DF-NL Module. 

 

The core innovation of DF-NL lies in its deformable attention mechanism with implicit directional awareness. Given the input feature Ff, 

the module first projects it into three distinct representations through linear transformations: query (Q), key (K), and value (V), following 

the standard attention formulation [26]. In this mechanism, the Q represents the current focus that seeks relevant information, the K serves 

as an identifier for the stored information, and the V contains the actual content to be aggregated. These projections are formulated as (5), 

(6), and (7): 

 

Q = Wq ∙ Ff                                                                                                                                                                                                    (5) 

 

K = Wk ∙ Ff                                                                                                                                                                                                    (6) 

 

V = Wv ∙ Ff                                                                                                                                                                                                    (7) 

 

Where Wq, Wk, Wv are learnable projection matrices. 

Unlike standard deformable attention mechanisms [9] that typically employ single-scale convolutions for offset prediction, DF-NL intro-

duces a multi-scale dilation strategy to enhance its perception of lane structures. This approach enables the module to capture both local 

details and longer-range spatial relationships critical for lane geometry understanding. 

Formula (8) defines the computation of the multi-scale offset field ∆P as follows: 

 

∆P = GroupNorm (Conv2d1×1×Np
(Concat (Conv2d3×3,dilation=1 (Ff), Conv2d3×3,dilation=2 (Ff))))                                                  (8) 

 

Where ∆P ∈ RH×W×Np×2 represents dynamic sampling location offsets in the spatial dimensions of the input feature map Ff, where H and 

W correspond to the spatial height and width of the feature map, respectively. For each spatial position q in the feature map Ff (i.e., each 

coordinate point (i,j) where i=1,..., H and j=1,..., W), ∆P provides Np two-dimensional coordinate offsets (∆x, ∆y). Each offset vector 

represents a displacement from the original position q, pointing to context sampling points that exhibit the strongest semantic relevance to 

q. This design enables the model to adaptively generate Np sampling points for each feature map position, breaking through the limitations 

of traditional fixed-grid sampling and thereby more effectively capturing feature information with long-range dependencies and complex 

geometric structures such as lane lines. Conv2dk×k,dilation=d represents a 2D convolution operation with kernel size k × k and dilation rate 

d, which controls the receptive field; Concat indicates the channel-wise concatenation of feature maps; Conv2d1×1is a 1×1 convolution; 

and GroupNorm refers to Group Normalization, which stabilizes activation distributions during training. The process begins by generating 

two distinct offset components. First, via a 3×3 convolution with dilation rate 1, preserving fine-grained local patterns and immediate 

spatial relationships, and through a 3×3 convolution with dilation rate 2, which captures broader contextual information and longer-range 

dependencies along potential lane directions. These complementary offset fields are then concatenated and processed by Conv2d1×1×Np
 

that learns to fuse the multi-scale spatial information, followed by Group Normalization to stabilize the training process. The resulting 

unified offset field ∆P inherently incorporates directional priors of lane structures through this multi-scale design, enabling the deformable 

attention to sample features in a geometry-aware manner without requiring explicit directional supervision. 

The strategic use of dilation rates 1 and 2 serves a specific purpose: 

1) Dilation=1 captures local contextual information with a standard receptive field. 

2) Dilation=2 expands the receptive field to capture longer-range spatial relationships along potential lane directions. 

By fusing the offset fields generated from these complementary receptive fields, the network learns to predict sampling locations that are 

not merely content-aware but also geometry-aware. This allows the DF-NL module to inherently favor sampling along the dominant di-

rectional axes (vertical or horizontal) of lane structures without relying on explicit, hand-crafted supervision, thereby providing a powerful 

structural prior that is learned directly from data. 
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Simultaneously, the module predicts attention weights for each sampling point to determine their relative importance in feature aggregation. 

The attention weight matrix A is generated through a dedicated convolutional layer followed by normalization, as defined in Equation (9): 

 

A = Softmax (Conv2d3×3×Np
 (Ff))                                                                                                                                                             (9) 

 

Where A ∈ RH×W×Np represents the attention weight tensor, with Np denotes both the number of output channels from the convolutional 

layer and the number of sampling points in the deformable attention mechanism. The 3×3 convolutional layer first processes the input 

feature Ff to produce initial attention scores, which are then normalized across all sampling points using the Softmax function. This ensures 

that the attention weights form a valid probability distribution, enabling the model to adaptively focus on the most relevant spatial locations 

during feature aggregation. The predicted weights play a crucial role in the subsequent deformable sampling process, allowing the module 

to emphasize features from geometrically meaningful regions while suppressing irrelevant background information. 

Based on the predicted offsets ∆P, the DF-NL module performs deformable sampling on both the K and V features to aggregate spatially 

adaptive features. This process is formally expressed in Equations (10) to (11), which define the aggregation of the sampled key features 

Ks and value features Vs, respectively. 

 

Ks = ∑ A(k) ⊙ BilinearSample(K, ∆P(k))
Np

k=1
                                                                                                                                            (10) 

 

Vs = ∑ A(k) ⊙ BilinearSample(V, ∆P(k)) 
Np

k=1
                                                                                                                                           (11) 

 

Where BilinearSample denotes the bilinear sampling operation, Np is the number of sampling points, ∆P(k) is the offset of the k-th sam-

pling point, A(k) is the attention weight of the k-th sampling point, ⊙ represents element-wise multiplication. 

The computation in Equations (10) and (11) aggregates the sampled key (Ks) and value (Vs) features through three steps for each of 

the Np sampling points: 

1) Bilinear Sampling: The BilinearSample operation uses the offset ∆P(k) to fetch a feature vector from the input K (or V) at a precise, 

potentially sub-pixel location. It does this by computing a weighted average of the four nearest pixels, ensuring the process is differ-

entiable. 

2) Weighting: The sampled feature is then element-wise multiplied (⊙) by its corresponding attention weight A(k), which scales the 

feature based on its importance. 

3) Summation: The weighted features from all Np points are summed together. 

This process results in Ks and Vs, which are dynamically aggregated feature maps. They concentrate information from the most relevant 

spatial contexts as determined by the learned offsets and attention weights, enabling the model to focus on geometrically meaningful 

regions like lane lines. 

The final output of the DF-NL module integrates the attention-weighted features through a residual connection to preserve original feature 

information while enhancing it with globally contextualized representations. First, the global context representation Y is computed using 

the scaled dot-product self-attention mechanism introduced in [26], which enables the model to focus on the most relevant spatial locations 

by measuring compatibility between queries and keys. This process is formally defined in Equation (12): 

Based on the self-attention mechanism [26], the output representation Y is computed by measuring the compatibility between queries Q 

and Ks, then using the resulting attention weights to aggregate value features Vs. This process is formally defined in Equation (12): 

 

Y = Softmax (
QKs

T

√dk
Vs)                                                                                                                                                                                (12) 

 

Where Q denotes the query matrix projected from the input feature, Ks and Vs represent the aggregated key and value features from Equa-

tions (10) and (11) respectively, and dk is the dimensionality of the key features. The scaling factor 
1

√dk
 stabilizes the gradient during 

training by preventing the dot products from growing excessively large. The Softmax function normalizes the attention scores to form a 

probability distribution, ensuring that the output Y effectively summarizes the global contextual information from the value features based 

on the attention-weighted spatial relationships. 

The final output of the DF-NL module integrates the attention-weighted features through a residual connection to preserve original feature 

information while enhancing it with globally contextualized representations. The output feature F2 is generated by combining the attention 

output Y with the original input feature Ff through a gated residual connection, as formulated in Equation (13): 

The DF-NL module produces the output feature F2 through a gated residual connection [36] that adaptively fuses the global context Y with 

the original input feature Ff, as defined in Equation (13): 

 

F2 = γY + Ff                                                                                                                                                                                                (13) 

 

Where γ is a learnable scalar parameter that allows the network to automatically learn the optimal blending ratio between the global con-

textual information generated by the DF-NL module and the original features. The residual connection ensures that critical original feature 

information is preserved while augmenting it with structurally reasoned representations, thereby enhancing the robustness of lane topology 

modeling in diverse environments. 

3.4. Adaptive dynamic fusion (AD-FF) and decoder 

The Adaptive Dynamic Feature Fusion (AD-FF) module serves as the critical integration point between the two parallel pathways. As 

shown in Fig. 2, this module takes the enhanced features from both DAM-FF and DF-NL branches and performs content-aware fusion 

through a scene-adaptive weighting mechanism. The fusion process begins with channel-wise concatenation of both feature sets, followed 

by global average pooling to capture scene characteristics. A lightweight convolutional network then generates spatial attention weights 

that dynamically balance the contribution of detailed local features from DAM-FF against global contextual features from DF-NL based 
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on the specific input content. This adaptive weighting enables the network to emphasize local details in scenarios with clear lane markings 

while prioritizing global context in challenging conditions such as occlusions or poor visibility. 

The formal implementation of the fusion process can be described as in (14) and (15): 

 

W = Softmax(MLP(GAP(Concat(F1, F2))))                                                                                                                                             (14) 

 

Ffused = W[0] ⊙ F1 + W[1] ⊙ F2                                                                                                                                                             (15) 

 

Where F1 denotes the detail-enhanced features from the DAM-FF module, F2 represents the globally-aware features from the DF-NL mod-

ule, W is the adaptive weight tensor generated by Softmax normalization with dimensions RH×W×2, and W[0] and W[1] are the respective 

weight components for F1 and F2 derived from slicing the first and second channels of W, while Ffused is the resulting fused feature. The 

Adaptive Dynamic Fusion (AD-FF) process begins by concatenating the local detail features F1 from DAM-FF and the global context 

features F2 from DF-NL along the channel dimension to form a comprehensive feature representation. This combined representation un-

dergoes global average pooling (GAP) to extract channel-wise statistics, which are then processed by a multi-layer perceptron (MLP) to 

produce initial weighting coefficients. These coefficients are normalized through the Softmax function to generate the spatial-aware weight 

tensor W, ensuring a valid probability distribution across all spatial locations. The final fused feature Ffused is obtained through element-

wise multiplication of W[0] with F1 and W[1] with F2, followed by their summation, enabling the network to dynamically balance fine-

grained details from DAM-FF and global contextual information from DF-NL according to the specific requirements of each spatial loca-

tion in the input scene. 

Following feature fusion, a lightweight decoder transforms the integrated features into the final lane segmentation map. The decoder em-

ploys a simple yet effective architecture consisting of two sequential bilinear upsampling operations with 2× scaling factors, restoring the 

spatial resolution to match the original input dimensions. A final 1×1 convolution layer projects the high-dimensional features to the target 

number of lane classes while preserving the learned spatial relationships. This streamlined design ensures computational efficiency while 

maintaining the integrity of the fused feature representations throughout the decoding process. 

4. Experiments 

4.1. Dataset and evaluation metrics 

We evaluate our proposed MPDDNet on three widely used lane detection benchmarks: CULane [19], TuSimple [10], and LLAMAS [39]. 

CULane is a large-scale lane detection dataset containing 88,880 training images and 34,680 testing images captured in diverse driving 

scenarios. Following the standard practice established in prior work [19], we adopt the same data split, where the original training set is 

divided into 79,205 images (approximately 89.1%) for training and 9,675 images (approximately 10.9%) for validation, while the official 

test set of 34,680 images (28.1% of the total dataset) is used for evaluation. This standardized split ensures a fair comparison with existing 

methods. The test set is categorized into nine challenging scenarios, including crowded, night, no line, shadow, arrow, curve, crossroad, 

and dazzle light, which comprehensively evaluate model robustness under various conditions. All images have a resolution of 1640 × 590 

pixels. 

LLAMAS provides over 100,000 highway images with precise lane annotations. The dataset follows a standardized split with approxi-

mately 58,269 images for training (58.3%), 20,844 for validation (20.8%), and 20,929 for testing (20.9%). Since its test labels are not 

publicly available, evaluation requires submitting predictions to the official server, while the validation set enables local performance 

assessment during development. 

TuSimple is a highway dataset comprising 3,626 training images (56.6%), 358 validation images (5.6%), and 2,782 testing images (43.4%), 

totaling 6,406 annotated frames with 720 × 1280 resolution. The dataset maintains this predefined split to ensure fair comparison across 

different methods, focusing on highway lane detection under relatively stable lighting conditions. 

Evaluation Metrics for CULane and LLAMAS, we employ the F1-measure as the primary evaluation metric, which is based on Intersection-

over-union (IoU) between predicted and ground truth lanes. A predicted lane is considered a true positive (TP) when the IoU exceeds a 

predefined threshold (typically 0.5); otherwise, it is classified as a false positive (FP) if no matched ground truth exists, or false negative 

(FN) if a ground truth lane lacks a corresponding prediction. The F1-score is defined as in (16): 

 

F1  =  
2∗Precision∗Recall

Precision+Recall
                                                                                                                                                                                (16) 

 

Where Precision =  
TP

TP+FP
 and Recall =  

TP

TP+FN
.  

 

Following COCO [40] detection metric, we also report mF1 to better compare the localization performance of algorithms. It is defined as 

in (17):  

 

mF1 = (F1@50 + F1@55 + ⋯ + F1@95)/10                                                                                                                                                (17) 

 

Where F1@50, F1@55, …, F1@95 are F1 metrics when IoU thresholds are 0.5, 0.55, …, 0.95 respectively. This metric rewards detectors with 

better localization performance across varying matching criteria. 

For the TuSimple dataset, the official evaluation metric is accuracy, formulated as in (18): 

 

Accuracy =
∑ Cclipclip

∑ Sclipclip
                                                                                                                                                                                   (18) 

 

Where  Cclip represents the number of correctly predicted points, and Sclip denotes the total number of ground truth points. The ground 

truth lane width is 20 pixels. For a predicted lane to be considered a true positive (TP), the ratio of its correctly predicted points must 

exceed 85%. Otherwise, it is classified as either a false positive (FP) or a false negative (FN). These classifications are subsequently used 

to calculate the F1-score. 
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4.2. Implementation details 

Training Configuration: On the CULane dataset, we employ ResNet-18, ResNet-34, and ResNet-101 as our backbones, initialized with 

ImageNet pre-trained weights. The model is optimized using AdamW with an initial learning rate of 2e-4 and a weight decay of 0.01. A 

cosine annealing scheduler (T_max=100, eta_min=1e-5) is applied. For data augmentation, we utilize random affine transformations (trans-

lation, rotation, scaling) and horizontal flipping. All models are trained on an NVIDIA RTX 3060 GPU with a batch size of 6. 

Dataset-specific Settings: On the CULane dataset, the model is trained for 15 epochs. All input images are resized to 320 × 800 pixels for 

both training and testing. For a fair comparison of computational efficiency on CULane, all reported FPS (Frames Per Second) are measured 

with this 320×800 resolution at a batch size of 1, using PyTorch 1.12.1 and CUDA 11.8 on the same NVIDIA RTX 3060 GPU. For 

completeness, the training epochs for TuSimple and LLAMAS are set to 20 each, following common practice. 

Architectural Hyperparameters: In the DF-NL module, we use 8 attention heads with 9 sampling points per head. The DAM-FF module 

processes multi-scale features from ResNet stages C2 to C5, producing output features with 64 channels. 

4.3. Comparison with the state-of-the-art approach 

4.3.1. Performance on CULane 

Our proposed MPDDNet was evaluated on the challenging CULane benchmark and compared with state-of-the-art lane detection methods. 

As shown in Table 1, our MPDDNet establishes new state-of-the-art performance on the CULane benchmark. The ResNet-34 variant 

achieves the highest overall F1 score of 83.03% and mF1 score of 63.54%, significantly outperforming all existing methods. Notably, 

MPDDNet demonstrates consistent and superior performance across almost all challenging scenarios. It achieves remarkable results in 

difficult conditions such as No line (58.87%), Curve (77.15%), and Night (78.66%), highlighting its robustness in handling faint markings, 

complex geometries, and poor illumination. 

The performance variations observed in our MPDDNet model across different backbone networks primarily stem from the alignment 

between their architectural characteristics and task requirements. ResNet-34 achieves the optimal balance in overall performance, where 

its moderate network depth and complexity enable it to simultaneously accommodate both detailed features and semantic information, thus 

delivering stable performance in most scenarios. In contrast, ResNet-101, with its deeper network structure, performs best in the most 

challenging No line and Dazzle light scenarios, indicating that its stronger feature extraction capabilities provide advantages in extreme 

situations, allowing it to extract more discriminative features from complex visual information. However, due to the increased parameter 

count, ResNet-101 may exhibit slight overfitting in certain scenarios, resulting in slightly lower performance in curve detection compared 

to the ResNet-34 variant. On the other hand, the ResNet-18 variant, with its lightweight architecture, achieves an inference speed of 89 

FPS. Although its accuracy is slightly lower than the deeper networks, it still significantly outperforms other segmentation-based methods 

such as SCNN (7.5 FPS) and RESA (45.5 FPS), providing a viable solution for real-time applications. 

Although segmentation-based methods generally achieve lower FPS than detection-based approaches, our method not only leads in per-

formance among segmentation-based paradigms but also comfortably exceeds the 30 FPS requirement for real-time applications. This 

makes MPDDNet particularly suitable for practical autonomous driving systems, where both accuracy and real-time performance are cru-

cial. The choice of different backbone networks offers flexibility for practical deployment: ResNet-18 is suitable for applications with 

extremely high-speed requirements, ResNet-34 achieves the optimal balance between accuracy and speed, while ResNet-101 provides a 

solution for specific complex scenarios where detection accuracy is paramount. 

 
Table 1: State-of-the-Art Results on Culane. The Evaluation Metric for All Scenarios Is the F1 Score with an IoU Threshold of 0.5. for the Cross Scenario, 
Only False Positives are Shown. FPS Is Measured Based on the Pytorch Framework 

Method mF1 F1@50 Normal Crowd Dazzle Shadow No line Arrow Curve Cross↓ Night FPS 

SCNN(VGG16) 38.84 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5 

RESA(ResNet-34) - 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80 45.5 

RESA(ResNet-50) 47.86 75.30 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90 35.7 
UFLD(ResNet-18) 38.94 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 282 

UFLD(ResNet-34) - 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 170 

LaneATT(ResNet-18) - 75.09 91.11 72.96 65.72 70.91 48.35 85.49 63.37 1170 68.95 250 
LaneATT(ResNet-34) - 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 171 

CLRNet(ResNet-18) 55.23 79.58 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11 119 

CLRNet(ResNet-34) 55.14 79.73 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02 103 

CLRNet(ResNet-101) 55.64 80.47 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37 94 

HGLNet(ResNet-18) 55.83 80.65 93.48 78.31 75.13 81.75 53.74 89.98 73.27 959 75.06 116 

HGLNet(ResNet-34) 56.07 81.23 93.76 78.89 75.29 82.21 54.95 90.43 74.95 1023 75.47 133 
HGLNet(ResNet-101) 56.24 81.40 93.74 79.91 75.81 83.34 55.61 90.78 75.65 1240 76.01 58 

MPDDNet(ResNet-18) 61.73 82.92 95.69 82.44 78.25 84.02 58.01 92.07 76.73 1278 78.66 89 

MPDDNet(ResNet-34) 63.54 83.03 95.97 82.14 77.24 83.81 56.11 92.06 77.15 981 78.66 83 
MPDDNet(ResNet-101) 61.66 82.80 95.90 81.52 79.88 83.09 58.87 91.92 75.42 1369 78.67 42 

 

Fig. 5 presents a comprehensive visual comparison of lane detection performance under six challenging scenarios on the CULane dataset, 

featuring qualitative results from RESA, LaneATT, CLRNet, HGLNet, and our MPDDNet (all using ResNet-34 backbone). The visual 

results demonstrate that our MPDDNet achieves the closest alignment with ground truth (GT) annotations, particularly excelling in Dazzle, 

Shadow, and the most challenging No-line conditions. While other models exhibit incomplete predictions, fragmented outputs, or even 

complete failure in detecting lanes—especially in No-line scenarios where markings are absent or severely degraded—our method effec-

tively handles strong glare, lighting variations, and missing markings through global context modeling and direction-aware feature fusion. 

These comparisons substantiate that MPDDNet maintains superior lane continuity and completeness where conventional methods struggle, 

demonstrating remarkable robustness in adverse driving environments. 

 

 

 

 

 



International Journal of Basic and Applied Sciences 273 

 
 GT                              RESA              LaneATT                 CLRNet                  HGLNet                MPDDNet 

a)Crowded 

 

 
b)Dazzle 

 
 

c)Shadow 

 
 

d)No line 

 
 

e)Curve 

 
 

f)Night 

 

 

 

 

 

 

 

Fig. 5: Presents A Visual Comparison of Lane Detection Results Under Six Challenging Scenarios on the Culane Dataset, Featuring Outputs from RESA, 

Laneatt, Clrnet, Hglnet, and Our Proposed Method. 

4.3.2. Performance on LLAMAS 

The evaluation on the LLAMAS benchmark further validates the superior performance of our MPDDNet, as detailed in Table 2. Our 

MPDDNet achieves state-of-the-art performance on the LLAMAS benchmark. On the validation set, our ResNet-34 variant establishes 

new records with 72.40% mF1 and 97.80% F1@50, significantly outperforming HGLNet (71.66% mF1, 97.98% F1@50) and CLRNet 

(71.61% mF1, 97.16% F1@50). This performance advantage is consistently maintained on the test set, where our method achieves 96.95% 

F1@50 with a ResNet-34 backbone. The superior mF1 scores across all our model variants demonstrate enhanced localization precision, 

attributable to our direction-aware fusion mechanism and deformable non-local attention that effectively capture both structural details and 

global context. Notably, even our ResNet-18 configuration surpasses all existing methods in overall performance metrics, confirming the 

efficiency of our architecture design. These results validate the strong generalization capability of MPDDNet in structured highway envi-

ronments and its robustness in precise lane localization tasks. 

 
Table 2: Comparison with Popular Methods on LLAMAS 

Method Backbone valid  test 

  mF1 F1@50 F1@75  F1@50  

PolyLaneNet EfficientnetB0 48.82 90.2 45.40  88.40 

LaneATT ResNet18 69.22 94.64 82.36  93.46 
LaneATT ResNet34 69.63 94.96 82.79  93.74 

LaneATT ResNet122 70.8 95.17 84.01  93.54 
LaneAF DLA34 69.31 96.90 84.71  96.07 

CLRNet ResNet18 71.61 96.96 85.59  96.00 

CLRNet DLA34 71.21 97.16 85.33  96.12 
HGLNet ResNet18 71.46 96.74 85.57  95.99 

HGLNet DLA34 71.66 97.98 87.10  96.20 

MPDDNet ResNet18 72.15 97.45 86.25  96.65 
MPDDNet ResNet34 72.40 97.80 86.60  96.95 

MPDDNet ResNet101 72.35 97.15 86.10  96.35 

4.3.3. Performance on tusimple 

As shown in Table 3, the performance difference between different methods on this dataset is minimal, indicating that the accuracy on 

TuSimple appears to be nearly saturated. Despite this, our method achieves a new state-of-the-art with a 98.40% F1 score and surpasses 

the previous best method by 0.51% F1 score. This significant improvement demonstrates the effectiveness of our approach. Meanwhile, 

all versions of our method achieve lower FP and FN rates compared to other methods, which firmly demonstrates that MPDDNet can 

reliably predict lane lines even in challenging scenarios while maintaining superior detection accuracy. 

 
Table 3: Comparison with Popular Methods on TuSimple 

Method Backbone F1 (%) Acc (%) FP (%) FN (%) 

SCNN VGG16 95.97 96.53 6.17 1.80 

RESA ResNet34 96.93 96.82 3.63 2.48 

PolyLaneNet EfficientNetB0 90.62 93.36 9.42 9.33 
UFLD ResNet34 88.02 95.86 18.91 3.75 

LaneATT ResNet122 96.06 96.10 5.64 2.17 

CondLaneNet ResNet101 97.24 96.54 2.01 3.50 
CLRNet ResNet18 97.89 96.84 2.28 1.92 

HGLNet ResNet101 97.82 96.74 1.81 2.57 

MPDDNet ResNet-18 98.25 97.05 1.65 1.45 
MPDDNet ResNet-34 98.40 97.18 1.52 1.38 

MPDDNet ResNet-101 98.35 97.02 1.62 1.46 
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4.4. Ablation studies 

We conduct detailed ablation experiments to systematically evaluate the contributions of the proposed DAM-FF and DF-NL modules. The 

following analyses are based on the results shown in Table 4, where all models are built upon the ResNet-34 backbone. 

 
Table 4: Effects of Each Component in our Method. Results are Reported on CULane. 

Baseline DAM-FF DF-NL mF1 F1 Shadow No line Cross Curve Dazzle 

✓   58.50 79.40 76.90 48.40 2050 72.10 70.60 

✓ ✓  61.80 81.90 84.70 58.30 2200 75.90 76.10 

✓ ✓ ✓ 63.54 83.03 83.81 56.11 981 77.15 77.24 

 

Effectiveness of DAM-FF. The introduction of the DAM-FF module leads to a notable enhancement in detection performance, elevating 

the mF1 score from 58.50% to 61.80%. This module proves particularly beneficial in low-visibility conditions, where it achieves F1 score 

gains of 7.80 and 9.90 in Shadow and No-line scenarios, respectively. These improvements confirm that the direction-aware multi-scale 

fusion mechanism successfully mitigates the effects of adverse lighting conditions and reconstructs deteriorated lane markings through 

effective integration of contextual information across multiple scales and orientations. 

Impact of DF-NL Integration. The addition of the DF-NL module further advances the model's capability in handling structurally complex 

environments. This integration boosts the mF1 score by an additional 1.74 points, reaching 63.54%. A particularly remarkable improvement 

is observed in the Cross scenario, where the metric (lower values indicate better performance) shows a substantial reduction from 2200 to 

981. Simultaneously, the model achieves its optimal performance in Curve detection at 77.15. Although minor performance decreases are 

observed in Shadow and No-line scenarios compared to the DAM-FF-only configuration, the substantial gains in structurally demanding 

situations underscore DF-NL's effectiveness in capturing global contextual relationships and modeling long-range dependencies. 

The integrated MPDDNet framework, combining both DAM-FF and DF-NL, delivers the most balanced and robust performance across 

diverse challenging conditions. This outcome validates two key design aspects: first, DAM-FF successfully strengthens local feature rep-

resentation to address illumination changes and lane visibility issues; second, DF-NL provides complementary global structural under-

standing for complex road geometries. The synergistic operation of these modules establishes a comprehensive solution for reliable lane 

detection in varied driving environments. 

4.5. Future work 

While the proposed MPDDNet demonstrates compelling performance, several avenues remain for further exploration. First, we plan to 

conduct a more granular performance analysis, including per-class confusion studies (e.g., curve vs. intersection) and a detailed latency 

breakdown across the backbone and key modules. Second, a comprehensive comparison with state-of-the-art real-time multi-task models 

(e.g., YOLO, HybridNets) will be pursued to better situate our method's efficiency-accuracy trade-off. Looking forward, we aim to extend 

the core DF-NL concept into 3D Bird's-Eye View space for unified perception, integrate temporal modeling for consistency in video 

sequences, and ultimately deploy and optimize the framework on embedded platforms like NVIDIA Jetson to validate its practicality in 

real-world autonomous driving systems. 

5. Conclusion 

This paper presents MPDDNet, a novel multi-scale parallel network for lane detection in complex driving environments. Our method 

effectively addresses two key challenges: robust feature representation under degraded conditions through the Direction-aware Adaptive 

Multi-scale Feature Fusion (DAM-FF) module, and effective global context modeling via the Deformable Non-local (DF-NL) module. 

The proposed DAM-FF module explicitly embeds directional priors into multi-scale feature fusion, significantly enhancing detailed feature 

representation in challenging scenarios. The DF-NL module enables efficient global context modeling while implicitly incorporating struc-

tural priors of lane geometry. Through parallel integration of these complementary modules, MPDDNet achieves simultaneous optimiza-

tion of local details and global semantics. 

Extensive experiments demonstrate that our method establishes new state-of-the-art performance on multiple benchmarks. On CULane, 

our MPDDNet achieves the highest overall F1 score of 83.03% and mF1 score of 63.54%, with particularly strong performance in chal-

lenging scenarios. The consistent superiority across LLAMAS and TuSimple benchmarks further validates our approach's generalization 

capability. 

While the current implementation achieves a good balance between accuracy and efficiency, future work will explore more light-weight 

implementations, extend the direction-aware paradigm to other structural perception tasks, and further investigate cross-dataset generali-

zation, 3D lane detection, and uncertainty estimation. Our work provides valuable insights for lane detection in complex environments and 

offers a solid foundation for future research in autonomous driving perception systems. 
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