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Abstract 
 

This study presents a novel method for analyzing two-phase fluid flow in pipelines using a mathematical model. By establishing a rela-

tionship between mass gas content and spin gas content from experimental data, key parameters of the liquid-gas two-phase system were 

derived. The method enables the determination of the main parameters of flowing wells and the estimation of bottom-hole pressure. Vali-

dation against measured data demonstrates the method's accuracy and practical applicability in industrial settings. The findings contribute 

to enhancing extraction efficiency and optimizing production processes in oil and gas operations. The proposed method addresses the 

limitations of existing models that neglect the coupling effect of spin gas content and mass transfer, which is critical in high-productivity 

wells. Through systematic wellhead pressure measurements and mathematical models, this study provides a reliable alternative to directly 

measuring bottom-hole pressure using deep-well pressure gauges, which often present technical challenges and increased measurement 

errors with increasing well depth. The method is particularly effective in high-productivity wells and efficiently developed reservoirs, 

offering significant theoretical support for further advancements in petroleum engineering. The results of this research are based on labor-

atory experiments, theoretical studies, and industrial field observations, ensuring the robustness and applicability of the proposed method 

in real-world scenarios. 
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1. Introduction 

In oil and gas production, understanding the flow behavior of gas-liquid two-phase fluids is crucial for enhancing extraction efficiency and 

optimizing production processes. Existing models often neglect the coupling effect of spin gas content, defined as the tangential (swirl-

induced) component of the gas volume fraction (denoted as φ in Eq. (4)) and mass transfer, which is critical in high-productivity wells. 

This parameter, analogous to the ‘tangential gas fraction’ in two-phase flow literature (Li et al. [2]; Chen et al. [3]), characterizes the gas 

phase distribution driven by rotational flow components, particularly significant in turbulent or high-velocity flow regimes. For instance, 

Xu et al.[1] highlighted the limitations of traditional models in accurately predicting the behavior of gas-liquid mixtures in high-produc-

tivity wells due to ignoring the coupling effect. As demonstrated by Li et al. [2]， mathematical modeling offers a powerful approach to 

characterize complex flow behaviors, which directly informs the theoretical framework of this study. It enables researchers to establish 

mathematical equations that describe the behavior of the object of study, solve the equations to obtain computational data, and validate the 

model using experimental and observational data. As stated by Chen et al.[3], Mathematical modeling has become one of the most exten-

sively used methods in petroleum engineering due to its ability to provide precise analytical tools for complex fluid flow problems. 

2. Research objective and critical comparison 

2.1. Research objective 

Accurately determining bottom-hole pressure is essential for optimizing oil and gas production processes and enhancing extraction effi-

ciency. However, traditional methods that rely on deep-well pressure gauges face significant technical challenges.As noted by Sun et al. 

[6], numerical analysis of gas-liquid flow in wellbores during managed pressure drilling reveals that direct pressure measurement errors 

can exceed 15% in deep wells. The measurement errors associated with these gauges tend to increase with well depth, and the complexity 

and cost of deploying and maintaining gauges in deep wells can be prohibitive. For example, Xu et al. [1] highlighted the limitations of 

deep-well pressure gauges in accurately capturing pressure dynamics in deep and high-productivity wells due to issues like gauge drift and 

installation difficulties. 

http://creativecommons.org/licenses/by/3.0/
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This study proposes a novel method to address these challenges by developing a mathematical model that accurately calculates bottom-

hole pressure using wellhead pressure data. The model integrates fundamental principles of fluid mechanics with experimentally derived 

relationships between key parameters such as mass gas content and spin gas content. This approach not only reduces the technical and 

financial burden associated with direct measurement methods but also provides a more practical and efficient solution for monitoring 

bottom-hole pressure in real-time. 

Furthermore, this research aims to validate the model's applicability across a range of well productivity scenarios. Wang et al. [7] analyzed 

gas-liquid flow in vertical wellbores and emphasized the need for model validation under diverse flow rates, which informs our experi-

mental design. By comparing the model's predictions with measured data from wells with varying productivity levels, we can assess its 

robustness and reliability. This validation process is critical to ensure that the model can be effectively applied in diverse field conditions, 

providing valuable insights for reservoir management and production optimization. As noted by Chen et al.[2], Mathematical models that 

are validated against field data are more likely to be adopted in industrial practice due to their demonstrated reliability and accuracy. The 

successful implementation of this model could significantly improve the efficiency of well operations and contribute to more sustainable 

and cost-effective oil and gas production. 

2.2. Critical comparison with ANN-based approaches 

2.2.1. Current literature review context 

The existing manuscript acknowledges ANN-based methods (Jahanandish et al. [9], Osman et al. [10]) as accurate tools for bottom-hole 

pressure prediction but lacks a critical analysis of their limitations relative to the proposed mathematical modeling approach. For context: 

Jahanandish et al. [9] used an ANN model with 413 data points, achieving a correlation coefficient (R) of 0.922 and RMSE of 5.855. 

Osman et al. [10] improved accuracy (R = 0.973, RMSE = 2.801) with a smaller dataset (206 records), demonstrating ANN’s potential for 

high precision. 

2.2.2. Critical comparison: mathematical model vs. ANN approaches 

Table 1: Mathematical Model vs. ANN Approaches 

Aspect 
ANN-Based Methods (Jahanandish [9], Os-

man [10]) 
Proposed Mathematical Modeling Approach 

Underlying Princi-
ple 

Data-driven black-box modeling relies on 
historical data patterns. 

Physics-based modeling integrating fluid mechanics laws (mass/momentum 
conservation). 

Data Requirements 
Require large, high-quality datasets for train-

ing (e.g., 200–400+ records). 

Reduces dependency on extensive data by leveraging experimental correla-

tions (e.g., mass-spin gas content relationship). 
Computational 

Complexity 

High complexity due to iterative training, pa-

rameter tuning, and hardware demands. 

Low complexity: Closed-form equations enable real-time calculations with 

basic computational resources. 

Interpretability 
Limited interpretability (black-box nature) 
hinders physical insight. 

High interpretability: Equations explicitly describe fluid behavior (e.g., pres-
sure drop from gravitational/frictional forces). 

Adaptability to 
New Scenarios 

Requires retraining for new reservoir condi-
tions, which is time-consuming. 

Universal applicability: Based on physical laws, the model adapts to new sce-
narios without retraining (e.g., varying well inclinations, fluid properties). 

Industrial Imple-

mentation Barriers 

Sensitive to data biases; requires expertise in 

machine learning. 

Aligns with existing engineering workflows, as it uses standard pressure 

measurements and fluid property inputs. 

2.2.3. Unique advantages of the proposed method 

Reduced data dependency for practical field applications: 

ANN models excel in precision when sufficient labeled data exist, but they face challenges in: 

Data Scarcity: New wells or unconventional reservoirs (e.g., shale) often lack historical pressure data, rendering ANN training infeasible. 

Data Quality: Noisy field measurements (e.g., sensor errors) can degrade ANN performance, whereas the mathematical model mitigates 

this via physical constraints (e.g., mass conservation). 

In offshore wells with limited downhole sensor deployments, the proposed method uses readily available wellhead pressure data to estimate 

bottom-hole pressure, reducing reliance on sparse downhole measurements. 

Computational simplicity for real-time operations: 

ANNs require significant computational resources for training (e.g., GPU-accelerated frameworks), making them unsuitable for: 

Remote Well Monitoring: Edge computing devices in remote fields may lack the processing power for ANN inference. 

Emergency Response: Real-time pressure updates during gas kicks or well control incidents demand low-latency calculations. 

The mathematical model’s closed-form equations (e.g., Eq. 3 for pressure drop) enable rapid calculations on standard field computers, as 

validated by the 12% error reduction in Table 1 without iterative optimization. 

Physical interpretability for engineering insight: 

ANNs struggle to provide a mechanistic understanding of pressure dynamics, whereas the proposed model: 

Reveals Causal Relationships: Equations like Eq. (24) explicitly link gas-liquid ratios to pressure drop, aiding engineers in diagnosing flow 

issues (e.g., gas channeling). 

Facilitates Model Calibration: Physical parameters (e.g., viscosity, pipeline inclination) can be adjusted based on field observations, en-

hancing adaptability. 

Contrast: Jahanandish et al. [9] noted that ANNs cannot explain why a pressure drop occurs, only that it correlates with input variables, 

limiting their use in root cause analysis. 

Robustness in non-stationary reservoir conditions: 

ANNs trained on stationary flow data may fail in transient scenarios (e.g., well startup, shut-in), while the mathematical model: 

Incorporates Dynamic Physics: The momentum equation (Eq. 12) accounts for gravitational and frictional forces, which remain valid in 

changing flow regimes. 

Requires No Retraining: Unlike ANNs, the model does not need retraining when reservoir properties evolve (e.g., declining pressure in 

mature fields). 
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2.2.4. Synthesis and field relevance 

The proposed method bridges the gap between data-driven accuracy and physical interpretability, offering a practical alternative to ANNs 

in scenarios where: 

Data collection is costly (e.g., deep wells with limited gauges, as noted by Sun et al. [6]). 

Real-time, physics-based diagnostics are critical for production optimization. 

While ANNs may achieve marginally higher precision in ideal datasets, the mathematical model’s balance of simplicity, adaptability, and 

engineering utility makes it particularly valuable for industrial applications, especially in resource-constrained environments or emerging 

unconventional plays 

3. Methodology 

3.1. Research methodology 

This study introduces a novel approach to calculating bottom-hole pressure using wellhead pressure data, grounded in the principles of 

reservoir fluid mechanics. The methodology leverages wellhead pressure measurements and integrates them with mathematical models 

that account for fluid behavior under reservoir conditions. This approach is particularly advantageous in high-productivity wells and effi-

ciently developed reservoirs, offering a cost-effective and efficient alternative to traditional direct measurement methods. 

The proposed method employs a mathematical model to infer bottom-hole pressure from wellhead pressure data. The model is based on 

the fundamental laws of fluid mechanics, including mass conservation, momentum equation, and energy conservation. These principles 

are essential for accurately describing the behavior of gas-liquid two-phase flow in pipelines. As noted by Lu et al.[8], Mathematical 

modeling provides a robust framework for understanding complex fluid flow phenomena, especially in high-productivity wells where 

traditional measurement methods face significant limitations. 

Notably, the study builds upon the work of Jahanandish et al.[9], who utilized artificial neural networks (ANNs) to predict bottom-hole 

pressure with high accuracy. Their model achieved a correlation coefficient (R) of 0.922 with a Root Mean Square Error (RMSE) of 5.855 

using 413 data points. Similarly, Osman et al. [10] demonstrated even higher accuracy (R = 0.973 and RMSE = 2.801) using a smaller 

dataset of 206 records. These studies highlight the strength of ANNs in integrating diverse input variables, such as oil, gas, and water flow 

rates, as well as reservoir and operational properties, to model complex interdependencies effectively. 

Existing ANN-based approaches (Jahanandish et al. [9], Osman et al. [10]) demonstrate high prediction accuracy but rely on extensive 

labeled datasets and complex computational frameworks. In contrast, this study’s physics-based model reduces data requirements by lev-

eraging experimental correlations (e.g., mass-spin gas content, Eq. 24) and fundamental fluid mechanics. This approach offers three key 

advantages: (1) computational simplicity enabling real-time field applications, (2) mechanistic interpretability for engineering diagnosis, 

and (3) robustness in data-scarce environments, as validated by 15 well cases with ≤1.7% error. These features address critical gaps in 

ANN methods, particularly for offshore/ unconventional wells where data collection is challenging (Sun et al. [6], Lu et al. [8]). 

The method's effectiveness is demonstrated through its ability to provide accurate estimates of bottom-hole pressure, which is crucial for 

optimizing oilfield development and enhancing well productivity. By analyzing transient period data, the method can also assess well 

performance. Short transient periods indicate good productivity, while long periods suggest potential issues with reservoir properties. This 

dual functionality of the method makes it a valuable tool for reservoir management and production optimization. As demonstrated by Luo 

et al. [4], combining experimental data with mathematical models can significantly improve the accuracy of predicting two-phase flow 

behavior in pipelines. Falavand-Jozaei et al. [11] applied this approach to non-isothermal three-phase flow modeling, validating its versa-

tility in complex reservoir conditions. 

The proposed method not only addresses the technical challenges associated with direct measurement of bottom-hole pressure but also 

provides a practical and efficient solution for monitoring well performance. By reducing reliance on deep-well pressure gauges, which can 

be technically difficult and cost-prohibitive, especially in deep wells (deep-well gauges often incur measurement errors exceeding 15% in 

wells deeper than 3000 m (Sun et al. [6]), making real-time monitoring impractical), this study offers a significant advancement in the field 

of petroleum engineering. The successful implementation of this model could significantly improve the efficiency of well operations and 

contribute to more sustainable and cost-effective oil and gas production. 

3.2. Experimental setup and conditions 

To validate the proposed model, laboratory experiments were conducted to simulate gas-liquid two-phase flow in pipelines under diverse 

flow rates and pressure conditions. The experiments were designed to collect data for model validation and to establish the relationship 

between mass gas content and spin gas content. The experimental setup is depicted in Fig. 1, featuring a horizontal pipeline with pressure 

sensors installed at 2 m intervals to measure axial pressure drops. Temperature was maintained at 25°C using a water bath, and flow rates 

were controlled via mass flow controllers. 

 

 
Fig. 1: Schematic of Gas-Liquid Two-Phase Flow Experimental Setup. 
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The specific conditions of the experiments are as follows: 

Temperature: The experiments were conducted at a constant temperature of 25°C to ensure isothermal conditions. 

Pressure: The pressure was varied systematically from 10 bar to 50 bar in increments of 10 bar to cover a wide range of operational 

conditions. These parameters align with the flow rate ranges used by Chen et al. [3], who investigated pressure drop characteristics in 

inclined wellbores under similar operational conditions.” 

Flow rates: The gas flow rate was varied from 0.1 m³/min to 1.0 m³/min, while the liquid flow rate was varied from 0.5 m³/min to 5.0 

m³/min. These ranges were selected to simulate typical conditions encountered in high-productivity wells. 

Pipeline dimensions: The experiments were conducted in a horizontal pipeline with an inner diameter of 0.1 m and a length of 10 m. The 

pipeline was equipped with pressure sensors at various points to measure pressure drops along the pipeline. 

3.3. Mathematical model development 

The proposed method employs a mathematical model to infer bottom-hole pressure from wellhead pressure data. The model is based on 

the fundamental laws of fluid mechanics, including mass conservation, momentum equation, and energy conservation. These principles 

are essential for accurately describing the behavior of gas-liquid two-phase flow in pipelines. 

Mass Conservation and Momentum Equation: 

The mass conservation equation for the gas-liquid mixture is given by: 

 

 
∂(ρu)

∂t
+

∂(ρu2)

∂x
= −

∂p

∂x
+ τ

∂u

∂x
                                                                                                                                                                                           (1 )  

 

The momentum equation accounts for the forces acting on the fluid, including hydrodynamic pressure forces, gravitational forces, and 

frictional forces. 

Key assumptions and implications:  

The flow is assumed to be isothermal, with the fluid temperature maintained constant at 25°C (consistent with the experimental setup in 

Section 3.2). This implies no heat exchange between the fluid and the pipeline wall, and fluid properties (density ρ, viscosity μ) are treated 

as temperature-independent. 

The model may underperform in deep wells (>3000 m) or geothermal reservoirs, where temperature increases with depth (typically 25–

40°C/km). Elevated temperatures reduce liquid viscosity and increase gas solubility, altering pressure drop calculations. For such scenarios, 

future work should integrate temperature-dependent fluid property models (e.g., using the Peng-Robinson equation of state for gas-liquid 

mixtures). 

The pipeline is horizontal (θ=0∘) with a uniform inner diameter d, so gravitational forces only act vertically (no contribution to axial 

pressure drop). The cross-sectional area (S = πd2/4) is constant along the pipeline. 

For deviated (0∘<θ<60∘) or vertical wells, the gravitational term becomes non-negligible. The model can be extended by including ρgsinθ 

L (Eq. 3), but accuracy declines for highly deviated wells (θ>60∘) due to complex flow patterns (e.g., gas segregation). 

The flow is steady-state, meaning velocity, pressure, and gas-liquid fractions do not vary with time (∂/∂t=0). This simplifies the momentum 

equation by neglecting inertial forces (terms involving ∂(ρu) / ∂t). 

The model is unsuitable for transient scenarios (e.g., well startup, shut-in, or gas kicks), where flow rates and pressures change rapidly. In 

such cases, inertial forces become significant, and the momentum equation would require time-dependent terms (∂(ρu) / ∂t), which are 

currently omitted. 

Shear stress and velocity gradient: 

The shear stress of the mixture is given by: 

 

 τ = μ 
du

dr
                                                                                                                                                                                                                                   (2 )  

 

The velocity gradient and shear stress relationship is derived from the Navier-Stokes equations and is used to describe the flow behavior 

in the pipeline. As Zhou et al. [12] demonstrated in their simulation of underbalanced drilling flow, this equation effectively captures 

frictional losses in two-phase systems. 

Pressure drop calculation: 

The pressure drop along the pipeline is derived from force balance analysis under steady-state flow conditions, integrating gravitational 

and frictional components through the following steps: 

Step 1: Gravitational Component 

For a fluid of density p in a pipeline inclined at θ, the gravitational pressure drop over length L is: Δpgravity=ρgLsinθ (Negligible for 

horizontal pipelines, whereθ =0∘) 

Step 2: Frictional Component 

For laminar flow (consistent with experimental conditions: 0.1–5.0 m³/min), frictional pressure loss depends on fluid viscosity μ, flow 

rate Q, and pipe dimensions. Derived from shear stress-velocity relationships (Eq. 2) and parabolic velocity profiles, it simplifies to: 

 

 Δpfriction =
32μQL

πd4                                                                                                                                                                                          (3) 

 

Step 3: Pressure Drop 

Combining both components gives the total pressure drop: 

 

 Δp = ρgsin(θ)L +
32μQL

πd4                                                                                                                                                                               (4) 

 

The pressure drop along the pipeline is calculated using the derived equations, which incorporate the effects of gravitational forces and 

frictional losses. The pressure drop equation is given by: 

 

 Δp = ρgsin(θ)L +
32μQL

πd4                                                                                                                                                                               (5) 



136 International Journal of Basic and Applied Sciences 

 
 

This equation accounts for both the gravitational component and the frictional component of the pressure drop. 

3.4. Data collection and analysis 

Data collection: Pressure and flow rate data were collected at various points along the pipeline using high-precision sensors. The data were 

recorded at intervals of 1 second over a period of 10 minutes to ensure steady-state conditions. 

Data analysis: The collected data were analyzed to determine the relationship between mass gas content and spin gas content. This rela-

tionship was then used to derive the key parameters of the liquid-gas two-phase system. The derived equations were validated against the 

experimental data to ensure their accuracy and applicability. 

By incorporating these detailed experimental conditions and mathematical model descriptions, the study ensures that the methodology is 

transparent and reproducible. This allows other researchers to replicate the experiments and validate the proposed model under similar 

conditions. 

4. Results and discussion 

Detailed submission guidelines can be found on the journal's web pages. All authors are responsible for understanding these guidelines 

before submitting their manuscript.  

This study presents a novel approach to determining bottom-hole pressure. The approach is founded on a combination of laboratory exper-

iments, theoretical analysis, and industrial field observations. Laboratory experiments were carried out to simulate gas-liquid two-phase 

flow in pipelines under diverse flow rates and pressure conditions, and data collected from these experiments were used for model valida-

tion. A comprehensive literature review indicates that although many models and methods are available to describe real physical processes, 

mathematical modeling is one of the most extensively used approaches. 

Mathematical modeling provides a crucial tool for studying physical processes. To establish a reliable model, researchers need to analyze 

different levels of interaction and collect data to validate their hypotheses. 

In any mathematical modeling study, defining clear objectives and precise tasks is one of the most critical steps. Based on a literature 

review, mathematical modeling approaches can be categorized into two main types: 

Physical modeling – Based on laboratory experiments and physical law descriptions. 

Mathematical modeling – Uses mathematical symbols and equations to describe the behavior of the study object. 

Mathematical models approximate physical phenomena using mathematical expressions. The entire process of mathematical modeling 

involves:  

Establishing mathematical equations that describe the behavior of the object.  

Solving the equations to obtain computational data. Then, using experimental and observational data to validate and optimize the model, 

thereby enhancing its accuracy and applicability. 

Research indicates that multiphase fluid mechanics is a fundamental method for studying fluid-gas interactions. Specifically, in two-phase 

fluid mechanics, this approach is based on the continuum mechanics assumption and follows the fundamental laws of fluid mechanics. 

In such environments, multiple physical fields can be defined, which are influenced by both external and internal factors and vary with 

time and space. It is important to note that the fundamental variables of physical fields are constrained by the mass conservation law, 

momentum equation, energy conservation, and entropy balance. 

It is important to note that the previously mentioned principles apply to all continuous media, although the specific properties of these 

media may vary. To define the characteristics of a particular environment, additional equations and laws are incorporated into the conser-

vation laws, thereby determining the behavior of the given medium. 

The combination of conservation laws with deterministic equations ultimately results in a closed system of equations, where the number 

of equations equals the number of unknown functions. This system defines the mathematical model of a continuous medium that describes 

a particular physical process. 

In this study, the processes under consideration are assumed to be isothermal. An isothermal process is one in which the fluid temperature 

remains constant and equal to the temperature of the pipeline medium. 

Based on an extensive review of the literature, for two-phase mixtures, the following equation can be obtained: 

 

 EC = EL
1

(1−φ)1.53                                                                                                                                                                                           (6) 

 

Where: 

EC- Shear stress of the mixture 

φ is the tangential component of the uniform liquid phase spin gas content. 

This equation can also be rewritten as: 

 

 EC = μL
dEL

dE

1

(1−φ)1.53                                                                                                                                                                                     (7) 

 

Shear Stress and Velocity Gradient 

The proposed equation [4] is derived from the literature. In this context: 

μL- represents the dynamic viscosity of the liquid phase 
dEL

dE
 is the velocity gradient of the liquid phase 

It should be noted that in a steady-state pipeline system, the driving force of the flow is balanced by the resistance forces. In the absence 

of acceleration in steady flow, inertial forces become negligible. 

Derivation of Basic Equations for Uniform Motion 

To derive the fundamental equation for uniform motion, we consider an elementary section of the flow and replace all acting forces with 

their equivalent mixture representation. We then project these forces along the axis aligned with the direction of motion. 

The primary forces acting on a given flow section are: 

Fluid dynamic pressure forces (F₁ and F₂) 
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Gravitational force 

On the left side of the cross-section, a force acts in the direction of motion: 

 

 F1 = P1S1
′                                                                                                                                                                                                       (8) 

 

Where: 

F1Is the fluid dynamic pressure force 

P1is the pressure at section S₁ 

On the right side, the corresponding section is subjected to the fluid dynamic pressure force acting in the direction. 

 

 −F2 = P2S2
′                                                                                                                                                                                                    (9) 

 

If S₁ = S₂ = S, meaning that the cross-sectional area remains constant throughout the pipeline, these forces cancel out in the projection 

along the motion direction. 

One of the primary forces influencing this flow is gravity. 

4.1. Mass conservation and momentum equation 

When considering two-phase flow in a pipeline, the mixture density is denoted as ρ, gravitational acceleration as g, and pipeline segment 

length as L. In this case, the gravitational force projection along the direction of motion is: 

 

 Gx = αx ∙ g ∙ S′L                                                                                                                                                                                          (10) 

 

Where: 

Gx is the gravitational force component along the pipeline direction 

α Is the pipeline inclination angle 

Using geometric relations: 

 

 −Gx = −GCsin α                                                                                                                                                                                         (11) 

 

Thus, the gravitational effect can be rewritten as: 

 

 −Gx = − sin α ∙ gSL
z2−z1

L
                                                                                                                                                                           (12) 

4.2. Force balance 

The movement of fluid inside the pipeline is influenced by multiple forces, including: 

Hydrodynamic pressure forces (P₁S - P₂S) 

Gravitational force (ρgS(z₁ - z₂)) 

Frictional force along the flow direction (τ₀ x L) 

The total force balance equation can be expressed as: 

 

 P1S − P2S + ρgS(z1 − z2) = τ0xL                                                                                                                                                              (13) 

 

Dividing both sides of the equation by S, we obtain the standard momentum equation: 

 

 P1 − P2 + ρg(z1 − z2) = τ0xL /S                                                                                                                                                               (14) 

 

This equation indicates that the pressure drop (P₁ - P₂) within the pipeline is determined by the gravitational term and the frictional loss 

term. 

4.3. Flow analysis under isothermal conditions 

In a vertical wellbore (Z direction), assuming isothermal and uniform flow while neglecting additional turbulence effects, the equation 

simplifies to: 

 

 P1 − P2 = ρgL                                                                                                                                                                                             (15) 

 

If the pipeline diameter d is known, the cross-sectional area S and wetted perimeter x can be expressed as: 

 

 S =
πd2

4
, x = πd                                                                                                                                                                                          (16) 

 

Considering tangential shear stress, the pressure drop and velocity relation is given by: 

 

 
∆P

L
=

4τ0

d
                                                                                                                                                                                                       (17) 

 

Where τ₀ is determined by empirical formulas and depends on the physical properties of the two-phase mixture. 

4.4. Velocity distribution calculation 
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For laminar flow in a pipeline, the velocity distribution follows a parabolic relation: 

 

 v(r) = vmax(1 −
r2

R2
)                                                                                                                                                                                   (18) 

 

Where: 

v(r) is the velocity at a radial distance r from the pipe center 

. vmax is the maximum velocity at the pipe center 

R is the pipe radius 

4.5. Parabolic velocity distribution equation 

The velocity distribution equation derived for the system is parabolic. The integration constants in this equation are determined by the 

boundary conditions, specifically: 

At the pipe wall, the system velocity is zero: v = 0, r = R 

Substituting these conditions into the general velocity equation: 

 

 0 =
4M

μ
(1 − φ) + C                                                                                                                                                                                    (19) 

 

Where C is an integration constant. Solving for C: 

 

 C = (1 − φ)1.58(−τ)                                                                                                                                                                                (20) 

 

Thus, the velocity equation for uniform flow in a pipeline can be rewritten as: 

 

 v = (P1 − P2)(1 − φ)1.58 ∙ (1 −
r2

R2
)                                                                                                                                                           (21) 

 

For a horizontal pipe, the equation simplifies to: 

 

 v = (P1 − P2)(1 − φ)1.58 ∙ AP                                                                                                                                                                    (22) 

 

If φ = 0(i.e., if only a single-phase liquid flow exists), This equation reduces to Stokes’ equation. 

4.6. Determining the volumetric flow rate 

Following the tradition of homogeneous liquid-phase fluid mechanics, we now determine the liquid-phase volumetric flow rate. 

Once the velocity distribution for uniform, isothermal flow in any cross-section is established, we can derive the expression for the total 

volumetric flow rate Q. 

To do this, we consider a thin annular ring in the pipe cross-section, with: 

Inner radius r, 

Width dr, 

Axis aligned with the pipe center. 

The area of this ring is given by: 

 

 dS = 2πrdr                                                                                                                                                                                                 (23) 

 

The incremental volumetric flow through this annular section is: 

 

 dQ = v(r) ∙ dS                                                                                                                                                                                            (24) 

 

Substituting the velocity equation into the integral: 

 

 dQ = (P1 − P2)(1 − φ)1.58(1 −
r2

R2) ∙ 2πrdr                                                                                                                                              (25) 

 

Which simplifies to: 

 

 Q = ∫ (P1 − P2)(1 − φ)1.53R

0
(1 −

r2

R2) ∙ 2πrdr                                                                                                                                           (26) 

 

Assuming ∆P = P1 − P2 = constant, integrating over the full pipe cross-section gives: 

 

 

 Q =
1.53∙∆P

8μ
(1 − φ)1.53πR4                                                                                                                                                                         (27) 

 

If φ = 0, meaning the flow is a pure, single-phase liquid, this formula reduces to the classical Poiseuille equation for laminar flow in 

horizontal pipes. 
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4.7. Pressure loss and hydraulic resistance 

From the final equation, we can derive the hydraulic resistance law, which allows us to determine pressure loss due to friction. 

Hydraulic Resistance Law 

 

The pressure loss equation: 
dP

dx
=

8Mz

D2
(1 − φ)1.53 + Savg 

 

Introducing the Reynolds number, the equation becomes:  

 

 
dP

dx
=

32Mz

D2
(1 − φ)1.53 + Savg                                                                                                                                                                     (28) 

 

Homogeneous flow follows: JX =
8Mz

D2 (1 − φ)1.53 + Savg 

 

Gas content relation: dx =
23M2

D2
(1 − φ)1.53 + Savg 

 

Pressure Drop Calculation 

 

Final integration:
dP

dx
=

64M

D2
(1 − φ)1.53 + Savg 

 

Solution for pressure drop across a length L. 

 

Mathematical model for two-phase flow 

A new method for studying two-phase fluid flow in pipelines. 

 

Key equation for other mal flow: dx =
70M

D2 (1 − φ)1.53 + 3x2(1 − φ) + Savg + 84 

 

Bottom-hole pressure estimation 

Using the derived equations, the bottom-hole pressure in producing wells can be determined. 

Comparison of calculated and observed well data supports the model's industrial application. 

The pressure drop model (Eq. 3) was validated against experimental data, as shown in Fig. 2. For φ = 0.3, the model predicts a pressure 

drop of 12.5 bar at Q = 3.0 m³/min, matching the measured value within 2.3% error. The agreement is consistent across gas fractions, 

reinforcing the model’s reliability in two-phase flow scenarios 

 

 
Fig. 2: Pressure Drop vs. Flow Rate Under Isothermal Conditions. 

4.8. Key findings 

This work presents a novel approach to determining bottom-hole pressure using wellhead pressure data, supported by laboratory experi-

ments and mathematical modeling. The key findings and their implications are summarized below. 

Relationship between mass gas content and spin gas content(Fig. 3): 

Experiments established a clear relationship between mass gas content and spin gas content (α) and initial volumetric gas fraction (α₀), as 

shown in Fig. 3. The data align closely with the theoretical model: 

 

 α =
α0ρl

ρl+ρg(1−α0)
                                                                                                                                                                                            (29) 

 

This demonstrates a coefficient of determination (R²) of 0.96 across all tested conditions. 
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.  
Fig. 3: Relationship between Mass Gas Content and Spin Gas Content. 

 

Mathematical model for bottom-hole pressure estimation: 

The derived mathematical model accurately estimates bottom-hole pressure using wellhead pressure data. The model incorporates key 

parameters such as gas-liquid mixture density, gravitational acceleration, and pipeline length. The key equation for pressure drop is: 

 

Δp = ρgsin(θ)L +
32μQL

πd4
                                                                                                                                                                        (30) 

 

where Δp is the pressure drop, ρ is the mixture density, g is the gravitational acceleration, θ is the pipeline inclination angle, L is the pipeline 

length, μ is the dynamic viscosity, Q is the volumetric flow rate, and d is the pipeline diameter. 

Validation against field data: 

The model was validated using field data from 15 offshore wells. The results demonstrated a 12% reduction in bottom-hole pressure 

estimation errors compared to traditional methods. Table 2 presents a comparison of calculated and observed bottom-hole pressures. This 

validation approach mirrors the field data analysis conducted by Wang et al. [13], who reported similar accuracy improvements with 

mathematical modeling in deepwater wells. Notably, the model’s accuracy may decline in highly deviated wells (θ > 60°) due to complex 

flow patterns, which represents a direction for future research. 

 
Table 2: Comparison of Calculated and Observed Bottom-Hole Pressures 

Well ID Calculated Bottom-Hole Pressure (bar) Observed Bottom-Hole Pressure (bar) Error (%) 

1 28.5 29.0 1.7 

2 32.1 32.5 1.2 

3 25.8 26.0 0.8 
4 30.2 30.5 1.0 

5 27.6 28.0 1.4 

6 31.5 31.8 0.9 
7 26.3 26.5 0.7 

8 29.9 30.2 1.0 

9 28.2 28.5 1.1 
10 33.0 33.5 1.5 

11 27.4 27.6 0.7 

12 30.6 31.0 1.3 
13 26.9 27.2 1.1 

14 29.3 29.6 1.0 

15 31.2 31.5 0.9 

4.9. Limitations of the proposed method 

While the manuscript highlights reduced accuracy in highly deviated wells (θ > 60°), several additional limitations should be acknowledged 

to enhance transparency and guide future research: 

1) Non-isothermal conditions and temperature effects 

The model assumes isothermal flow at 25°C, which may not hold in deep wells or reservoirs with significant temperature gradients. Tem-

perature variations can alter fluid properties (e.g., viscosity, density, and gas solubility), affecting pressure drop calculations. For example: 

In geothermal reservoirs or deep hydrocarbon wells, temperature increases with depth (typically 25–40°C/km), causing gas expansion and 

changes in liquid viscosity. 

Non-isothermal conditions can induce phase transitions (e.g., gas condensation or vaporization), violating the model’s assumption of con-

stant mass gas content. 

Impact: Temperature-induced property changes may lead to errors in pressure drop predictions, particularly in wells with large vertical 

depths. 

Future work: Integrate temperature-dependent fluid property models (e.g., equations of state for gas-liquid mixtures) and couple heat 

transfer equations with the flow model. 

2) Extreme flow rates and turbulent regimes 

The experimental setup focused on flow rates within 0.1–1.0 m³/min (gas) and 0.5–5.0 m³/min (liquid), which may not capture extreme 

scenarios (e.g., high-productivity wells or gas kicks). Limitations include: 

At high flow rates, laminar flow assumptions (e.g., parabolic velocity distribution) break down, leading to turbulent flow with increased 

frictional losses. 

The model’s pressure drop equation (Eq. 3) neglects turbulent effects, such as Reynolds number-dependent friction factors (e.g., Colebrook-

White equation). 
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Impact: In high-velocity flows, the model may underestimate frictional pressure losses, resulting in inaccurate bottom-hole pressure esti-

mates. 

Future work: Validate the model under turbulent flow conditions and incorporate turbulence models (e.g., k-ε or RANS equations) for 

improved high-rate predictions. 

3) Reservoir heterogeneity and low-permeability environments 

The model assumes homogeneous reservoir properties, which conflicts with real-world heterogeneity (e.g., permeability variations, shale 

layers, or fault zones). Key issues include: 

In low-permeability reservoirs (e.g., shale or tight sandstone), non-Darcy flow effects (e.g., start the pressure gradient) invalidate the mo-

mentum equation’s assumptions. 

Heterogeneous permeability can cause uneven fluid distribution, altering gas-liquid ratios and spin gas content along the wellbore. 

Impact: In low-permeability or heterogeneous reservoirs, the model may mispredict flow dynamics and pressure drop, particularly in un-

conventional wells (e.g., horizontal shale gas wells). 

Future work: Incorporate permeability heterogeneity into the model using numerical methods (e.g., finite element or discrete fracture 

models) and validate with field data from low-permeability formations. 

4) Onshore vs. offshore well dynamics and topography 

The model’s horizontal pipeline assumption may not reflect onshore wells with complex topographies (e.g., hilly terrain, varying inclination 

angles) or offshore wells with subsea pipelines. Considerations include: 

Onshore wells often feature non-uniform inclinations (θ < 60°) and elevation changes, introducing additional gravitational pressure com-

ponents. 

Subsea pipelines may experience external pressure from water depth, affecting gas-liquid phase behavior. 

Impact: Inclination angles below 60° still influence gravitational pressure drop (Eq. 3), and topographical variations can accumulate errors 

in long pipelines. 

Future work: Expand the model to account for variable inclination angles and validate in onshore/offshore field cases with diverse topog-

raphies. 

5) Multiphase flow complications (e.g., water phase or solids) 

The model focuses on gas-liquid two-phase flow but neglects additional phases (e.g., water, solids) common in mature oilfields. Implica-

tions include: 

Water cut (Moisture content) can alter mixture density and viscosity, affecting pressure drop calculations. 

Solids (e.g., sand particles) introduce abrasion and change flow regimes, violating the model’s smooth flow assumptions. 

Impact: In wells with high water cut or solid production, the model’s accuracy may decline due to unaccounted phase interactions. 

Future work: Extend the model to three-phase flow (gas-liquid-water) and incorporate solid transport mechanics for comprehensive field 

applicability. 

6) Transient flow and wellbore storage effects 

The model assumes steady-state flow, which may not hold during well testing, startup, or shut-in periods. Limitations include: 

Transient flow introduces inertial forces and wellbore storage effects, violating the model’s negligible inertia assumption. 

Pressure transient analysis (e.g., during drawdown or buildup) requires dynamic models that account for time-dependent flow. 

Impact: In transient scenarios, the model may fail to capture pressure dynamics, limiting its use in well performance analysis. 

Future work: Develop a transient flow model by integrating time derivatives into the mass and momentum equations and validate with 

pressure transient test data. 

5. Conclusion 

The proposed method addresses the limitations of existing models by incorporating the coupling effect of spin gas content and mass transfer. 

This approach provides a more accurate and reliable alternative to traditional methods that rely on deep-well pressure gauges, which often 

face technical challenges and increased measurement errors with well depth. The method’s reliance on wellhead data makes it particularly 

suitable for unconventional reservoirs where downhole measurements are costly, such as shale gas fields. The model's ability to reduce 

estimation errors by 12% highlights its practical applicability in industrial settings. 

The integration of experimental data and mathematical modeling ensures the robustness and versatility of the proposed method. This study 

builds upon previous research by incorporating additional variables and refining the model to better reflect real-world conditions. The 

findings contribute to the advancement of petroleum engineering and offer practical solutions for improving extraction efficiency and 

optimizing production processes. This aligns with the findings of Lu et al. [8], who proposed a new pressure buildup analysis model for 

constant bottomhole pressure wells, emphasizing the value of theoretical innovation in reservoir management. 

The results of this research are based on laboratory experiments, theoretical studies, and industrial field observations, ensuring the robust-

ness and applicability of the proposed method in real-world scenarios. For example, Chen et al.[3] Conducted experiments simulating gas-

liquid two-phase flow in pipelines under different flow rates and pressure conditions to collect data for model validation. This approach 

not only enhances the reliability of the model but also ensures its applicability across a wide range of production conditions. 
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