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Abstract

Cyclodecane, a remarkable cyclic hydrocarbon, comprises larger molecular structures or polymers formed by interlinking multiple
cyclodecane rings. These interactions are crucial in pharmacogenomics, as the strategic design of a compound decisively influences its
interactions with gene products, including enzymes and receptors. In the dynamic field of mathematical chemistry, chemical graph theory
plays a crucial role in enhancing our understanding of the complex properties of chemical compounds. Currently, one of the most promising
areas of research involves the calculation of topological indices. Among these indices, the First K hyper-Banhatti index, Second K hyper-
Banhatti index, Modified first K-Banhatti index, and Modified second K-Banhatti index serve as important topological descriptors that
significantly contribute to our analysis of the physicochemical, biological, and structural characteristics of chemical compounds. This
article aims to determine the expected values of these topological descriptors for random cyclodecane chains, presenting our findings in
significant numerical tables and insightful graphical representations. Through this exploration, we aim to deepen our appreciation of how
these descriptors impact the fundamental properties of chemical compounds, paving the way for future discoveries in this compelling field.
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1. Introduction

Chemical graph theory constitutes an important branch of mathematical chemistry that examines the complex structures of chemical com-
pounds. It unveils a remarkable pathway to understand the fundamental physical properties of these compounds. The chemical insights
gleaned from molecular descriptors differ across various algorithms, each offering its unique perspective [1 - 3]. A pivotal technique lies
in skillfully encoding the information from these descriptors through the very architecture of the molecule itself. Visionaries such as
Alexandru Balaban, Ivan Gutman, Milan Randi¢, and Nenad Trinajsti¢ have been instrumental in shaping this dynamic field, which con-
tinues to influence new explorations and discoveries [4 - 7].

The application of topological indices, often referred to as connectivity indices, as molecular descriptors associated with the molecular
graph of chemical compounds represents a significant advancement in scientific research [8 - 11]. These indices open up a world of possi-
bilities across diverse fields, including engineering, materials science, and pharmaceutical development. By developing a range of topo-
logical indices, researchers can effectively depict the complex details of chemical structures. They stand out not just for their mathematical
elegance but also for their impact on quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship
(QSAR) studies, which delve into the relationship between the physicochemical properties and biological activities of chemical compounds.
The success of these studies hinges on a precise understanding of molecular structures and their defining parameters [12 - 14]. Topological
indices have recently emerged as a powerful tool for extracting valuable information from the molecular structures of various compounds.
While there is a wealth of degree- and distance-based topological indices available in the literature, some indices have demonstrated par-
ticularly strong correlations with important chemical properties such as boiling point, strain energy, and stability. This highlights the im-
portance of topological indices, an invaluable tool in the quest for innovation and discovery in chemistry [15 - 19].

Let G be a simple graph adorned with n vertices and m edges. We denote the vertex set as V(G) and the edge set as E(G). The degree d(v)
of a vertex v is the count of vertices that share an adjacency with v, showcasing its connectivity within the graph. An edge e that bridges
the vertices u and v is represented as uv. When we say e = uv is an edge of G, it implies that u and e are intimately linked, just as v shares
this connection with edge e. We can denote the degree of an edge e within G as d(e), defined with the formula d(e) = d(u) + d(v) — 2 for
the edge e = uv.

The K-Banhatti indices draw inspiration from the foundation of renowned degree-based indices such as the Zagreb indices and the
Randi ~ index. The K-Banhatti indices merge both degree and distance metrics, yielding a comprehensive perspective on the topology of
graphs. Their innovation aims to improve the connection between molecular structures and their physicochemical properties, offering
enhanced insights into the behavior of substances at a molecular level. The first and second K-Banhatti indices were introduced by Kulli
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[20], [21], who not only envisioned these indices but also proposed a variety of innovative degree-based topological indices that contribute
to the rich tapestry of graph theory. Denoted and defined as below

B1(G) = Yueegld(w) + d(e)]

and

B2(G) = Lueeg d(w).d(e)

where ue € G means that the vertex u and an edge e These are incidents in the graph G.

In [22 - 24], Kulli proposed various novel degree-based Tls of a graph G such as the First K hyper-Banhatti index (HB;(G)), Second K
hyper-Banhatti index (HB,(G)), Modified first K-Banhatti index ("™B;(G)), and Modified second K-Banhatti index (™B;(G)). The K-
Banhatti indices represent an important aspect of chemical graph theory, focusing on the relationship between vertex connectivity and the
overall topology of molecular structures. These indices facilitate a more comprehensive analysis in fields such as QSAR/QSPR analyses.
By examining how vertex and edge degrees interact, the K-Banhatti indices effectively categorize different molecular graphs. The modified
first K-Banhatti index enhances the original version by incorporating the inverse of the sum of vertex degrees. This adjustment highlights
the importance of edges that connect vertices of lower degree, which is particularly useful in assessing network vulnerabilities, identifying
key chemical structures, and the refinement of modeling approaches in QSAR/QSPR studies. In addition, the modified second K-Banhatti
index builds on the foundational Second K-Banhatti index, which improve its responsiveness to branching and connectivity within molec-
ular structures and also fosters a deeper understanding of molecular interactions and properties. Denoted and defined as

HB, (6) = Zueecld(u) + d(e)]? (1)
HB2(G) = Sueec[d(v). d(e)]? @
"B1 () = Sueet 3ryrae) 3
"B2(6) = Sueet w90 @

Kulli calculated the K-Banhatti indices for various chemical networks, including silicate networks, chain silicates, oxides, and honeycomb
networks [25]. Furthermore, the analyses of the first and second K-Banhatti indices, as well as the first and second K-hyper Banhatti indices
of windmill graphs [24], have also been analyzed. These indices comprise a range of computationally efficient methods specifically de-
signed for examining continuous data structures. These indices achieve a perfect balance between local and global structural features,
making them particularly effective when other indices fail to distinctly characterize molecular graphs. They have demonstrated robust
correlations with physicochemical characteristics in QSAR/QSPR studies. Additionally, they often prove more effective in differentiating
non-isomorphic graphs that share identical Wiener or Zagreb indices.

The nodes exhibiting maximum K-Banhatti index values, characterized by elevated centrality and reduced distances, are likely to signify
hub or driver genes that play significant roles in tumor progression. Unlike traditional indices focused solely on distance or degree, the
unique capability of the K-Banhatti index captures both node influence and accessibility, making it particularly relevant for complex cancer
networks. For a number of years, they have proven instrumental in various biological contexts, illuminating the complexities of horizontal
evolution, multifaceted diseases, cancer genomics, disease transmission, chromatin folding, and gene expression. In the context of a breast
cancer protein-protein interaction (PPI) network, K-Banhatti indices can illuminate central signaling proteins, such as TP53 and BRCA1,
thereby informing the development of targeted therapeutic interventions.

2. Materials and methods

Cyclodecane is a ten-carbon ring compound, classified as a cycloalkane, with the chemical formula C;oH,q. It possesses two isomers: cis-
cyclodecane and trans-cyclodecane. The two-dimensional chemical structure, referred to as the skeletal formula, is the standard represen-
tation for organic molecules. In contrast, the three-dimensional representation employs a ball-and-stick model to effectively illustrate the
positions of the atoms and the bonds between them. Both the two-dimensional and three-dimensional models of cyclodecane [26] are
displayed in Figure 1. At room temperature, cyclodecane appears as a waxy solid, a testament to its versatility. It is commonly utilized as
a solvent and significantly plays an essential role in the creation of various polymers, such as polyesters, nylon 12, and synthetic lubricating
oils.

Polymer synthesis is an inspiring field that involves the development of synthetic polymers that can emulate the incredible capacity of
DNA and RNA to store and process genetic information. These innovative molecules, known as XNAs (xenonucleic acids), provide a di-
verse range of functionalities and possess significant potential for revolutionizing biotechnology and nanotechnology. XNAs are set to
transform targeted gene therapy, drug delivery systems, and the formulation of diagnostic tools, paving the way for scientific exploration
and advancement.

Moreover, it possesses distinctive characteristics- Melting Point 10.0 °C, Boiling Point 202.0 °C, Molecular Weight 140.27 g/mol, Poten-
tial Health Risks 0.33 mg/L, Vapour Pressure 0.56 mmHg, and Water Solubility 25 °C. The structure of the cyclodecane chain highlights
significance in both chemistry and industry, inspiring further exploration and innovation.

Cyclodecane is a highly valuable saturated cyclic hydrocarbon that plays an essential role in chemistry as both a precursor for numerous
materials and a temporary binding medium. Researchers are increasingly concentrated on hydrocarbons and their derivatives due to their
fundamental structure consisting solely of carbon and hydrogen, which provides a foundation for diverse applications [27], [28]. Notably,
plants contain considerable amounts of valuable hydrocarbons, and certain properties of these compounds are vital for the production of
chemical raw materials as well as fuels. In terms of applications, cyclodecanes are indispensable as organic solvents in drug synthesis, the
petroleum industry, and the perfume manufacturing sector, in addition to being employed in the synthesis of diverse organic compounds
[29]. Moreover, they have extensive applications in areas such as motor fuels, natural gas, diesel, kerosene, and numerous heavy oils. The
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versatility and significance of cyclodecanes in these industries are essential for various industrial processes and technological advancements

[30], [31].
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(a) cis-cyclodecane and  (b) 2D cyclodecane (c) 3D cyclodecane (d) Polymer synthesis

trans-cyclodecane

Fig. 1: 2D and 3D model of cyclodecanes.

In the field of medicinal inorganic chemistry, recent advancements illustrate the substantial potential for employing metal complexes as
therapeutic agents, thereby expanding the scope of this domain. Studies have shown that larger aromatic ring systems are associated with
enhancing DNA affinity, leading to remarkable antitumor and photocleaning activities. Moreover, groove-binding molecules, composed of
a series of heterocyclic or aromatic hydrocarbon rings with rotational flexibility, are capable of fitting into the minor or major grooves of
DNA, which effectively displaces water and facilitates beneficial interactions.

Cyclic molecules, especially cyclodecane derivatives, are currently the focus of research regarding their applications as synthetic transcrip-
tion modulators and DNA-binding agents. The distinct characteristics of random cyclodecane chains allow for the simulation and screening
of'a wide range of conformations, enabling the identification of promising candidates that may significantly influence gene expression and
function. Through the meticulous analysis of various cyclodecane configurations, researchers can design molecules that may either mimic
or inhibit the activity of natural gene regulators.

Cyclodecane derivatives, along with other similar cyclic compounds, can function as ligands- small molecules that specifically bind to
proteins or gene regulatory elements. These interactions play a pivotal role in the field of pharmacogenomics, where the structural design
of a compound, such as a cyclodecane chain, directly affects its interactions with gene products, including enzymes and receptors. This
research holds substantial promise for advancing our understanding of genetic mechanisms and therapeutic applications.

When an edge is utilized to convert two or more decagons, this configuration is referred to as a cyclodecane chain. A random cyclodecane
of length k is defined as a chain composed of k decagons that are randomly connected. We denote this intriguing formation as CDCy. For
k =1, 2, figure 2 [26] presents the unique cyclodecane CDCy. In examining the connections, there are five distinct remarkable ways by
which each terminal decagon can link to the preceding cyclodecane chain CDCy_,, each associated with a specific probability
P1, P2, P3,Paand ps = 1 — p; — P2 — P3 — Pa, respectively. At each stage in this process, a random selection is made among these five
possibilities, with m Taking on the values 3,4, 5, ..., k.

1) CDCy_; » CDCL, with probability p;.

2) CDCy_; » CDCZ with probability p,.

3) CDCy_; » CDCE, with probability ps.

4) CDCy_; » CDC}E with probability p,.

5) CDCy_; —» CDC3, with probability ps = 1 — p; — p2 — P3 — P

For k > 3, the terminal decagon can be attached by local arrangements in five random ways which are described as CDCL, ,, CDCZ,,,
CDC,,, CDCE,,, and CDC;, , as shown in Figure 3 [26].
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(a) CDC,4 (b) CDC,
Fig. 2: Cyclodecane chains fork = 1 and k = 2.

(a) CDC},, (b) CDC3F ., (c) CDC} .,

(d) CDCE, (e) CDC}y,

Fig. 3: Five types of local arrangements in cyclodecane chains for k > 3.
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Consider CDCy, to be the cyclodecane chain formed from CDCy,_,, as shown in Figure 3 [26]. We represent the number of edges of CDCy
with vertex degree i and j by x;; . From the structure of CIDC,, we see that only (2,2), (2,3), and (3, 3) are the types of edges. Therefore,
we need to determine X, (CDCy), x,3(CDCy,) and x33(CDCy,) to calculate these indices. Hence, from equations (1), (2), (3), and (4), we
have

HB;(CDCy) = 16x,,(CDCy) + 25x,3(CDC;) + 49x33(CDC;) 5)
HB,(CDCy) = 16x,,(CDCy) + 36x,3(CDC;) + 144x35(CDCy) (6)
B, (CDCy) = ;%22 (CDC,) + = 23(CDCy) + 7 233(CDC,) ™
B, (CDCy) = %22 (CDC,) + =23 (CDC;) + —x33(CDC,) @®)
3. Results

Recall that CDC, is random cyclodecane chain of length k. Therefore, HB,(CDCy), HB,(CDCy), ™B;,(CDC;) and ™B,(CDC}) are the
random variables for random cyclodecane. Denote the expected values of these indices of random cyclodecane chain by Ef#B1(CDC,,) =
E[HB,(CDC,)], E#8(CDC,) = E[HB,(CDC,)], E"B1(CDC,) = E[™B;,(CDC,)], and E"B2(CDC,) = E[™B,(CDC,)], respectively.
Analyzing the expected values of topological indices in cyclodecane chains, allows researchers to investigate the properties and applications
of these molecules, as well as in developing and evaluating new chemical structures and theories. The expected value acts as a probabilistic
average that quantifies the molecular property of the chains. These also enable the researchers to predict vital properties such as bioactivity,
toxicity, and solubility.

Now, we will calculate the expected values of their indices in CDCy,.

Theorem 3.1: Let k = 2, then the expected value of the First K hyper-Banhatti index of CDCy, is

EPB1(CIDC,) = k(15p, + 245) — 30p, — 85.

Proof: For k = 2, we get EfB1(CIDC,) = 405 which is correct. Let k > 3, then there are five possibilities.

a) If CDC,_; » CDC}, then x5, (CDCL) = x55(CDCp_y) + 7, x53(CDCL) = x,3(CDCy_1) + 2 and x33(CDC}E) = x33(CDC,_y) +
2. Using these values in Eq. (5), we get

HBI((C]D)(Ci) = 16(x22(([:]D)(Ck_1) + 7) + 25(x23((C]D)(Ck_1) + 2) + 4’9(x33((CD(Ck_1) + 2)
HB,(CDCL) = HB, (CDC,_,) + 260.

b) If CDCy_; » CDCZ, then x,,(CDCZ) = x,5(CDCy_y) + 6, x53(CDCE) = x3(CDCx_y) + 4 and x33(CDCE) = x33(CDC ;) +
1. Using these values in Eq. (5), we get

HB,; (CDCZ) = 16(x2,(CDCx_q) + 6) + 25(x23(CDCp_1) + 4) + 49(x33(CDCy_y) + 1)
HB,(CDC}) = HB, (CDC_y) + 245.

¢) If CDCy_y » CDC;, then x,,(CDC}) = x55(CDCy_y) + 6, x23(CDC}) = x3(CDCy_y) + 4 and x33(CDC}) = x33(CDC ;) +
1. Using these values in Eq. (5), we get

HB, (CDC}) = 16(x2,(CDCx_q) + 6) + 25(x23(CDCp_y) + 4) + 49(x33(CDCx_y) + 1)
HB,(CDC}) = HB, (CDCy_y) + 245.

d) If CDCy_; » CDCE, then x5, (CDCE) = x5, (CDCp_y) + 6, x53(CDC}) = x,3(CDCy_1) + 4 and x33(CDCE) = x33(CDCy_y) +
1. Using these values in Eq. (5), we get

HBl((C]D)(Ci) = 16(x22((C]D)(Ck_1) + 6) + 25(XZ3(«:]D)«:]{_1) + 4) + 49(X33((C]D)(Ck_1) + 1)
HB,(CDCY) = HB, (CDCy_,) + 245.

e) IfCDCy_y » CDCR, then x5, (CDCE) = x55(CDCy_y) + 6, x53(CDC}) = x23(CDCx_y) + 4 and x33(CDC}) = x33(CDC_;) +
1. Using these values in Eq. (5), we get

HB,; (CDC}) = 16(x25(CDCx_1) + 6) + 25(x23(CDCy_1) + 4) + 49(x33(CDCy_y) + 1)
HB,(CDC}) = HB, (CDCy_y) + 245.

Thus, we have
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E'P1(CDCy) = pyHB,(CDC}) + p,HB1 (CDCE) + p3HB; (CDC}) + pyHB1 (CDCY) + (1 — py — p2 — p3 — pa)HB1 (CDC3)
= HB,(CDCy_4) + 15p; + 245.

Since E[EHB1(CDC,)] = EHB1(CIDCy), it follows that

EMBL(CDCy) = EfB1(CDCy_,) + 15p; + 245.

On solving the recurrence relation by using the initial condition E(CDC,) = 405, we get

EMBL(CDCy) — EfB1(CDC,) = (k — 2)(15p; + 245)

EHBL(CDCy) = (k — 2)(15p, + 245) + EFB1(CDC,)

EHB1(CDCy) = k(15p, + 245) — 30p, — 85.

Theorem 3.2: Let k = 2, then the expected value of the Second K hyper-Banhatti index of CDCy, is
EHB2(CIDC,,) = k(88p, + 384) — 176p, — 224.

Proof: For k = 2, we get EfB2(CIDC,) = 544 which is correct. Let k > 3, then there are five possibilities.

a) If CDC,_, » CDC}, then x5, (CDCE) = x55(CDCp_y) + 7, x53(CDCE) = x,3(CDCy_1) + 2 and x33(CDC}E) = x33(CDC,_y) +
2. Using these values in Eq. (6), we get

HBz(C]D)Ci) = 16(x22(C]D)Ck_1) + 7) + 36(x23((CD(Ck_1) + 2) + 14’4’(X33((CD(C}C_1) + 2)
HB,(CDC}) = HB,(CDCy_4) + 472.

b) If CDCy_; » CDCZ, then x,,(CDCZ) = x5, (CDCy_y) + 6, x23(CDCZ) = x23(CDCy_y) + 4 and x33(CDCZ) = x33(CDC;_4) +
1. Using these values in Eq. (6), we get

HBz((C]D)(Cﬁ) = 16(XZ2((CD(Ck_1) + 6) + 36(.X'23 ((CD(Ck_l) + 4') + 144(X33((CD(C](_1) + 1)
HB,(CDC}) = HB,(CDC_,) + 384

¢) IfCDCy_y » CDC;, then x2,(CDC}) = x,5(CDCy_y) + 6, x23(CDC}) = x3(CDCy_y) + 4 and x33(CDC}) = x33(CDC ;) +
1. Using these values in Eq. (6), we get

HB,(CDC}) = 16(x55(CDCx_1) + 6) + 36(x23(CDC—1) + 4) + 144(x33(CDCx_y) + 1)
HB,(CDC}) = HB,(CDC_,) + 384.

d) IfCDCy_, » CDCE, then x,, (CDCE) = %2, (CDCh_q) + 6, X23(CDCE) = x,3(CDCy_q) + 4
And x33(CDCE) = x35(CDCy_4) + 1. Using these values in Eq. (6), we get

HB,(CDCE) = 16(x25(CDCp_1) + 6) + 36(x23(CDCr_q) + 4) + 144(x33(CDCx_q) + 1)
HB,(CDC}) = HB,(CDC;_;) + 384.

e) IfCDCy_y » CDCR, then x,,(CDCE) = x52(CDCy_y) + 6, x53(CDC}) = x,3(CDCx_y) + 4 and x33(CDC}) = x33(CDC_;) +
1. Using these values in Eq. (6), we get

HB,(CDCR) = 16(x53(CDCx_y) + 6) + 36(x23(CDC—q) + 4) + 144(x33(CDCy_y) + 1)

HB,(CDC}) = HB,(CDC_,) + 384.

Thus, we have

E"P2(CDCy) = pyHB,(CDCL) + poHB,(CDCE) + psHB,(CDC}) + pyHBy(CDCE) + (1 — py — p; — P3 — pa) HB,(CDC})
= HB,(CDC,_;) + 88p, + 384.

Since E[EHB2(CDC,)] = EMB2(CIDC,), it follows that

EHE:(CDC,) = EHB2(CDC,_,) + 88p; + 384.
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On solving the recurrence relation by using the initial condition E(CDC,) = 544, we get
EMB(CDC,) — EfB2(CDC,) = (k — 2)(88p, + 384)

EMB(CDCy) = (k — 2)(88p, + 384) + EMB2(CDC,)

EMB(CDC,) = k(88p, + 384) — 176p, — 224.

Theorem 3.3: Let k > 2, then the expected value of the Modified first K-Banhatti index of CDCy, is

m 342 1 1 4
E 31((:]]))(:,() =k (m—mpl) _%P1 +%

Proof: For k = 2, we get E" B1(CDC,) = % which is correct. Let k = 3, then there are five possibilities.

a) If (C]D)(Ck—l - C]DCl . then X22 ((C]D)(Ci) = X322 ((C]D)(Ck—l) + 7, X23 ((C]D)(Ci) = x23((C]D)(Ck_1) + 2 and X33 ((C]D)(Ck) = x33((C]D)(Ck_1) +
2. Using these values in Eq. (7), we get

B, (CDCL) = 7 (22 (CDCpe—y) +7) + 3 (25 (CDCy) + 2) + 2 (33 (CDCy ) + 2)
m 1\ _m 341
B,(CDC}) = "B, (CDC;—y) + .

b) If CDCy_y - CDCZ, then x2,(CDCE) = x,5(CDCp_) + 6, x53(CDCE) = x,3(CDCy_y) + 4 and x33(CDCE) = x33(CDC_4) +
1. Using these values in Eq. (7), we get

1 1 1
mBl((C]D)(C;Zc) =3 (x22(CDCx_y) + 6) + E(xzs (CDCx_q) +4) + ;(x33((ClD(Ck_1) +1)
m 2\ m 342

B,(CDCZ) = ™B,(CDCy_,) + o

¢) IfCDCy_y » CDC3, then x,,(CDC}) = x52(CDCy_y) + 6, x53(CDC}) = x,3(CDCx_y) + 4 and x33(CDC}) = x33(CDC_;) +
1. Using these values in Eq. (7), we get

’"Bl(ClDJCi) = i(xzz (CDCy_q) +6) + g(x23 (CDCy-1) +4) + %(x33((C]D)(Ck_1) +1)
m 3\ _m 342
B,(CDC3}) = ™B;(CDCy_,) + o

d) If (C]D)(Ck_l - (C]D)(C4 5 then X22 ((C]D)(C;) = X2 ((C]D)(Ck_l) + 6, X23 ((CD(C%) = x23((CD(Ck_1) + 4 and X33 ((C]D)(C;t) = x33((C[D)(Ck_1) +
1. Using these values in Eq. (7), we get

By (CDCE) = 7 (22 (CDCpe—y) + 6) + £ (25 (CDCy) + 4) + 2 (33 (CDC, ) + 1)
m 4N _m 342
B, (CDC}) = "B, (CDCx—1) + .

e) If CDCy_y » CDC3, then x2,(CDCE) = x52(CDCy_y) + 6, x53(CDC}) = x23(CDCx_y) + 4 and x33(CDC}) = x33(CDC ;) +
1. Using these values in Eq. (7), we get

1 1 1
"B, (CDC) = 5 (X22(CDCh—q) + 6) + 2 (x23(CDChsg) + 4) + = (x35(CDC;_y) + 1)
m 5\ _m 342
B,(CDC}) = ™B,(CDCy_,) + .
Thus, we have

E"P1(CDCy) = p;™B1(CDC}) + p,™B;(CDCE) + p3™B; (CDC}) + pa™B, (CDCE) + (1 — py — p2 — p3 — Pa)™B1(CDC})

342 1
= "B, (CDCx_q) + 120 120 P

Since E[E"B1(CDCy)] = E"B1(CDCy), it follows that

B =g"B 421
E"P1(CDCy) = E"P(CDCx—) + 1o — T, P1-

On solving the recurrence relation by using the initial condition E(CDC,) = 132

P we get

E"P(CDC;) — E™P(EDC,) = (k —2) (22 - Lp))
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342 1

E"P(EDC) = (k — 2) (22 - Zp, ) + E"P(CDC,)
m 342 1 1 4
E 31((:]]))(:,() = k(m—mpl)—%pl +%

Theorem 3.4: Let k > 2, then the expected value of the Modified second K-Banhatti index of CDCy, is
mBz((C]D)(C ) _ 9k+1

Proof: For k = 2, we get E" B2(CDC,) = i—; which is correct. Let k = 3, then there are five possibilities.

a) If C]D)Ck 1 (C]D)(Cl . then X292 (C]D)C ) = X322 (C]D)Ck 1) + 7 X33 ((C]D)(C ) = x23((C]D)(Ck 1) + 2 and X33 ((C]D)(C ) = X33((C]D)(Ck 1) +
2. Using these values in Eq. (8), we get

"B, (CDCy) = ‘(xzz((C]D(Ck D+7)+- (xzs (CDCy—1) +2) +5 (x33 (CDCk_y) +2)

9
mB,(CDCL) = ™B,(CDCy_,) +7

b) If CDCy_; » CDCZ, then x,,(CDCZ) = x5, (CDCy_y) + 6, x23(CDCZ) = x23(CDCy_y) + 4 and x33(CDCZ) = x33(CDC;_4) +
1. Using these values in Eq. (8), we get

mBz((CD(C ) == (xzz (CDCx_1) +6) += (x23((ClD(Ck D+4)+ —(x33((ClD)(Ck D+1)
™B,(CDC}) = "B,(CDCy—y) + .

¢) IfCDCy_y » CDC3, then x,,(CDC}) = x52(CDCy_y) + 6, x53(CDC}) = x,3(CDCx_7) + 4 and x33(CDC}) = x33(CDC_;) +
1. Using these values in Eq. (8), we get

B, (CDC}) = ; (22 (CDCp_y) + 6) + = (223 (CDCpe—y) + 4) + = (33 (CDC_y) + 1)
™B,(CDC}) = ™B,(CDCy—y) + .

d) If (C]D)(Ck 1 (C]D)(C4, then sz((C]D)(C ) = sz((C]D)(Ck 1) + 6 x23((CD(C ) . x23((CD(Ck 1) + 4 and X33((C]D)(C4) = x33((C]D)(Ck 1) +
1. Using these values in Eq. (8), we get

mB,(CDC}) = (xzz((C]D)(ck 1) +6)+- (xzs (CDCy—1) +4) +5 (x33 (CDCx_y) + 1)
™B,(CDCY) = ™B,(CDCy—y) +2.

e) If CDCy_y » CDC3, then x2,(CDCE) = x52(CDCy_y) + 6, x53(CDC}) = x3(CDCx_y) + 4 and x33(CDC}) = x33(CDC ;) +
1. Using these values in Eq. (8), we get

mB,(CDC}) = ‘(xzz((C]D)(Ck 1) +6)+- (ng((C]DJ(Ck 1) +4) + (x33((CID)(Ck D+1)
™B,(CDC}) = "B, (CDCy—y) + .
Thus, we have
E"B2 (CDCy) = P1m32((C]D)(C )+ szBz((CD(Ck) + PsmBz((CD(Ck) + "B, ((C]D)(C )+ (A —p1—p—Dp3— p4)mBz((C]D)(C,5()
= MB,(CDCy_,) + %
Since E[E"B2(CDCy)] = E"2(CDCy), it follows that
E™B2(CDC,) = E™B2(CDC,,_,) + %
On solving the recurrence relation by using the initial condition E(CDC,) = Z we get
E"P2(CDC;) — E™P2(CDC,) = (k —2) ()

E"P2(CDCy) = (k — 2) (2) + E"52(CDC,)
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9k+1

E"B2(CDC,) = —

We now focus on the unique cyclodecane chains CF;, CGy, CHj, CI; and CJ,, as shown in Figure 4 [26], as a special cases by setting
(p1, P2, P2, P4) = (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1), and (0, 0, 0, 0) respectively.

(a) CFy (b) CGy. (c) CHg

(d) CI, (e) CIy
Fig. 4: Cyclodecane chains fork = 1 and k = 2.

Corollary 3.1. For k > 2, we have the following:
e EHBi(CF,) = 260k — 115.

o EHB:(CF,) = 472k — 400.

o E"B(CF,) = 3411];;10.

o E"B(CF) =22
o EHBL(CGy) = EHPL(CH,) = EMB1(Cl,) = EHP1(CJ,) = 245k — 85.

o E"B:(CGy) = EHP2(CH,) = E#B:(Cly) = E¥B2(CJ,) = 384k — 224.

« E"Bi(CGy) = E"B(CHy) = E™P1(Cl) = ™1 (Cl) = =,

o E"B:(CGy) = E"P2(CHy) = E™P2(CI) = E™P2(CJ,,) = X2

—
4. Comparisons and graphical representation

In this section, we will lay out an elucidative comparison between the expected values for the describe topological descriptors for a random
cyclodecane chains with identical probabilities. The comparison of the expected values of topological indices is crucial as it enable the
chemists and researchers to evaluate the diversity and common characteristics of the molecular structures of entire classes. This analysis
aids in comprehending the influence of structural differences and can create predictive models for QSAR/QSPR studies. By comparing the
topological indices of potential new drug-like compounds, researchers can identify hidden gems in drug discovery. Table 1, 2, 3, and 4

showcases the expected values of indices for various probability p; = 0, % , %, and 1, respectively. Itis evident that HB, is more conspicuous

than other three indices, namely the First K hyper-Banhatti index, Modified first K-Banhatti index, and Modified second K-Banhatti index.

The graphical comparisons Figure 5, 6, 7, and 8 also illustrate the expected values of four distinct topological indices
E[HB;],E[HB;], E[™B,] and E[™B,], as a function of the parameter k, corresponding to various probability values p;. In this context,
probability p, denotes the presence of an edge in the aforesaid random graph structure. The orange line (E[HB,]) in all four figures exhibits
an upward trend with increasing values of k for each probability p;. Notably, the slope becomes more sharp as p; transitions from 0 and
1, suggesting high sensitivity of the index corresponding to both the parameters k and p,. This sensitivity reveals that HB, profoundly
captures the essence of structural growth of the graph and attains greater density. In contrast, while HB; also demonstrates sensitivity, it
does so to a lesser degree, rendering it moderately effective for structural monitoring purposes. The indices ™B; and ™B,, however, exhibit
relative stability across the analyzed parameters.

Table 1: The expected values of topological indices for p; =0

k EHB1 EHB2 EmBl E’"Bz

4 895 1312 9.8285 9.25

5 1140 1696 12.2714 11.5

6 1385 2080 14.7142 13.75
7 1630 2464 17.1571 16

8 1875 2848 19.6 18.25
9 2120 3232 22.0428 20.5

10 2365 3616 24.4857 22.75
11 2610 4000 26.9285 25

12 2855 4384 29.3714 27.25

13 3100 4768 31.8142 29.5
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Table 2: The expected values of topological indices for p; = i

k EHB1 EHB2 EmBl E”Bz
4 902.5 1356 9.825 9.25
5 1151.25 1762 12.2660 11.5
6 1400 2168 14.7071 13.75
7 1648.75 2574 17.1482 16

8 1897.5 2980 19.5892 18.25
9 2146.25 3386 22.0303 20.5
10 2395 3792 24.4714 22.75
11 2643.75 4198 26.9125 25

12 2892.5 4604 29.3535 27.25
13 3141.25 5010 31.7946 29.5

Table 3: The expected values of topological indices for p; = i

k EHB1 EHB2 E’"B1 E'"Bz
4 910 1400 9.8214 9.25
5 1162.5 1828 12.2607 11.5
6 1415 2256 14.7000 13.75
7 1667.5 2684 17.1392 16

8 1920 3112 19.5785 18.25
9 2172.5 3540 22.0178 20.5
10 2425 3968 24.4571 22.75
11 2677.5 4396 26.8964 25

12 2930 4824 29.3357 27.25
13 3182.5 5252 31.7750 29.5

Table 4: The expected values of topological indices forp; =1

k EH81 EH32 EmBl EmBZ
4 925 1488 9.8142 9.25
5 1185 1960 12.2499 11.5
6 1445 2432 14.6857 13.75
7 1705 2904 17.1214 16
8 1965 3376 19.5571 18.25
9 2225 3848 21.9928 20.5
10 2485 4320 24.4285 22.75
11 2745 4792 26.8642 25
12 3005 5264 293 27.25
13 3265 5736 31.7357 29.5
5000
4000
3000 W E[HB,]
2000
W E[HB2]
1000
\ E[mB1]
0
4 5 ¢ E[mB2]
T8 9 g
1 1 13
k

Fig. 5: Plot of expected values of topological indices for p; = 0.

6000
5000 NE[HB]

4000
3000 ‘// mEH8]
2000 E[mB1]
1000

0 E[mB2)

Fig. 6: Plot of expected values of topological indices for p; = %.
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6000
5000
4000
3000
2000
1000

Fig. 7: Plot of expected values of topological indices for p, = z
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>

6000
5000
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1000
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T 910
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Fig. 8: Plot of expected values of topological indices for p; = 1.

Theorem 4.1: If'k > 2, then

E[HB,(CDC,)] > E[HB, (CDC})].

Proof: Since EfB2(CIDC,) = 544 and EHB1(CDC,) = 405, it is true for k = 2.
Now, let us solve it for k > 2; by using Theorems 3.1 and 3.2, we have

E[HB,(CDC,)] > E[HB,(CDCy)]

= (k(88p, + 384) — 176p, — 224) — (k(15p, + 245)

—30p, — 85)

= k(88p, + 384 — 15p, — 245) — 176p, — 224 + 30p, + 85

= k(73p; + 139) — 146p, — 139

= (k —2)(73p; +139) + 139

>0
Theorem 4.2: If'k = 2, then
E[HB,(CDC,)] > E[™B,(CDC,)].

Proof: Since E#B1(CDC,) = 405 and E"B1(CDC,) = %

ask>2and0<p; <1.

, it is true for k = 2.

Now, let us solve it for k > 2; by using Theorems 3.1 and 3.3, we have

E[HB,(CDCy)] > E[™B;(CDCy)]

= (k(15p, + 245) — 30p, — 85) — (k221

1
w0 TpoPrt

_ _ G820\ g0, _ge_ 1, _ 4

=k (15p, + 245 - Z2)) _30p, —g5—Lp 2
2101 33958 2101 5954

= k(G )~ G-

70

56008
140

- (k _ 2) (2101p1+33958) +

140

>0

4

)

ask>2and0<p; <1.
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Theorem 4.3: If'k > 2, then

E[™B,(CDCy)] > E[™B,(CDCy)].

Proof: Since E"B1(CDC,) = % and E"B2(CDC,) = i—;, it is true for k = 2.

Now, let us solve it for k > 2; by using Theorems 3.3 and 3.4, we have

E[™B1(CDCy)] > E[™B,(CDCy)]

— (1, B%2py) | 1 i) _ Ok+1)
- (k w0 TPt 4
= k(S5 = ) tm ey
— 27‘p1) i _27

=k ( 20 ) T70P1 T 10

== (T3)+ 55

>0 ask>2and0<p; <1.

5. Conclusion

The K-Banhatti index family provides enhanced versatility in simulating various molecular properties. The expected value functions as a
powerful statistical tool for delineating the intricate behaviors of a random cyclodecane chain, empowering chemists and researchers to
compare the probabilistic characteristics of these molecular structures. In this paper, we focus on deriving explicit formulas for the expected
values of the First K hyper-Banhatti index, Second K hyper-Banhatti index, Modified first K-Banhatti index, and Modified second K-
Banhatti index in random cyclodecane chain. Furthermore, we present compelling analytic proofs of these indices for comparison, both
numerically and graphically, with respect to these random chain. The numerical tables and graphical lineaments solidify that the HB, is
continuously more prominent than the other three indices, especially the First K hyper-Banhatti index, Modified first K-Banhatti index,
and Modified second K-Banhatti index , i.e., /B2 > EHB1 > E™B1 > E™Bz Additionally, the ™B, index is shown to be independent of
probability for random cyclodecane chain. The HB, index stands out as a highly promising, accurate, and dependable tool, offering con-
sistent and enhanced insights for predicting the chemical and physical properties of molecular structures. Its significance extends far beyond
mere analysis; the HB, index is essential for fields like materials science, drug design, and pharmaceutical sciences, empowering research-
ers to thoroughly understand the behavior of entire classes of molecules. This makes it an invaluable asset in the quest for innovative
solutions and breakthroughs. For our future endeavors, we can leverage the same technique to determine the anticipated values of diverse
topological indices for other random chemical graphs.
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