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Abstract 
 

Agriculture is the second-largest sector in India, contributing 20.2% to the national GDP, with wheat cultivation playing a crucial role in 

global food security. However, wheat is highly susceptible to fungal, bacterial, viral, and nutrient deficiency-related diseases that can 

severely reduce yield. Early and accurate disease detection is therefore vital for sustainable crop management. In this study, we introduce 

WheatLeafNet, a deep learning framework for multi-class wheat leaf disease classification. The dataset comprises 6,247 images across 24 

categories (23 disease types and healthy samples). To enhance model robustness and mitigate overfitting, data augmentation and regulari-

zation strategies were employed, alongside ablation studies on their effectiveness. We evaluated a custom CNN and transfer learning 

architectures (MobileNetV2, ResNet50, EfficientNet-B0) under four optimizers (SGD, RMSProp, Adam, and AdaGrad), with stratified 5-

fold cross-validation ensuring reliable assessment. Among the tested models, MobileNetV2 with the AdaGrad optimizer achieved the best 

performance, reaching an accuracy of 97.91% without augmentation and 97.84% with augmentation. Comprehensive evaluation metrics, 

including per-class precision, recall, F1-score, ROC-AUC, Expected Calibration Error (ECE), and Grad-CAM visualizations, confirm the 

reliability and interpretability of the framework. The integration of augmentation, optimization, and explainability strengthens the model’s 

generalizability for real-world applications. The proposed system offers an effective and scalable solution for early disease identification 

in wheat, enabling timely interventions, reducing crop loss, and promoting sustainable agricultural practices. Future work will incorporate 

segmentation-driven severity estimation and multi-label detection to enable real-world deployment. 

 
Keywords: Wheat Leaf Disease; Convolutional Neural Networks (CNN); Computer Vision; Data Augmentation; Deep Learning; Image Processing. 

1. Introduction 

Wheat serves as a fundamental staple food crop, contributing approximately 37% of global per-capita energy requirements according to 

international food and agricultural statistics [1,2]. However, prolonged periods of elevated temperatures and exceptional climatic conditions 

significantly constrain wheat production capacity [3]. Given its rich composition of proteins, dietary fiber, and essential vitamins, wheat 

remains a critical nutritional source for populations worldwide [4,5]. Current estimates from the United States Department of Agriculture 

indicate that global wheat production reaches approximately 780 million metric tons annually [6]. Nevertheless, wheat crop productivity 

faces substantial challenges from multiple sources, including environmental stressors and pathogenic diseases caused by bacterial, fungal, 

and viral agents. Additional constraints arise from pest management requirements, insect infestations, and anthropogenic pesticide appli-

cations, all of which collectively diminish wheat yield potential and exacerbate global food security concerns beyond historical levels [7]. 

Consequently, effective disease management strategies are essential to address escalating worldwide food demand. Traditional diagnostic 

approaches relying on manual assessment by agricultural experts are inherently time-intensive, labour-demanding, and impractical for 

large-scale monitoring applications [8]. Therefore, automated diagnostic systems represent a critical necessity [9]. Advancements in IoT 

and ICT have enabled the development of smart agricultural systems that leverage artificial intelligence and computer vision to improve 

crop disease detection [10]. 

Computer vision and digital image processing technologies offer substantial potential for identifying and interpreting complex patterns and 

characteristics that remain challenging to detect through conventional human visual examination. Deep learning methodologies, character-

ized by their sophisticated learning and pattern recognition capabilities, have demonstrated widespread applicability in disease detection 

and classification across various crop species, including maize, rice, and other cereal grains. Advanced feature extraction techniques enable 

the identification of meaningful patterns and distinctive features from digital imagery [11-13]. Contemporary deep learning architectures, 

including Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Recurrent Neural Networks (RNNs), 

have been extensively employed for crop disease applications, achieving remarkable accuracy and precision levels. Among these ap-

proaches, CNN architectures consistently demonstrate superior performance with significantly reduced error rates for accurate disease 
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diagnosis and classification tasks [14], [15]. Building upon these successes, the field is now emphasizing model transparency and robust-

ness. The integration of Explainable AI (XAI) techniques, such as Grad-CAM and reliability analysis, is becoming essential to build trust 

and ensure the safe deployment of these models [16]. Furthermore, recent advancements also highlight the superior feature extraction 

capabilities of Vision Transformers (ViT) in complex agricultural vision tasks [17]. The two-stage approach mitigates overfitting while 

ensuring robust large-scale performance and enabling multi-disease classification on individual leaves [18]. 

 

   
A) Leaf/Brown Rust. B) Stripe/Yellow Rust. C) Common Root Rot. 

   

   
D) Root Knot Nematode E) Wheat Seed-Gall Nematode F) Wheat Spindle Mosaic 

   

   
G) Sulphur Deficiency H) Copper Deficiency I) Iron Deficiency 

   

   
J) Basal Glume Rot K) Spike Blight L) Healthy Wheat Leaf. 

Fig. 1: Presents Sample Wheat Leaf Images from Various Disease Categories. Panels (A–C) Depict Fungal Diseases, (D–F) Show Viral Diseases, (G–I) 
Illustrate Nutrient Deficiency Symptoms, (J–K) Represent Bacterial Diseases, and Panel (L) Corresponds to A Healthy Wheat Leaf. 

 

Figure 1. Images of wheat leaf illness sample.  

1.1. Motivation 

Though these advancements cater to the need for automation, they require physical components such as drones, WSNs, cameras, sensors, 

and storage components. Identifying appropriate patterns and features from the data observed using IoT subject matter experts is essential 

for disease detection. In addition, datasets of the natural fields have to be processed to minimize errors. The challenges associated with the 

datasets are complex backgrounds, varying illumination conditions, confused pixels in the disease-affected regions, multiple diseases on a 

single leaf, the same attributes on different diseases, various attributes of varying diseases, and distinct traits of the same disease about the 

shape and stage. Due to these factors, it is highly essential to develop a wheat crop disease detection and prediction model that would 

protect the livelihood of the farmers and prevent crop loss. 
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1.2. Major contributions 

The proposed work involves the detection of wheat crop disease based on deep convolutional neural networks. The major contributions 

are listed as follows: 

• To address overfitting and enhance generalization, a set of data augmentation techniques was integrated into the training pipeline. A 

hybrid deep learning framework was developed, with the MobileNetV2 architecture combined with the AdaGrad optimizer emerging 

as the optimal configuration, achieving superior classification performance. 

• The proposed work utilized datasets encompassing 24 classes, including fungal, bacterial, viral, and nutrient deficiency-related infec-

tions, as well as healthy wheat samples. This wide coverage ensures the model’s robustness in handling diverse pathological variations. 

• Experimental evaluations were conducted in a Python-based Google Colab environment with GPU acceleration. The proposed frame-

work achieved a peak classification accuracy of 97.84%, with a minimal error rate of approximately 0.14%, thereby confirming its 

predictive reliability and consistency. 

• Comparative assessments were carried out against established models and transfer learning architectures such as ResNet50 and Effi-

cientNet-B0, under four optimization strategies (SGD, RMSProp, Adam, and AdaGrad). The use of stratified 5-fold cross-validation 

ensured unbiased evaluation. Results demonstrated that WheatLeafNet consistently outperformed benchmark approaches while allevi-

ating challenges of class imbalance and overfitting. 

1.3. Organization of the paper 

The remainder of this paper is structured as follows: Section 1 presents the introduction and motivation, highlighting the key contributions 

related to wheat leaf disease classification. Section 2 reviews and analyzes existing literature on crop disease detection and classification 

to provide a foundation for the study. Section 3, which provides the proposed work along with the datasets, methodology, and techniques 

used; Section 4, which provides the experimentation and ablation study; Section 5, which provides the performance analysis; Section 6, 

which provides the results analysis and discussion; Section 7 provides the conclusion and prospective research initiatives. For reference, 

the list of acronyms is provided in Table 1. 

 
Table 1: List of Acronyms 

Acronym Description 

AI Artificial Intelligence 
ANN Artificial Neural Network 

ASFF Adaptively Spatial Feature Fusion 

CGIAR Consultative Group for International Agricultural Research 
CNN Convolutional Neural Network 

CVT Computer Vision Technology 

DWT Discrete Wavelet Transform 

ECA Efficient Channel Attention 

EML Elliptic Meter Learning 

FFNN Feed Forward Neural Network 
FHB Fusarium Head Blight 

GLCM Grey Level Co-occurrence Matrix 

ICT Information and Communication Technology 
IoT Internet of Things 

KNN K-Nearest Neighbor 

LBP Local Binary Pattern 
LSTM Long Short-Term Memory Networks 

LWDCD Large Wheat Disease Classification Dataset 

PANet Path Aggregation Network 
PCA Principle Component Analysis 

RCAB Residual Channel Attention Block 

ReLu Rectified Linear Unit 
ResNet Residual Network 

RNN Recurrent Neural Network 

ROC-AUC Receiver Operating Characteristic Curve; Area under the curve 

SVM Support Vector Machine 

UAVs Unmanned Aerial Vehicles 

USDA United States Department of Agriculture 
VGG Visual Geometry Group 

WOA Whale Optimization Algorithm 

WSN Wireless Sensor Networks 

2. Related Works 

A considerable body of literature has emerged in recent years focusing on crop disease identification and diagnosis. Different techniques 

have evolved to categorize various kinds of diseases relating to machine learning, artificial intelligence, and computer vision technologies. 

An outline of food crop-related practices, as well as their advantages and disadvantages, is given in this section.  

Ashraf et al. [19] have come up with a prediction framework for wheat crop disease. Their work addressed the problem of timely detection 

of disease to improve production by using a lightweight, modified CNN architecture. Their proposed model utilized three convolutional 

layers, SoftMax layers, and two flattened layers for the efficient prediction of wheat crop disease. Their model has been trained using the 

dataset obtained from the Azad Kashmir (Pakistan) province. Performance analysis showed that their proposed model achieved an accuracy 

of 93%. However, their model is computationally intensive and needs a large quantity of training data. For the plant leaf disease dataset, 

Arun et al. [20] developed a deep residual convolutional neural network. The classification accuracy of their model was 99.58%. However, 

the major limitation of their approach is that ResNet197 is computationally intensive. Long et al. [21] have come up with a classification 

of wheat disease using the deep learning network model CerealConv. The dataset used in their proposed study is divided into five categories, 

namely four foliar diseases and healthy plants, such as brown rust, yellow rust, septoria leaf blotch, and powdery mildew. Their 
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classification has achieved an accuracy of 97.5%. The advantage of this model is that it highlights the potential pitfalls of using datasets 

that are unbalanced in terms of varying conditions and are carefully validated during classification. Aboneh et al. [22] proposed a computer 

system for the categorization and diagnosis of wheat diseases such as leaf rust, stem rust, and stripe rust.  

Their proposed work utilized deep learning models such as Inceptionv3, Resnet50, and VGG16/19. Their proposed model has achieved an 

accuracy of 99.38%. Their model has not yet been mechanized for actual real-time application. Nigam et al. [23] have come up with a deep 

transfer learning model for the disease detection of wheat crops. Wheat rusts have been identified using a deep learning model based on 

the EfficientNet architecture. An Efficient Net B4 model has achieved an accuracy of 99.35%. However, their model has not considered 

several levels of wheat disease. Rangarajan et al. [24] have come up with Fusarium head blight (FHB) disease detection for wheat crops 

using hyperspectral data.  

Their proposed model utilized a pre-trained lightweight CNN model called DarkNet 19, achieving an accuracy of 100%. The major limi-

tation is that it has not considered the spatial data of the hyperspectral data and has not utilized larger datasets. Zhang et al. [25] have 

improved feature-scale consistency with a 98.5% accuracy rate by developing a lightweight Yolov4 network based on efficient channel 

attention (ECA) paired with adaptive spatial feature fusion (ASFF). However, under varying light intensities, different field types of equip-

ment are supposed to be investigated to understand the utilized model’s performance. Schirrmann et al. [26] recommended a ResNet-18 

model-based stripe rust classifier for the wheat crop. Their methodology involves the Adam optimizer and has achieved a high accuracy 

rate at both the patch level and image level. However, it suffers from poor resolution of dataset images, and optimization is needed to 

achieve even higher accuracy. Singh et al. [27] have come up with a yellow rust severity assessment machine-learning model using visible 

and thermal imaging techniques. The cubist model appears to be the best at detecting rust disease effectively. However, their proposed 

model is very slow in terms of computational complexity. Alshammari et al. [28] proposed a disease detection model for olive leaf disease 

through an optimized deep-learning approach. Their methodology utilized optimized ANN and WOA for feature selection. Feed Forward 

Neural Network (FFNN) has been used for classification.  

The model they proposed has a 98.9% classification accuracy. Still, the performance has to be improved when compared with conventional 

approaches. Raouhi et al. [29] have come up with DeepCNN-based optimization techniques for olive leaf disease detection. Their technique 

achieved a reasonable level of accuracy. However, the model is supposed to be trained for a reasonable number of epochs, which diminishes 

the problem of overfitting. Jiang et al. [30] have come up with a multi-task deep transfer learning technique for the identification of illnesses 

in wheat and rice crops. They used ImageNet for transfer learning and the VGG16 model in their technique. Their model has come up with 

an accuracy of 97.22% in the case of rice and 98.75% for wheat crops. Their work model has to be tested for larger datasets and other 

diseases on crops. Kumar et al. [31] have developed a cutting-edge hybrid segmentation method for the identification of wheat rust illnesses. 

A panoptic segmentation-based FERSPNET-50 has been utilized using the GNet model. A faster region-based convolutional neural network 

model (FRCNN) has been utilized for the detection of diseases in wheat leaves and stem patches. A pyramid scene parsing network is 

utilized to classify the severity and classification using a patch with a high precision of 97%. A real-time mobile application can be utilized 

for scanning various levels of infection in the leaves shortly. 

Alharbi et al. [32] have come up with a continuous learning technique for classifying wheat disease. Their methodology utilized Efficient-

Net as a backbone architecture under the CGIAR dataset. Their model has classified the disease accurately at 93.19%. However, the per-

formance of their proposed technique has to be optimized to increase it. Pan et al. [33] have come up with a PSPNet semantic segmentation 

model for the recognition of wheat rust disease using unmanned aerial vehicles (UAVs). Their approach has been to categorize barren soil, 

yellow wheat rust, and healthy leaves in small-scale UAV photos. Their model achieved an accuracy of 94%. UAV RGB and hyperspectral 

UAV images can be considered to assess their performance. Xu et al. [34] have advanced the detection method for wheat leaf diseases by 

utilizing a deep learning approach that integrates neural networks (CNN), elliptic metric learning (EML) feedback blocks (FB), and residual 

channel attention blocks (RCAB). Their model achieved a 99.50% accuracy in classifying plant diseases on open-source databases, like 

CGIAR, LWDCD2020, and plant pathology. However, their method overlooks leaf diseases that can impact the crop. Table 2 outlines the 

evaluation of existing approaches addressing wheat disease identification. Tegegne et al. [35] evaluated multiple CNN models for classi-

fying wheat rust diseases and identified MobileNetV3 with Softmax as the best-performing architecture. Using augmented field and Kaggle 

images, the model achieved 97.7% accuracy in classifying brown rust, stem rust, yellow rust, and healthy plants. The lightweight design 

makes it suitable for mobile agriculture applications. Although limited to classification and constrained by dataset size, the work provides 

a robust foundation for advanced diagnostic systems and future segmentation-based models. Liu et al. [36] presented MSDP-SAM2-UNet, 

a multi-scale and dual-path segmentation model for wheat leaf blight and rust. By integrating enhanced receptive-field extraction and 

CARAFE-based dual-path upsampling, the model achieves superior lesion boundary preservation and improves SAM2-UNet segmentation 

by up to 4.9%, reaching 94.02% pixel accuracy. Their approach effectively segments small and irregular wheat lesions. While the model 

is limited by dataset diversity and lacks severity estimation, it establishes a strong direction for advanced wheat disease segmentation and 

future lightweight deployment. Dong et al. [37] introduced the SC-ConvNeXt model, combining ConvNeXt-T, a self-supervised SimCLR 

framework, and an improved CBAM attention mechanism for wheat disease recognition. The model effectively handles complex field 

backgrounds and reduces dependence on large labelled datasets. Using a four-class field dataset from the Smart Agriculture platform, it 

achieved an 88.05% accuracy, higher than common models like ResNet50, MobileNetV3, and ConvNeXt-T. Although the model is com-

putationally heavy and involves a two-stage training process, it demonstrates strong potential for real-world wheat disease identification 

and could be further improved with model compression and more advanced self-supervised techniques. Moon et al. [38] proposed a ma-

chine learning framework for detecting Septoria Tritici Blotch in wheat leaves. The method uses preprocessing, color-based segmentation, 

and GLCM texture features, followed by several classifiers, including SVM, k-NN, Naïve Bayes, and Random Forest. The Random Forest 

model delivered the best performance with 98.9% accuracy, reliably distinguishing healthy and infected leaves. A dataset collected from 

BWMRI and public sources was used, containing two classes: healthy and Septoria-infected leaves. Although effective, the system is 

limited to binary classification, sensitive to lighting and occlusion, and cannot recognise multiple diseases. Future work may integrate deep 

learning, larger datasets, and multi-disease detection to enhance real-world applicability. 

 
Table 2: Classification of Works Related to Disease Diagnosis on Wheat Crop 

References Problem Addressed Technique Used Benefits Limitations 

Ashraf et al. 
[19] 

Prediction of Wheat Crop 
Disease 

CNN Accuracy 93% 
The model is heavy and needs a large 
dataset. 

Arun et al. 

[20] 

Plant Leaf Disease Detec-

tion 
Deep Residual CNN 

Classification Ac-

curacy 99.58% 

The limitation of ResNet197 is its high 

computational complexity. 
Long et al. 

[21] 

Classifying Wheat Dis-

eases 
Inceptionv3, ResNet50, VGG16/19 

Classification 

97.05% 

Their study has yet to account for multi-

ple infections. 
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Aboneh et 

al. [22] 

Detection of Wheat Dis-

eases 

VGG16, Inception V3, MobileNet, 

Xception  

Classification Ac-

curacy 99.38% 

It is necessary to assess and evaluate 

different activation functions. 

Nigam et al. 
[23] 

Identification of Wheat 
Crop Disease 

VGG19, ResNet152, DenseNet169, 
InceptionNetV3, MobileNetV2 

The model testing 

accuracy of 

99.35%. 

Despite mobile apps identifying cereal 

diseases, several wheat disease 

stages remain unaddressed. 

Rangarajan 
et al. [24] 

Early detection of 

Fusarium Head Blight 

(FHB)  

DarkNet 19, EfficientNet B0, Goog-

leNet, MobileNetV2, ResNet18 

&50, ShuffleNet, etc 

Accuracy 100% Larger Datasets can be evaluated. 

Zhang et al. 
[25]  

Detection of Wheat Scab 
Fungus 

ECA-Net, PANet, Yolov5 Accuracy 98.5% 

Field equipment with different resolu-

tions and lighting conditions should be 

examined. 
Schirrmann 

et al. [26] 

Early Detection of Stripe 

Rust 
ResNet-18 Accuracy 90% 

Model optimization is required for im-

proved performance. 

Alshammari 
et al. [27]  

Identification of Olive 
leaf disease 

FFNN-ANN & WOA Accuracy 98.4% 
Using fewer plants per category or dif-
ferent crops is yet to be considered. 

Singh et.al 

[28]  
Severity Assessment 

Partial Least Squares Regression of 

Image Indices 
- 

Slow in terms of Computational com-

plexity. 
Raouhi et al. 

[29]  

Classification of Olive 

Diseases 
CNN Accuracy 92.59% 

Accuracy, flexibility, and image seg-

mentation still require enhancement 

Jiang et al. 

[30]  

Recognition of Rice Leaf 

and Wheat Leaf Diseases 
VGG16, ImageNet 

Accuracy 97.22% 

and 98.75% 

Large datasets remain untested, limiting 

the approach to small datasets. 

Kumar et.al 

[31] 

Identification of Wheat 

Rust Disease 

FERSPNET-50; Faster Region-based 

CNN 
Precision 97% 

Accuracy still needs improvement using 

optimization algorithms. 
Alharbi et al. 

[32] 

Classification of Wheat 

Diseases 
EfficientNet 

Accuracy 93.19% 

and 98.5%  

The model can be adapted for use with 

other crops and plants. 

Pan et al. 
[33] 

Detection of Wheat Rust PSPNet; Ensemble learning Accuracy 94% 
The model faces validation loss from 
low-resolution images. 

Xu et al. 

[34] 

Identification of Wheat 

Leaf Disease 
RFE-CNN Accuracy 99.50% 

Multi-class classification of diseases by 

stage and type is yet to be explored. 
Tegegne et 

al. [35] 

Classification of Wheat 

Rust Disease 
CNN- MobileNetV3 

Accuracy 

97.7% 
No segmentation of infected regions. 

Liu et.al [36]  
Wheat Leaf Disease Seg-
mentation Based on CNN 

Models 

MSDP-SAM2-UNet PA 94.02% 
Computational complexity; segmenta-

tion focus only. 

Dong et al 
[37] 

Wheat disease recogni-
tion using CNNs 

ConvNeXt-T Backbone Accuracy 88.05% 
The model has a large parameter size, 
increasing storage needs. 

Moon et 
al.[38] 

Wheat leaf disease identi-
fication 

NB, K-NN, SVM, and Random Forest 98.9% 
Focuses on a single disease type and in-
cludes only limited validation. 

 

From Table 2, it is apparent that most of the existing works focused on the early detection, classification, and identification of wheat 

diseases. Especially, the works rely upon wheat stripe rust and fungal disease identification. The techniques utilized for disease detection 

achieve accuracy, which is supposed to be improved. Ultimately, the multi-class classification of diseases across different stages remains 

underexplored. Moreover, most studies have relied on relatively small datasets, and their performance can be further enhanced through 

advanced optimization strategies. Therefore, there is a crucial need to achieve robust and optimized performance using diverse deep learn-

ing techniques. Motivated by these limitations, this study introduces a novel hybrid model for wheat crop disease detection, integrating 

deep learning with optimization methods to improve accuracy, generalization, and reliability. 

3. Proposed Methodology 

The proposed framework, WheatLeafNet, is designed to provide an accurate and robust classification of wheat leaf diseases. The method-

ology integrates systematic stages, including data acquisition, preprocessing, augmentation, feature extraction, and evaluation under dif-

ferent training, testing, and validation strategies. By leveraging hybrid deep learning techniques and transfer learning models, the system 

ensures high generalizability, reduced overfitting, and interpretability through explainable AI (XAI) techniques. Fig 2 illustrates the se-

quential stages, including image acquisition, enhancement, preprocessing, annotation, augmentation, model training, and disease classifi-

cation.  

 

 
Fig. 2: Proposed Architecture for Wheat Leaf Disease Classification. 
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3.1. Data acquisition 

This study employed a curated dataset comprising 6,247 wheat leaf images categorized into 24 classes 23 representing distinct disease 

conditions (fungal, bacterial, viral, and nutrient-deficiency related) and one representing healthy leaves. The dataset, primarily sourced 

from publicly available repositories such as Kaggle [39-40], along with supplementary images obtained from agricultural research archives 

and published studies [41–42], reflects diverse environmental and field conditions across multiple growing seasons. To ensure balanced 

representation and minimize sampling bias, stratified random sampling was applied to divide the dataset into training (80%), validation 

(10%), and testing (10%) subsets while maintaining proportional class distribution. This systematic preparation supports reliable perfor-

mance evaluation and enhances the reproducibility of the experimental outcomes. The detailed class-wise distribution of the wheat leaf 

disease dataset is shown in Table 4. 

3.2. Data pre-processing 

To prepare the collected wheat leaf images for deep learning models, a series of pre-processing steps was applied. All images were resized 

to a uniform resolution of 224×224 pixels to meet the input requirements of CNN and transfer learning architectures. Gaussian filtering 

was used for noise reduction, while normalization scaled pixel values to the range [0,1]. Finally, label encoding was performed to enable 

multi-class classification. These steps ensured dataset uniformity, reduced noise, and improved robustness for subsequent classification 

tasks. 

3.2.1. Image resizing 

All input images were resized to a fixed resolution of 224×224 pixels to ensure compatibility with widely used transfer learning architec-

tures such as VGG, ResNet, and MobileNet [43]. Formally, an image I of original size m n  is mapped to the resized image I′ as shown in 

Eq. (1). 

 

( ) . . ,0
224 224

4, , , 22I
m

x y x
n

I y x y
 

=  


 


                                                                                                                                                       (1) 

 

This transformation guarantees uniform spatial dimensions across all samples, thereby facilitating efficient batch training and consistent 

feature extraction. 

3.2.2. Noise reduction 

To suppress random noise and highlight disease lesions, Gaussian filtering was applied during preprocessing [44]. The two-dimensional 

Gaussian kernel is mathematically expressed as shown in Eq. (2). 

 
2 2

2 2

1
( ) e

2 2
p, xG x

x y
y

 

+ 
= − 

 
                                                                                                                                                                       (2) 

 

Where   represents the standard deviation, which controls the degree of smoothing. The filtered image is obtained by convolving the 

original image I with the Gaussian kernel G, as defined by Eq. (3) 

 

( ) ( )( ), ,
filtered

I x y I G x y=                                                                                                                                                                                  (3) 

 

This filtering technique reduces background noise while retaining important edge information, thereby enhancing the visibility of disease-

affected regions. 

3.2.3. Normalization 

To improve model stability and accelerate convergence, all pixel intensities were scaled to the range [0,1]. The normalized intensity value 

norm
I ( ),x y at each pixel coordinate ( ),x y is computed has been shown in Eq. (4). 

 

min

max min

( , )
),(

I I
norm

I x y I
I x y

−

−
=                                                                                                                                                                                  (4) 

 

Where 
min

I  and 
max

I correspond to the minimum and maximum intensity levels in the image (0 and 255 for standard 8-bit images). This 

normalization process ensures uniform input distribution, reduces the risk of gradient instability, and enhances the efficiency of the opti-

mization process. 

3.2.4. Label encoding 

The dataset consisted of 24 categories, including 23 disease classes and 1 healthy class. To prepare the labels for multi-class classification, 

categorical one-hot encoding was applied, where each class is represented as a binary vector [45]. For a given sample with true class c, the 

encoded label 
i

y  is defined as: 

1,

0,
i

i c
y

i c

=
= 


 For i=1, 2……24, this encoding scheme allows the model to output probabilities across all classes and is particularly suitable 

when optimizing with categorical cross-entropy loss. Fig 3 provides the transformation of the images during image pre-processing. Fig 4. 
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Conceptual schematic of the GAN approach for augmenting plant leaf disease datasets. Table 3 presents the types, quantities, and class 

distribution of wheat diseases in the dataset used for the proposed study. 

 
Table 3: Evaluation of the Proposed Work on Selected Classes. 

S. No. Types of Diseases Quantity/Class Enumeration of Wheat Leaf Disease Categories 

1. Fungal 6 Rust, Blight, Blotch, spots, rots, Powdery mildew 

2. Bacterial 4 Leaf-blight, streak, spike blight, pink seed 

3. Viral 3 Curl, Distortion, Dwarfing 

4. Nutrient Deficiency 10 
Zinc, Manganese, Copper, Iron, Nitrogen, Phosphorous, Potas-

sium, Magnesium, Sulphur, Calcium deficiencies 

5 Normal 1 Healthy 
 Total 24  

 
Table 4: Detailed Class-Wise Distribution and Data Split Configuration 

Class ID Disease Category Disease Type Total Images Train (80%) Val (10%) Test (10%) 

1 Leaf/Brown Rust Fungal 312 250 31 31 

2 Fusarium Head Blight Fungal 228 182 23 23 
3 Septoria Leaf Blotch Fungal 276 221 28 27 

4 Stripe/Yellow Rust Fungal 298 238 30 30 

5 Common Root Rot Fungal 245 196 25 24 
6 Powdery Mildew Fungal 264 211 27 26 

7 Leaf-Blight Bacterial 287 230 29 28 

8 Leaf Streak  Bacterial 234 187 24 23 
9 Spike Blight Bacterial 251 201 25 25 

10 Pink Seed Bacterial 208 166 21 21 

11 Spindle Streak Mosaic Viral 272 218 27 27 
12 Streak Mosaic Viral 256 205 26 25 

13 Barley Yellow Dwarf Viral 223 178 23 22 

14 Nitrogen Deficiency Nutrient 294 235 30 29 
15 Phosphorus Deficiency Nutrient 281 225 28 28 

16 Potassium Deficiency Nutrient 267 214 27 26 

17 Sulphur Deficiency Nutrient 253 202 26 25 
18 Iron Deficiency Nutrient 239 191 24 24 

19 Copper Deficiency Nutrient 226 181 23 22 

20 Zinc Deficiency Nutrient 214 171 22 21 
21 Manganese Deficiency Nutrient 201 161 20 20 

22 Magnesium Deficiency Nutrient 194 155 20 19 
23 Calcium Deficiency Nutrient 186 149 19 18 

24 Healthy Wheat Leaf Normal 412 330 41 41 

Total 24 Classes 4 Types 6247 4,997 625 625 

 

 
Fig. 3: Image Pre-Processing Operation. 

3.3. Data augmentation 

To address class imbalance and enhance the generalization capability of the deep learning model, several data augmentation strategies were 

applied. These transformations expand the effective size of the training dataset while simulating natural variations observed in real-world 

wheat field conditions, such as changes in illumination, orientation, scale, and background. This process improves the model’s robustness 

against such variations. The augmentation techniques included: 

• Geometric transformations 

• Random rotations: images were rotated by angles uniformly sampled within ± 025  

• Flips: horizontal and vertical flips were applied with a fixed probability p. 

• Zoom (scaling): random zoom operations were performed with a rescaling factor s ∈ [1−α, 1+α] where α=0.2. 

• Color and brightness transformations 

• Brightness adjustment: pixel intensities were scaled by a factor b, where b∼U (0.8,1.2). 

• Contrast, hue, and saturation variations: applied as needed to simulate environmental and lighting variability. 

3.3.1. Mathematical formulation 

Let the training dataset be represented as X= {( },
i i

x y , where 
i

x denotes an original image and
i

y  its corresponding class label. An aug-

mented image 
i

x  is generated by applying a random transformation T drawn from the set of augmentation operations (e.g., rotation, flip-

ping, zooming, or color adjustment): 
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( )

i i
x T x= whereT   T, Where T is a random transformation drawn from the set of augmentation operations (rotation, flip, zoom, color, 

etc.) is evaluated which has been presented in Eq (5) 

 

,   {( ) ), (
aug i i i i

X X x y x T x T=   = ∣ T }                                                                                                                                                              (5) 

 

This procedure ensures that the original label 
i

y is preserved for each augmented sample. 

3.3.2. Balancing effect 

To address class imbalance, augmentation was selectively applied to oversample minority classes. Let 
max

N  denote the maximum number 

of images in any class: 

max
max |{ : }|,

c C i i
N x y


= Where C is the set of all classes. For each class c containing 

maxc
n N samples, additional 

max
( )

c
N n− augmented 

images were generated until all classes were approximately balanced. 

3.3.3. LeafGAN: generative model for plant disease augmentation 

LeafGAN, introduced by [46], is a generative adversarial network (GAN)-based framework specifically designed to augment plant leaf 

disease datasets. Its primary objective is to generate realistic synthetic diseased leaf images that enrich training data and mitigate class 

imbalance. Unlike generic GAN models, LeafGAN incorporates an attention mechanism that restricts transformations to lesion areas while 

preserving the natural structure of the leaf, including its shape, venation, and healthy tissue regions. 

LeafGAN builds upon the CycleGAN framework with two key modifications: 

1) Attention Module ensures that only disease-relevant areas of the leaf are altered, thereby preventing distortion of healthy regions and 

structural features. 

2) Leaf Shape Preserving Loss introduces a penalty to discourage changes to the intrinsic shape and venation of the leaf, ensuring mor-

phological consistency. 

The workflow operates as follows: a healthy leaf image Xh is given as input to the generator G, which produces a synthetic diseased image

d
X  =G(Xh). The discriminator D then distinguishes between real diseased images

d
X and generated images

d
X  . To maintain invertibility, 

a second generator F maps diseased leaves back to healthy ones, enforcing cycle consistency. 

• Adversarial Loss: encourages generated diseased images to be indistinguishable from real diseased samples: shown in Eq. (6) 

 

( ) ( )
( ) [ ( )] [ ( ( ( )))], , , 1

GAN h d xd pdata xd d xh pdata xh h
L G D X X E logD x E log D G x

 
= + −                                                                                                                 (6) 

 

• Cycle Consistency Loss: ensures that transforming healthy → diseased → healthy (and vice versa) recovers the original image, repre-

sented in Eq (7) 

 

1 1
( ) [ ( ( )) ] [ ( ( )) ],

cyc xh h h xd d d
L G F E F G x x E G F x x= − + −                                                                                                                                    (7) 

 

Attention Loss: restricts modifications to lesion areas while keeping background and structure intact. If M(x) is the attention mask, the 

calculation has been represented in Eq. (8).  

 

( ) ( ( )) ( ( ) )1
attn

L G M x G x x= − −                                                                                                                                                                   (8) 

 

• Total Loss: the overall objective combines adversarial, cycle consistency, and attention terms: 

LeafGAN GAN cyc cyc attn attn
L L L L = + + Where 

cyc
  

attn
  are the hyperparameters balancing cycle consistency and attention. 

 

 
Fig. 4: Schematic Representation of the GAN-Based Framework for Plant Leaf Disease Augmentation. 

 

The model employs two generators (G and F) and a discriminator (D). Generator G transforms healthy leaves into synthetic diseased leaves, 

while the discriminator differentiates between real and synthetic samples. Generator F reconstructs healthy leaves from synthetic diseased 
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ones, ensuring cycle consistency. This setup enables the creation of realistic diseased leaf images for data augmentation and robust model 

training. 

3.4. Feature extraction 

Feature extraction plays a critical role in enabling the model to discriminate between different plant diseases by capturing distinctive visual 

patterns on leaf surfaces. In this study, pre-trained deep convolutional neural network (CNN) architectures were employed, with their 

feature maps either fine-tuned or combined to effectively represent disease-related morphology, texture, lesions, and contextual cues. To 

validate that the extracted representations emphasize disease-relevant regions, attention and explainability methods such as Gradient-

weighted Class Activation Mapping (Grad-CAM) were utilized. The following backbone models were adopted: 

• MobileNetV2: a lightweight architecture based on depthwise separable convolutions and inverted residual connections, suitable for 

resource-constrained environments. 

• ResNet50: incorporates residual skip connections that enable very deep networks without vanishing gradients, making it effective in 

capturing hierarchical features such as edges, textures, and lesion boundaries. 

• EfficientNet-B0: employs compound scaling across depth, width, and resolution, offering a strong balance between accuracy and com-

putational efficiency. Its higher resolution inputs allow the extraction of fine-grained patterns relevant to disease diagnosis. Figure 5 

illustrates the CNN-based workflow for wheat disease detection, addressing 24 classes across four disease types with a three-layer 

architecture. 

 

 
Fig. 5: The Figure Depicts the Workflow of the Proposed CNN-Based Methodology for Wheat Disease Detection and Classification, Addressing Multiple 
Classes Across Four Major Disease Types. The Three-Layer CNN Incorporates Convolution, Leaky ReLU activation, Max-Pooling, Dropout, and Flattening, 

followed by a Fully Connected Layer with Softmax to Generate Class-Specific Outputs. 

 

Formally, let the CNN feature extractor be defined as: 3: ,H W df R R


  →  Where θ denotes the network parameters. For an input image x, the 

feature representation is obtained as: ),(h f x


=  Where h corresponds to the feature vector or tensor (e.g., of dimension [k×k×c] before 

pooling, or flattened afterwards). These features are subsequently passed to the classifier composed of fully connected layers and a softmax 

activation function, represented in Eq. (9)  

 

( ( ) ),·y softmax W Flatten h b


= +                                                                                                                                                                         (9) 

 

Where W and b represent the trainable classifier parameters. For optimization, categorical cross-entropy loss was employed for the multi-

class classification task, as shown in Eq. (10) 

 

,,
1 1

1
log ,

N C

i ci c
i c

L y y
N



= =

= −                                                                                                                                                                                  (10) 
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Where 

,i c
y is the one-hot encoded ground truth for class c. 

3.4.1. Attention and explainability 

To ensure that the CNN attends to disease-relevant regions, Grad-CAM was applied. Given the final convolutional feature maps
k

A and the 

predicted score for class c, the Grad-CAM weight c

k
 is calculated as expressed in Eq. (11). 

 

1c c

k k
i j

ij

y

Z A



= 


                                                                                                                                                                                           (11) 

 

Where Z is a normalization constant. The corresponding Grad-CAM heatmap is denoted in Eq. (12).  

 

( )Re
k

c

k

c

k
L LU A=                                                                                                                                                                                       (12) 

 

This heatmap is upsampled to the input resolution, enabling visual interpretation of the region’s most influential features for classification. 

In addition, attention mechanisms such as the Convolutional Block Attention Module (CBAM) were optionally integrated into backbones 

like EfficientNet-B0, MobileNetV2, and ResNet50, as suggested in recent studies [47]. These modules refine spatial and channel attention, 

thereby improving the model’s focus on discriminative leaf regions and enhancing classification performance. 

3.5. Training, testing, and validation 

To rigorously evaluate the proposed WheatLeafNet framework, a stratified 5-fold cross-validation strategy was employed. This approach 

preserves the proportional distribution of all 24 categories (23 disease classes plus one healthy class) in each fold, thereby minimizing 

sampling bias and ensuring robust performance estimation. For optimization, four different algorithms, Stochastic Gradient Descent (SGD), 

RMSProp, Adam, and AdaGrad, were investigated to determine the most effective optimizer for stable convergence and improved gener-

alization. To further mitigate overfitting, regularization techniques such as dropout and early stopping were incorporated during training. 

3.5.1. Cross-validation 

In stratified k-fold cross-validation, the dataset D was partitioned into five mutually exclusive subsets. At each iteration i, one subset Di 

was used for validation, while the remaining folds served as the training set: \ ,
i i i i

Train D D Val D= =  

The final model accuracy was calculated as the mean across all folds as defined by Eq. (13). 

 

1

1 k

avg i
i

Accuracy Accuracy
k =

=                                                                                                                                                                             (13) 

 

This method reduces variance and produces a more reliable estimate of model performance compared to a single train-test split [48]. 

3.5.2. Optimizer  

3.5.2.1. SGD 

Updates weights with a fixed learning rate η represented in Eq. (14) 

 

1
( )

t t t
L    

+
= −                                                                                                                                                                                            (14) 

3.5.2.2. RMSProp 

Adapts the learning rate using an exponentially decaying average of squared gradients as shown in Eq. (15) 

 

2

1 1
( )( ( )) ( )1 ,

t t t t t t

t

L L
 


      


− +

= + −  = − 
+ò

                                                                                                                                           (15) 

3.5.2.3. Adam 

Combines momentum and RMSProp as expressed in Eq. (16). 

 
2

1 1 1 2 1 2
,( ) ( ) ( )( ( ))1 1

t t t t t t
m m L L

 
       

− −
= + −  = + −                                                                                                                                      (16) 

 

Bias-corrected estimates are represented in Eq. (17). 

 

1

,
1

t

t t

m
m


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2

1

t
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
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−

                                                                                                                                                                                (17) 

 

The parameter update process is expressed in Eq. (18). 
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                                                                                                                                                                                        (18) 

3.5.2.4. AdaGrad 

Adapts learning rate for each parameter based on historical squared gradients represented in Eq. (19) [49]. 
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3.5.3. Regularization 

Regularization is a technique that prevents overfitting by penalizing model complexity, thereby constraining the learning process to enhance 

generalization, improve robustness, and ensure better performance on unseen data. 

3.5.3.1. Dropout 

Randomly sets a fraction p of neurons to zero during training, preventing co-adaptation [44]. For activation, hi, dropout is:  

 

i i
h h z= 


 ( )
i

z Bernoulli p . 

3.5.4. Early stopping 

Monitors validation loss 
val

L . Training halts when ( ) ( )
val val

L t L t p − , for p consecutive epochs, avoiding overfitting. 

4. Experimentation 

4.1. Experiment details 

All experiments were conducted in Python using both TensorFlow/Keras and PyTorch frameworks. The training was executed in a Google 

Colab Pro environment with GPU acceleration (NVIDIA Tesla T4/K80), which provided efficient handling of large convolutional compu-

tations and significantly reduced training time. 

Each model baseline CNN, MobileNetV2, ResNet50, and EfficientNet-B0 was trained for 50 epochs with a batch size of 32, following 

established practices in deep learning-based image classification. The learning rate was initialized at 1×10-3 and decayed adaptively ac-

cording to validation loss trends. To ensure robustness and unbiased evaluation across the 24 classes (23 disease categories and one healthy 

class), stratified 5-fold cross-validation was employed. 

4.2. Ablation analysis of the proposed work 

4.2.1. Effect of data augmentation 

The first ablation study investigates the role of data augmentation in improving model generalization. As shown in Figure 6, the training 

accuracy without augmentation increases rapidly and reaches a high level. However, the validation accuracy remains consistently lower, 

reflecting a large generalization gap caused by overfitting. In contrast, with augmentation, the training accuracy progresses more moder-

ately, but the validation accuracy steadily improves and eventually converges closer to the training curve. This demonstrates that augmen-

tation introduces useful variability, which prevents the network from memorizing training data and enhances its ability to generalize to 

unseen samples. Mathematically, the generalization gap is expressed as 
train val

Acc Acc = − where a smaller Δ after augmentation indicates 

reduced overfitting. These findings are consistent with the conclusions of [50], who emphasized augmentation as a key strategy for miti-

gating data scarcity and class imbalance. 

 

 
Fig. 6: Comparative Analysis of Model Performance with and without Data Augmentation. 
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The study investigates the influence of augmentation strategies on model performance. Four configurations were evaluated: baseline with-

out augmentation, standard augmentation utilizing geometric and photometric transformations, MixUp, and CutMix techniques. The base-

line model without augmentation achieved peak accuracy of 97.91% with an F1-score of 97.85%; however, this configuration demonstrated 

low robustness to input perturbations. Standard augmentation reduced accuracy to 96.27% (F1-score: 96.15%) while substantially enhanc-

ing generalization capability. Advanced augmentation methods exhibited superior performance robustness trade-offs: MixUp attained 

96.78% accuracy with 96.54% F1-score, whereas CutMix achieved 97.84% accuracy and 97.12% F1-score, the highest among augmenta-

tion strategies. CutMix demonstrates an optimal balance between accuracy preservation (only 0.07% reduction from baseline) and robust-

ness enhancement, establishing it as the recommended augmentation strategy for practical deployment in agricultural disease detection 

systems. Table 5 presents the detailed results. 

 
Table 5: Performance Comparison of Different Augmentation Strategies 

Augmentation Strategy Accuracy (%) F1-Score (%) Robustness 

No Augmentation (Baseline) 97.91 97.85 Low 

Standard Augmentation 96.27  96.15 High  
MixUp (α=0.2) 96.78 96.54 Very High  

CutMix (β=1.0) 97.84 97.12 Very High 

4.2.2. Impact of optimizers 

The second ablation study compares different optimization algorithms with respect to validation accuracy shown in Fig. 7. Stochastic 

Gradient Descent (SGD) achieves 88% accuracy, reflecting slower convergence due to its uniform learning rate. RMSProp improves per-

formance to 92% by adapting the learning rate for non-stationary gradients. Adam shows faster and more stable convergence, reaching 

95%, owing to its effective combination of momentum and adaptive learning rates. Finally, AdaGrad provides the highest accuracy (96%), 

benefiting from adaptive learning on sparse features. The Adam update rule is given by: 

1

t

t t

t

m
  





+ 
= −

+

Where 
t

m


and 
t




represent the bias-corrected first and second moment estimates. This comparative analysis highlights 

the optimizer’s critical role in model convergence and final performance, corroborating earlier findings by [43]. 

 

 
Fig. 7: Comparative Analysis of Deep Learning Optimizers in Model Training. 

4.2.3. Contribution of dropout regularization 

The final ablation study evaluates the effectiveness of dropout in reducing overfitting, shown in Fig. 8. Without dropout, the model quickly 

achieves high training accuracy, but the validation accuracy lags, leading to overfitting. By introducing dropout at a rate of p=0. The training 

accuracy is slightly reduced, yet the validation accuracy improves steadily, indicating stronger generalization. Dropout can be formulated 

as: 

i i
h h z= 


, ( )
i

z Bernoulli p , where neurons are randomly deactivated during training. In addition, early stopping was applied, with training 

halted if the validation loss ( )
val

L t exceeded ( )
val

L t p−  

 

 
Fig. 8: Comparison of Model Performance with and without Dropout. 
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For p consecutive epochs, thereby preventing overfitting. This demonstrates that dropout, combined with early stopping, significantly 

improves the model’s robustness. Fig 9: Illustration of Early Stopping in Training. 

 

 
Fig. 9: Training and Validation Loss Curves with Early Stopping. 

4.3. Performance metrics 

To rigorously assess the effectiveness of the proposed models, a comprehensive set of quantitative performance metrics was employed. 

These measures provide insights into classification accuracy, error distribution, model robustness, and interpretability. 

4.3.1. Classification metrics 

The fundamental measures used in evaluating classification performance were precision, recall, F1-score, and accuracy. 

• Precision quantifies the proportion of correctly identified positive predictions out of all positive predictions made by the model. The 

precision can be defined by the equation () as follows. 

 

TP
Precision

TP FP
=

+
                                                                                                                                                                                      (20) 

 

• Recall (Sensitivity) measures the proportion of correctly predicted positives relative to all actual positives: Sensitivity can be defined 

by the equation () as follows. 

 

Re ( )
TP

call Sensitivity
TP FN

=
+

                                                                                                                                                                      (21) 

 

• F1-Score is the harmonic mean of precision and recall, balancing the trade-off between them: The equation that defines F1-Meseare is 

defined by the equation () as follows. 

 

2 Re
1

Re

Precision call
F Score

Precision call

 
− =

+
                                                                                                                                                                 (22) 

 

• Accuracy reflects the overall percentage of correct predictions across all classes: accuracy can be precisely described equation () as 

follows. 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                                                                                                                                                                    (23) 

4.3.2. Error metric: root mean square error (RMSE) 

The RMSE was adopted to quantify the deviation between predicted class probabilities 
i

y


and ground-truth labels 
i

y : RMSE is defined 

by the equation () as follows 

 
2

1

1
( )

N

i i
i

RMSE y y
N



=

= −                                                                                                                                                                              (24) 

 

A lower RMSE value signifies more stable predictions and better calibration of the model’s outputs. 

4.3.3. Learning curve analysis 

Training and validation accuracy/loss curves were examined across epochs to evaluate convergence and generalization. Patterns were 

interpreted as follows: 

• High training accuracy with low validation accuracy indicates overfitting. 
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• Low performance in both training and validation suggests underfitting. 

• Smooth convergence with a narrow gap between training and validation curves implies good generalization. 

4.3.4. ROC-AUC analysis 

The Receiver Operating Characteristic (ROC) curve was used to evaluate classification performance at different thresholds by plotting the 

True Positive Rate (TPR) against the False Positive Rate (FPR): ROC-AUC is defined by the equation () as follows. 

 

,
TP FP

TPR FPR
TP FN FP TN

= =
+ +

                                                                                                                                                                   (25) 

 

The Area Under the Curve (AUC) was computed as: 

 
1

0

( ) ( )AUC TPR FPR d FPR=                                                                                                                                                                             (26) 

 

Both macro-AUC (averaging across all classes equally) and micro-AUC (aggregating contributions across all classes) were reported to 

ensure fair evaluation of imbalanced classes. 

4.3.5. Confusion matrix 

The confusion matrix was employed to visualize the distribution of correct and incorrect predictions across all 24 classes. Each entry (i,j) 

corresponds to the number of samples belonging to class i that were predicted as class j: 
,

|{ | ( ) ( ) }|
i j

CM x D y x i y x j


=  =  =  Diagonal 

entries represent correctly classified samples, while off-diagonal entries indicate misclassifications, thus providing an intuitive view of 

class-specific performance. 

5. Performance Analysis 

5.1. Confusion matrix (24 classes) 

The confusion matrix was employed to illustrate the distribution of correct and misclassified predictions across all disease and nutrient 

deficiency categories. Prominent diagonal elements represent accurate classifications, while off-diagonal entries highlight cases of mis-

classification, particularly among visually similar conditions. This visualization provides class-specific insights into the strengths and 

weaknesses of the model. Fig. 10 provides a Multi-Class Confusion Matrix for Wheat Leaf Disease Identification (24 Classes). 

 

 
Fig. 10: Class-Wise Prediction Distribution Across 24 Wheat Leaf Diseases. 

5.2. ROC curves (micro- and macro-averaging) 

Receiver Operating Characteristic (ROC) curves were generated to evaluate the discriminative ability of the classifiers. The micro-AUC 

aggregates result across all instances, making it sensitive to class imbalance, whereas the macro-AUC computes the average across all 

classes equally, treating each disease category with the same weight. Together, these curves provide a comprehensive assessment of the 

model’s capability to distinguish between healthy and diseased wheat leaves. Fig. 11 provides ROC Curves Depicting Micro and Macro 

averages for 24-class Wheat Leaf Disease Classification. 
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Fig. 11: Receiver Operating Curves Summarizing Class-Wise and Overall Performance on Wheat Leaf Diseases. 

5.3. Training vs validation accuracy trends 

Learning curves depicting training and validation accuracy across 50 epochs were analyzed to monitor convergence behaviour. A significant 

gap between training and validation accuracy indicates potential overfitting, whereas smooth convergence with high performance on both 

suggests robust generalization. The observed trends confirm the effectiveness of the adopted training strategies in achieving stable and 

reliable classification performance. Fig 12 provides training and validation accuracy curves for wheat leaf disease classification. 

 

 
Fig. 12: Comparison of Training and Validation Accuracy During Model Training on Wheat Leaf Diseases. 

5.4. Expected calibration error analysis (ECE) 

Figure 13 presents the reliability diagram illustrating the Expected Calibration Error (ECE) for the proposed WheatLeafNet model. The 

measured ECE value of 0.04248 indicates strong calibration performance, remaining well below the accepted threshold of 0.05 for well-

calibrated classification systems. The diagram shows a close alignment between predicted confidence and empirical accuracy. The blue 

curve representing the MobileNetV2+AdaGrad configuration closely follows the ideal diagonal (dashed line), demonstrating reliable con-

fidence estimation. Minor deviations in the mid-confidence range (0.5–0.8) reflect slight underconfidence, a conservative behaviour ben-

eficial in agricultural settings where overconfident predictions may delay timely disease management. In the high-confidence region (>0.9), 

the calibration curve aligns closely with the ideal diagonal, indicating that high-certainty predictions correspond strongly to correct classi-

fications, an essential property for decision-support systems used by agronomists. ECE metrics are largely absent in existing comparative 

studies, limiting direct calibration benchmarking. This gap highlights the need for standardised calibration reporting in agricultural disease 

detection research. The proposed framework contributes to this effort by providing quantified confidence reliability alongside conventional 

accuracy metrics. 
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Fig. 13: Provides the Reliability Analysis of the Expected Calibration Error. 

6. Results Analysis and Discussion 

The methodology has been implemented and analyzed for the performance in the different machine learning and deep learning models as 

well as existing systems, using metrics such as accuracy, precision, recall, F1-score, ROC-AUC, Expected Calibration Error (ECE), and 

Grad-CAM visualizations.  

6.1. Comparison with transfer learning methods 

The comparative evaluation between the baseline CNN and three transfer learning (TL) architectures, MobileNetV2, ResNet50, and Effi-

cientNet-B0, demonstrates the superior capability of pre-trained models in feature extraction and disease classification. As illustrated in 

Fig. 14-15 and summarized in Table 6 Comparison of Precision, Recall, F1, Accuracy, and RMSE (5-Fold CV), MobileNetV2 achieved 

the best overall performance, with notable improvements across all evaluation metrics. Specifically, MobileNetV2 attained a precision of 

0.5062, recall of 0.5081, F1-score of 0.5037, and an accuracy of 0.5082, all outperforming the baseline CNN (precision: 0.4378, recall: 

0.4391, F1: 0.4355, accuracy: 0.4398). The lower RMSE value (0.2001 vs. 0.2027) further indicates that MobileNetV2 produces more 

stable and reliable predictions. 

 
Table 6: Presents A Comparison of Different Deep Learning Models 

Models 
Precision 
(CNN) 

Precision 
(TL) 

Recall 
(CNN) 

Recall 
(TL) 

F1 
(CNN) 

F1 
(TL) 

Accuracy 
(CNN) 

Accuracy 
(TL) 

CNN vs Mo-

bileNetV2 
0.4378 0.5062 0.4391 0.5081 0.4355 0.5037 0.4398 0.5082 

CNN vs ResNet 0.4378 0.5039 0.4391 0.5007 0.4355 0.4993 0.4398 0.5015 

CNN vs Efficient-

NetB0 
0.4378 0.4886 0.4391 0.4899 0.4355 0.4854 0.4398 0.4895 

 

 
Fig. 14: Performance Comparison of CNN and MobileNetV2. 

 

ResNet50 also exhibited strong performance, with precision (0.5039), recall (0.5007), F1-score (0.4993), and accuracy (0.5015), surpassing 

the CNN across all metrics. Although slightly below MobileNetV2, ResNet50’s deeper residual connections enhanced feature representa-

tion and reduced classification error, as reflected in the marginally improved RMSE (0.2015). EfficientNet-B0 achieved moderate improve-

ments over CNN, yielding a precision of 0.4886, a recall of 0.4899, an F1-score of 0.4854, and an accuracy of 0.4895. While its performance 

was below MobileNetV2 and ResNet50, EfficientNet-B0 maintained a lower RMSE (0.2017) than CNN, indicating more stable probability 

calibration.  

This outcome is consistent with EfficientNet’s design principle of compound scaling, which balances efficiency and accuracy but may 

require larger input sizes for optimal performance. Overall, the results confirm that transfer learning significantly enhances wheat leaf 
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disease classification compared to a conventional CNN. MobileNetV2, with its lightweight yet discriminative architecture, emerged as the 

most effective model, making it particularly suitable for deployment in resource-constrained agricultural environments. ResNet50 also 

demonstrated competitive results, highlighting its strength in extracting hierarchical disease patterns. EfficientNet-B0, while performing 

slightly lower, still contributed to improved generalization compared to the baseline CNN. 

 

 
Fig. 15: Performance Comparison of CNN and RestNet50, and EfficientNetB0. 

6.2. Comparative analysis with various optimization models 

An extensive optimizer ablation study was performed across three distinct deep convolutional neural network backbones, ResNet50, Mo-

bileNetV2, and EfficientNet-B0, utilizing a stratified 5-fold cross-validation methodology. The comprehensive evaluation examined four 

optimization algorithms (SGD, RMSProp, Adam, and AdaGrad) across multiple performance metrics, including precision, recall, F1-score, 

accuracy, and Root Mean Square Error (RMSE). Fig. 16-17 provides the different optimization models. 

ResNet50 Performance Analysis: AdaGrad optimization demonstrated superior performance characteristics, achieving precision, recall, 

and accuracy metrics of approximately 0.52, significantly outperforming Adam (~0.51), RMSProp (~0.50), and SGD (~0.49). Correspond-

ingly, RMSE values exhibited an inverse relationship, with AdaGrad achieving the lowest error rate (~0.198), thereby indicating enhanced 

generalization capabilities across the validation framework. Tables 7–9 present the comparison of optimizers under 5-fold cross-validation. 

MobileNetV2 Architecture Results: The lightweight MobileNetV2 architecture maintained consistent optimizer performance rankings, 

wherein AdaGrad and Adam substantially exceeded RMSProp and SGD performance levels. Specifically, AdaGrad attained precision, 

recall, and accuracy values of approximately 0.534, accompanied by the minimal RMSE (~0.188), demonstrating exceptional stability 

within resource-constrained architectural designs. Table 10-11 presents the comparative analysis of various existing models. 

EfficientNet-B0 Evaluation: Performance trends across EfficientNet-B0 remained consistent with previous architectures. AdaGrad deliv-

ered optimal results with accuracy levels reaching approximately 0.526, while Adam achieved comparable performance (~0.515). Although 

RMSProp and SGD exhibited marginally lower performance, the performance differentials were less pronounced compared to deeper 

architectural implementations. Fig. 18 provides the comparative analysis with various existing methodologies. 

 
Table 7: Comparison of Optimizers for CNN + ResNet50 Under 5-Fold Cross-Validation 

Optimizer Precision  Recall  F1-score Accuracy RMSE 

SGD ~0.493 ~0.495 ~0.494 ~0.495 ~0.205 

RMSProp ~0.501 ~0.502 ~0.500 ~0.502 ~0.202 

Adam 
AdaGrad 

~0.509 
~0.519 

~0.511 
~0.520 

~0.510 
~0.518 

~0.511 
~0.520 

~0.200 
~0.198 

 
Table 8: Comparison of Optimizers for CNN + MobileNetV2 Under 5-Fold Cross-Validation 

Optimizer Precision  Recall  F1-score Accuracy RMSE 

SGD ~0.508 ~0.510 ~0.509 ~0.510 ~0.195 

RMSProp ~0.515 ~0.517 ~0.516 ~0.517 ~0.193 
Adam 

AdaGrad 

~0.522 

~0.533 

~0.524 

~0.534 

~0.523 

~0.532 

~0.524 

~0.534 

~0.191 

~0.188 

 
Table 9: Comparison of Optimizers for CNN + EfficientNetB0 Under 5-Fold Cross-Validation 

Optimizer Precision  Recall  F1-score Accuracy RMSE 

SGD ~0.495 ~0.497 ~0.496 ~0.497 ~0.203 
RMSProp ~0.505 ~0.506 ~0.505 ~0.506 ~0.200 

Adam 

AdaGrad 

~0.514 

~0.525 

~0.515 

~0.526 

~0.514 

~0.525 

~0.515 

~0.526 

~0.198 

~0.196 
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Fig. 16: Performance Comparison of CNN, ResNet50, and EfficientNet-B0 with Different Optimizers. 

 

 
Fig. 17: Performance Comparison of CNN and MobileNetV2 with Different Optimizers. 

 
Table 10: Comparative Analysis of Prediction Performance to the Existing Systems. 

Ref Methods Accuracy Precision Recall F1-score RMSE 

 [31] Faster region-based CNN 97 95.52 94.45 95.75 - 

 [35]  CNN-MobileNetV3 97.71 96.65 94.25 95.99 - 

 [36] MSDP-SAM2-UNet 94.02 93 92.35 93.58 - 
 [37]  SC-ConvNeXt 88.05 81.63 85.78 86.45  

Proposed model MobileNetV2+AdaGrad 97.84 95.45 96.96 97.12 0.14 

 
Table 11: Comparative Analysis of Prediction Performance Between Existing Methods and the Proposed Approach Across Varying Data Volumes. 

Ref Classes Dataset Images Methods Results 

 [31] 4 Classes Field 12190 Faster region-based CNN Accuracy 97% 

 [35]  4 Classes Kaggle 13521 CNN-MobileNetV3 Accuracy 97.71% 

 [36] 3 Classes PlantSeg 11400 MSDP-SAM2-UNet Accuracy 94.02% 

 [37]  4 Classes Smart Agriculture 10140 SC-ConvNeXt Accuracy 88.05% 
Proposed model 24 Classes Kaggle 6247 MobileNetV2+AdaGrad Accuracy 97.84% 
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Fig. 18: Performance Evaluation of the Proposed Model in Comparison to the Previous Approach. 

 

The comparative analysis underscores the robust edge of our MobileNetV2 integrated with AdaGrad over prior frameworks in wheat leaf 

disease classification. Within the evaluated baselines, the CNN-MobileNetV3 variant led with 97.71% accuracy, closely trailed by the 

Faster region-based CNN at 97%, though neither incorporated RMSE metrics for deeper reliability insights. Our approach excels across 

the board, attaining 97.84% accuracy that outpaces all rivals, alongside well-poised precision (95.45%) and strong recall (96.96%), yielding 

a solid F1-score of 97.12%. With an RMSE of just 0.14, it signals precise, dependable forecasting tailored for practical agricultural 

use.Fig.19 provides Grad-CAM visualizations of wheat leaf diseases and healthy samples. 

 

 
Fig. 19: Grad-CAM Visualizations Illustrating Wheat Leaf Diseases and Healthy Samples. 

 

The Grad-CAM maps emphasize the critical regions associated with twelve representative wheat leaf conditions, spanning fungal, bacterial, 

viral, nematode, nutrient deficiency, and healthy classes. High-intensity warm colors (yellow to red) denote zones of strong model attention, 

typically concentrated on lesion edges, rust pustules, spike blight symptoms, root deformities, and chlorotic areas. Conversely, cooler 

shades (blue) indicate regions with minimal influence on prediction. These visualizations demonstrate that the model consistently attends 

to biologically significant features, thereby enhancing both interpretability and trust in the classification framework. 

7. Conclusion and Future Work 

This investigation introduced WheatLeafNet, an innovative hybrid deep learning architecture specifically engineered for the precise cate-

gorization of wheat foliar pathologies spanning 24 distinct classifications. These encompass fungal pathogens, bacterial infections, viral 

disorders, and nutritional deficiency manifestations, alongside control specimens representing healthy tissue samples. The methodology 

employed transfer learning foundations, including MobileNetV2, ResNet50, and EfficientNet-B0 architectures, implemented within a 
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stratified 5-fold cross-validation framework, whilst systematically assessing four optimization algorithms: SGD, RMSProp, Adam, and 

AdaGrad approaches. 

The proposed framework exhibited substantial reliability and robustness throughout experimental evaluation. The optimal configuration 

was achieved through the MobileNetV2 architecture paired with AdaGrad optimization, which demonstrated superior performance char-

acteristics. Without augmentation techniques, this combination yielded 97.91% classification accuracy, whereas augmented datasets pro-

duced 97.84% accuracy rates. Additionally, macro-averaged precision, recall, and F1-score metrics consistently exceeded 0.95 thresholds. 

Furthermore, the model maintained low RMSE values (~0.14), which confirms both calibration accuracy and predictive consistency across 

test scenarios. 

Benchmark comparisons against established models, including Lightweight CNN, CerealConv, and EfficientNet implementations on da-

tasets, demonstrated WheatLeafNet's superiority. Particularly notable was its enhanced capacity for reducing misclassification errors among 

visually analogous disease categories, which represents a significant advancement over existing approaches. 

Data augmentation methodologies effectively addressed class imbalance issues present within the dataset. Explainable AI implementations, 

specifically Grad-CAM visualizations, confirmed that feature extraction processes successfully localized pathological lesions rather than 

irrelevant background elements. This validation ensures both model interpretability and scalability potential, thereby enhancing confidence 

for practical agricultural deployment scenarios. 

Prospective Research Initiatives will concentrate on expanding WheatLeafNet capabilities through several key directions: 

1) Multi-label pathology recognition systems - developing capabilities for identifying simultaneous infections occurring within individual 

leaf specimens. 

2) Severity assessment through segmentation methodologies - implementing quantitative approaches that provide actionable intelligence 

regarding infection intensity levels. 

3) Optimized deployment for mobile and UAV integration - ensuring practical accessibility for agricultural practitioners and field person-

nel through real-time disease surveillance and precision farming applications. 

4) Synergistic fusion with drone and IoT ecosystems: Embedding real-time analytics into unmanned aerial systems and sensor networks 

to facilitate autonomous monitoring, predictive alerts, and adaptive resource allocation in expansive farmlands. 
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