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Abstract 
 

Cyclodecane, a remarkable cyclic hydrocarbon, comprises larger molecular structures or polymers formed by interlinking multiple 

cyclodecane rings. These interactions are crucial in pharmacogenomics, as the strategic design of a compound decisively influences its 

interactions with gene products, including enzymes and receptors. In the dynamic field of mathematical chemistry, chemical graph theory 

plays a crucial role in enhancing our understanding of the complex properties of chemical compounds. Currently, one of the most promising 

areas of research involves the calculation of topological indices. Among these indices, the First K hyper-Banhatti index, Second K hyper-

Banhatti index, Modified first K-Banhatti index, and Modified second K-Banhatti index serve as important topological descriptors that 

significantly contribute to our analysis of the physicochemical, biological, and structural characteristics of chemical compounds. This 

article aims to determine the expected values of these topological descriptors for random cyclodecane chains, presenting our findings in 

significant numerical tables and insightful graphical representations. Through this exploration, we aim to deepen our appreciation of how 

these descriptors impact the fundamental properties of chemical compounds, paving the way for future discoveries in this compelling field. 
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1. Introduction 

Chemical graph theory constitutes an important branch of mathematical chemistry that examines the complex structures of chemical com-

pounds. It unveils a remarkable pathway to understand the fundamental physical properties of these compounds. The chemical insights 

gleaned from molecular descriptors differ across various algorithms, each offering its unique perspective [1 - 3]. A pivotal technique lies 

in skillfully encoding the information from these descriptors through the very architecture of the molecule itself. Visionaries such as 

Alexandru Balaban, Iv́an Gutman, Milan Randić, and Nenad Trinajstić have been instrumental in shaping this dynamic field, which con-

tinues to influence new explorations and discoveries [4 - 7].  

 The application of topological indices, often referred to as connectivity indices, as molecular descriptors associated with the molecular 

graph of chemical compounds represents a significant advancement in scientific research [8 - 11]. These indices open up a world of possi-

bilities across diverse fields, including engineering, materials science, and pharmaceutical development. By developing a range of topo-

logical indices, researchers can effectively depict the complex details of chemical structures. They stand out not just for their mathematical 

elegance but also for their impact on quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship 

(QSAR) studies, which delve into the relationship between the physicochemical properties and biological activities of chemical compounds. 

The success of these studies hinges on a precise understanding of molecular structures and their defining parameters [12 - 14]. Topological 

indices have recently emerged as a powerful tool for extracting valuable information from the molecular structures of various compounds. 

While there is a wealth of degree- and distance-based topological indices available in the literature, some indices have demonstrated par-

ticularly strong correlations with important chemical properties such as boiling point, strain energy, and stability. This highlights the im-

portance of topological indices, an invaluable tool in the quest for innovation and discovery in chemistry [15 - 19]. 

Let G be a simple graph adorned with n vertices and m edges. We denote the vertex set as V(G) and the edge set as E(G). The degree d(v) 

of a vertex v is the count of vertices that share an adjacency with v, showcasing its connectivity within the graph. An edge e that bridges 

the vertices u and v is represented as uv. When we say e = uv is an edge of G, it implies that u and e are intimately linked, just as v shares 

this connection with edge e. We can denote the degree of an edge e within G as d(e), defined with the formula d(e) = d(u) + d(v) − 2 for 

the edge e = uv.  

The K-Banhatti indices draw inspiration from the foundation of renowned degree-based indices such as the Zagreb indices and the 

Randi ́ index. The K-Banhatti indices merge both degree and distance metrics, yielding a comprehensive perspective on the topology of 

graphs. Their innovation aims to improve the connection between molecular structures and their physicochemical properties, offering 

enhanced insights into the behavior of substances at a molecular level. The first and second K-Banhatti indices were introduced by Kulli 
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[20], [21], who not only envisioned these indices but also proposed a variety of innovative degree-based topological indices that contribute 

to the rich tapestry of graph theory. Denoted and defined as below 

 

 B1(G) = ∑ [d(u) + d(e)]ue∈G   

 

and 

 

 B2(G) = ∑ d(u). d(e)ue∈G   

 

where ue ∈ G means that the vertex u and an edge e These are incidents in the graph G. 
In [22 - 24], Kulli proposed various novel degree-based TIs of a graph G such as the First K hyper-Banhatti index (HB1(G)), Second K 

hyper-Banhatti index (HB2(G)), Modified first K-Banhatti index ( B1(G)) 
m , and Modified second K-Banhatti index ( B2(G)) 

m . The K-

Banhatti indices represent an important aspect of chemical graph theory, focusing on the relationship between vertex connectivity and the 

overall topology of molecular structures. These indices facilitate a more comprehensive analysis in fields such as QSAR/QSPR analyses. 

By examining how vertex and edge degrees interact, the K-Banhatti indices effectively categorize different molecular graphs. The modified 

first K-Banhatti index enhances the original version by incorporating the inverse of the sum of vertex degrees. This adjustment highlights 

the importance of edges that connect vertices of lower degree, which is particularly useful in assessing network vulnerabilities, identifying 

key chemical structures, and the refinement of modeling approaches in QSAR/QSPR studies. In addition, the modified second K-Banhatti 

index builds on the foundational Second K-Banhatti index, which improve its responsiveness to branching and connectivity within molec-

ular structures and also fosters a deeper understanding of molecular interactions and properties. Denoted and defined as  

 

 HB1(G) = ∑ [d(u) + d(e)]2
ue∈G                                                                                                                                                                   (1) 

 

HB2(G) = ∑ [d(u). d(e)]2
ue∈G                                                                                                                                                                       (2) 

 

B1 
m (G) = ∑

1

d(u)+d(e)ue∈G                                                                                                                                                                              (3) 

 

 B2 
m (G) = ∑

1

d(u).d(e)ue∈G                                                                                                                                                                              (4) 

 

Kulli calculated the K-Banhatti indices for various chemical networks, including silicate networks, chain silicates, oxides, and honeycomb 

networks [25]. Furthermore, the analyses of the first and second K-Banhatti indices, as well as the first and second K-hyper Banhatti indices 

of windmill graphs [24], have also been analyzed. These indices comprise a range of computationally efficient methods specifically de-

signed for examining continuous data structures. These indices achieve a perfect balance between local and global structural features, 

making them particularly effective when other indices fail to distinctly characterize molecular graphs. They have demonstrated robust 

correlations with physicochemical characteristics in QSAR/QSPR studies. Additionally, they often prove more effective in differentiating 

non-isomorphic graphs that share identical Wiener or Zagreb indices.  

 The nodes exhibiting maximum K-Banhatti index values, characterized by elevated centrality and reduced distances, are likely to signify 

hub or driver genes that play significant roles in tumor progression. Unlike traditional indices focused solely on distance or degree, the 

unique capability of the K-Banhatti index captures both node influence and accessibility, making it particularly relevant for complex cancer 

networks. For a number of years, they have proven instrumental in various biological contexts, illuminating the complexities of horizontal 

evolution, multifaceted diseases, cancer genomics, disease transmission, chromatin folding, and gene expression. In the context of a breast 

cancer protein-protein interaction (PPI) network, K-Banhatti indices can illuminate central signaling proteins, such as TP53 and BRCA1, 

thereby informing the development of targeted therapeutic interventions.  

2. Materials and methods 

Cyclodecane is a ten-carbon ring compound, classified as a cycloalkane, with the chemical formula C10H20. It possesses two isomers: cis-

cyclodecane and trans-cyclodecane. The two-dimensional chemical structure, referred to as the skeletal formula, is the standard represen-

tation for organic molecules. In contrast, the three-dimensional representation employs a ball-and-stick model to effectively illustrate the 

positions of the atoms and the bonds between them. Both the two-dimensional and three-dimensional models of cyclodecane [26] are 

displayed in Figure 1. At room temperature, cyclodecane appears as a waxy solid, a testament to its versatility. It is commonly utilized as 

a solvent and significantly plays an essential role in the creation of various polymers, such as polyesters, nylon 12, and synthetic lubricating 

oils. 

Polymer synthesis is an inspiring field that involves the development of synthetic polymers that can emulate the incredible capacity of 

DNA and RNA to store and process genetic information. These innovative molecules, known as XNAs (xenonucleic acids), provide a di-

verse range of functionalities and possess significant potential for revolutionizing biotechnology and nanotechnology. XNAs are set to 

transform targeted gene therapy, drug delivery systems, and the formulation of diagnostic tools, paving the way for scientific exploration 

and advancement. 

Moreover, it possesses distinctive characteristics- Melting Point 10.0 ℃, Boiling Point 202.0 ℃, Molecular Weight 140.27 g/mol, Poten-

tial Health Risks 0.33 mg/L, Vapour Pressure 0.56 mmHg, and Water Solubility 25 ℃. The structure of the cyclodecane chain highlights 

significance in both chemistry and industry, inspiring further exploration and innovation. 

Cyclodecane is a highly valuable saturated cyclic hydrocarbon that plays an essential role in chemistry as both a precursor for numerous 

materials and a temporary binding medium. Researchers are increasingly concentrated on hydrocarbons and their derivatives due to their 

fundamental structure consisting solely of carbon and hydrogen, which provides a foundation for diverse applications [27], [28]. Notably, 

plants contain considerable amounts of valuable hydrocarbons, and certain properties of these compounds are vital for the production of 

chemical raw materials as well as fuels. In terms of applications, cyclodecanes are indispensable as organic solvents in drug synthesis, the 

petroleum industry, and the perfume manufacturing sector, in addition to being employed in the synthesis of diverse organic compounds 

[29]. Moreover, they have extensive applications in areas such as motor fuels, natural gas, diesel, kerosene, and numerous heavy oils. The 
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versatility and significance of cyclodecanes in these industries are essential for various industrial processes and technological advancements 

[30], [31]. 

 

 
Fig. 1: 2D and 3D model of cyclodecanes. 

 

In the field of medicinal inorganic chemistry, recent advancements illustrate the substantial potential for employing metal complexes as 

therapeutic agents, thereby expanding the scope of this domain. Studies have shown that larger aromatic ring systems are associated with 

enhancing DNA affinity, leading to remarkable antitumor and photocleaning activities. Moreover, groove-binding molecules, composed of 

a series of heterocyclic or aromatic hydrocarbon rings with rotational flexibility, are capable of fitting into the minor or major grooves of 

DNA, which effectively displaces water and facilitates beneficial interactions.  

Cyclic molecules, especially cyclodecane derivatives, are currently the focus of research regarding their applications as synthetic transcrip-

tion modulators and DNA-binding agents. The distinct characteristics of random cyclodecane chains allow for the simulation and screening 

of a wide range of conformations, enabling the identification of promising candidates that may significantly influence gene expression and 

function. Through the meticulous analysis of various cyclodecane configurations, researchers can design molecules that may either mimic 

or inhibit the activity of natural gene regulators. 

Cyclodecane derivatives, along with other similar cyclic compounds, can function as ligands- small molecules that specifically bind to 

proteins or gene regulatory elements. These interactions play a pivotal role in the field of pharmacogenomics, where the structural design 

of a compound, such as a cyclodecane chain, directly affects its interactions with gene products, including enzymes and receptors. This 

research holds substantial promise for advancing our understanding of genetic mechanisms and therapeutic applications. 

When an edge is utilized to convert two or more decagons, this configuration is referred to as a cyclodecane chain. A random cyclodecane 

of length k is defined as a chain composed of k decagons that are randomly connected. We denote this intriguing formation as ℂ𝔻ℂk. For 

k = 1, 2, figure 2 [26] presents the unique cyclodecane ℂ𝔻ℂk. In examining the connections, there are five distinct remarkable ways by 

which each terminal decagon can link to the preceding cyclodecane chain ℂ𝔻ℂk−1 , each associated with a specific probability 

p1, p2, p3, p4, and p5 = 1 − p1 − p2 − p3 − p4, respectively. At each stage in this process, a random selection is made among these five 

possibilities, with m Taking on the values 3, 4, 5, … , k. 

1) ℂ𝔻ℂm−1 →  ℂ𝔻ℂm
1  with probability p1. 

2) ℂ𝔻ℂm−1 →  ℂ𝔻ℂm
2  with probability p2. 

3) ℂ𝔻ℂm−1 →  ℂ𝔻ℂm
3  with probability p3. 

4) ℂ𝔻ℂm−1 →  ℂ𝔻ℂm
4  with probability p4. 

5) ℂ𝔻ℂm−1 →  ℂ𝔻ℂm
5  with probability p5 = 1 − p1 − p2 − p3 − p4. 

For k ≥ 3, the terminal decagon can be attached by local arrangements in five random ways which are described as ℂ𝔻ℂk+1
1 , ℂ𝔻ℂk+1

2 , 

ℂ𝔻ℂk+1
3 , ℂ𝔻ℂk+1

4 , and ℂ𝔻ℂk+1
5  as shown in Figure 3 [26]. 

 

 
Fig. 2: Cyclodecane chains for k = 1 and k = 2. 

 

 
 

Fig. 3: Five types of local arrangements in cyclodecane chains for 𝑘 ≥ 3. 



364 International Journal of Basic and Applied Sciences 

 
Consider ℂ𝔻ℂ𝑘 to be the cyclodecane chain formed from ℂ𝔻ℂ𝑘−1, as shown in Figure 3 [26]. We represent the number of edges of ℂ𝔻ℂ𝑘 

with vertex degree 𝑖 and 𝑗 by 𝑥𝑖𝑗  . From the structure of ℂ𝔻ℂ𝑘, we see that only (2, 2), (2, 3), and (3, 3) are the types of edges. Therefore, 

we need to determine 𝑥22(ℂ𝔻ℂ𝑘), 𝑥23(ℂ𝔻ℂ𝑘) and 𝑥33(ℂ𝔻ℂ𝑘) to calculate these indices. Hence, from equations (1), (2), (3), and (4), we 

have 

 

 𝐻𝐵1(ℂ𝔻ℂ𝑘) = 16𝑥22(ℂ𝔻ℂ𝑘) + 25𝑥23(ℂ𝔻ℂ𝑘) + 49𝑥33(ℂ𝔻ℂ𝑘)                                                                                                             (5) 

 

 𝐻𝐵2(ℂ𝔻ℂ𝑘) = 16𝑥22(ℂ𝔻ℂ𝑘) + 36𝑥23(ℂ𝔻ℂ𝑘) + 144𝑥33(ℂ𝔻ℂ𝑘)                                                                                                           (6) 

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘) =

1

4
𝑥22(ℂ𝔻ℂ𝑘) +

1

5
𝑥23(ℂ𝔻ℂ𝑘) +

1

7
𝑥33(ℂ𝔻ℂ𝑘)                                                                                                                     (7) 

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘) =

1

4
𝑥22(ℂ𝔻ℂ𝑘) +

1

6
𝑥23(ℂ𝔻ℂ𝑘) +

1

12
𝑥33(ℂ𝔻ℂ𝑘)                                                                                                                   (8) 

3. Results 

Recall that ℂ𝔻ℂ𝑘 is random cyclodecane chain of length 𝑘. Therefore, 𝐻𝐵1(ℂ𝔻ℂ𝑘), 𝐻𝐵2(ℂ𝔻ℂ𝑘), 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘) and 𝐵2 

𝑚 (ℂ𝔻ℂ𝑘) are the 

random variables for random cyclodecane. Denote the expected values of these indices of random cyclodecane chain by 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) =

𝐸[𝐻𝐵1(ℂ𝔻ℂ𝑘)], 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) = 𝐸[𝐻𝐵2(ℂ𝔻ℂ𝑘)], 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) = 𝐸[ 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘)], and 𝐸 𝐵2 

𝑚
(ℂ𝔻ℂ𝑘) = 𝐸[ 𝐵2 

𝑚 (ℂ𝔻ℂ𝑘)], respectively. 

Analyzing the expected values of topological indices in cyclodecane chains, allows researchers to investigate the properties and applications 

of these molecules, as well as in developing and evaluating new chemical structures and theories. The expected value acts as a probabilistic 

average that quantifies the molecular property of the chains. These also enable the researchers to predict vital properties such as bioactivity, 

toxicity, and solubility.  

Now, we will calculate the expected values of their indices in ℂ𝔻ℂ𝑘.  

 

Theorem 3.1: Let 𝑘 ≥ 2, then the expected value of the First K hyper-Banhatti index of ℂ𝔻ℂ𝑘 is  

 

 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) = 𝑘(15𝑝1 + 245) − 30𝑝1 − 85. 
 

Proof: For 𝑘 = 2, we get 𝐸𝐻𝐵1(ℂ𝔻ℂ2) = 405 which is correct. Let 𝑘 ≥ 3, then there are five possibilities.  

 

a) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
1 , then 𝑥22(ℂ𝔻ℂ𝑘

1 ) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 7, 𝑥23(ℂ𝔻ℂ𝑘
1 ) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 2 and 𝑥33(ℂ𝔻ℂ𝑘

1 ) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
2. Using these values in Eq. (5), we get  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
1 ) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 7) + 25(𝑥23(ℂ𝔻ℂ𝑘−1) + 2) + 49(𝑥33(ℂ𝔻ℂ𝑘−1) + 2)  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
1 ) = 𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 260.  

 

b) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
2 , then 𝑥22(ℂ𝔻ℂ𝑘

2) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
2) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

2) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (5), we get  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
2) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 25(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 49(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
2) = 𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 245.  

 

c) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
3 , then 𝑥22(ℂ𝔻ℂ𝑘

3) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
3) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

3) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (5), we get  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
3) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 25(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 49(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
3) = 𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 245.  

 

d) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
4 , then 𝑥22(ℂ𝔻ℂ𝑘

4) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
4) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

4) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
1. Using these values in Eq. (5), we get  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
4) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 25(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 49(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
4) = 𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 245.  

 

e) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
5 , then 𝑥22(ℂ𝔻ℂ𝑘

5) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
5) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

5) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (5), we get  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
5) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 25(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 49(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵1(ℂ𝔻ℂ𝑘
5) = 𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 245.  

 

Thus, we have  
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 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) = 𝑝1𝐻𝐵1(ℂ𝔻ℂ𝑘

1 ) + 𝑝2𝐻𝐵1(ℂ𝔻ℂ𝑘
2) + 𝑝3𝐻𝐵1(ℂ𝔻ℂ𝑘

3) + 𝑝4𝐻𝐵1(ℂ𝔻ℂ𝑘
4) + (1 − 𝑝1 − 𝑝2 − 𝑝3 − 𝑝4)𝐻𝐵1(ℂ𝔻ℂ𝑘

5)  

 

 = 𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 15𝑝1 + 245.  
 

Since 𝐸[𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘)] = 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘), it follows that 

 

 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) = 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘−1) + 15𝑝1 + 245.  
 

On solving the recurrence relation by using the initial condition 𝐸(ℂ𝔻ℂ2) = 405, we get  

 

 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) − 𝐸𝐻𝐵1(ℂ𝔻ℂ2) = (𝑘 − 2)(15𝑝1 + 245)  

 

 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) = (𝑘 − 2)(15𝑝1 + 245) + 𝐸𝐻𝐵1(ℂ𝔻ℂ2)  

 

 𝐸𝐻𝐵1(ℂ𝔻ℂ𝑘) = 𝑘(15𝑝1 + 245) − 30𝑝1 − 85.  
 

Theorem 3.2: Let 𝑘 ≥ 2, then the expected value of the Second K hyper-Banhatti index of ℂ𝔻ℂ𝑘 is  

 

 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) = 𝑘(88𝑝1 + 384) − 176𝑝1 − 224.  
 

Proof: For 𝑘 = 2, we get 𝐸𝐻𝐵2(ℂ𝔻ℂ2) = 544 which is correct. Let 𝑘 ≥ 3, then there are five possibilities.  

 

a) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
1 , then 𝑥22(ℂ𝔻ℂ𝑘

1 ) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 7, 𝑥23(ℂ𝔻ℂ𝑘
1 ) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 2 and 𝑥33(ℂ𝔻ℂ𝑘

1 ) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
2. Using these values in Eq. (6), we get  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
1 ) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 7) + 36(𝑥23(ℂ𝔻ℂ𝑘−1) + 2) + 144(𝑥33(ℂ𝔻ℂ𝑘−1) + 2) 

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
1 ) = 𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 472. 

 

b) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
2 , then 𝑥22(ℂ𝔻ℂ𝑘

2) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
2) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

2) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (6), we get  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
2) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 36(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 144(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
2) = 𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 384.  

 

c) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
3 , then 𝑥22(ℂ𝔻ℂ𝑘

3) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
3) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

3) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (6), we get  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
3) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 36(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 144(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
3) = 𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 384.  

 

d) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
4 , then 𝑥22(ℂ𝔻ℂ𝑘

4) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
4) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 

 

And 𝑥33(ℂ𝔻ℂ𝑘
4) = 𝑥33(ℂ𝔻ℂ𝑘−1) + 1. Using these values in Eq. (6), we get  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
4) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 36(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 144(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
4) = 𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 384.  

 

e) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
5 , then 𝑥22(ℂ𝔻ℂ𝑘

5) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
5) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

5) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (6), we get  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
5) = 16(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) + 36(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) + 144(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐻𝐵2(ℂ𝔻ℂ𝑘
5) = 𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 384.  

 

Thus, we have  

 

 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) = 𝑝1𝐻𝐵2(ℂ𝔻ℂ𝑘
1 ) + 𝑝2𝐻𝐵2(ℂ𝔻ℂ𝑘

2) + 𝑝3𝐻𝐵2(ℂ𝔻ℂ𝑘
3) + 𝑝4𝐻𝐵2(ℂ𝔻ℂ𝑘

4) + (1 − 𝑝1 − 𝑝2 − 𝑝3 − 𝑝4)𝐻𝐵2(ℂ𝔻ℂ𝑘
5)  

 

 = 𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 88𝑝1 + 384.  
 

Since 𝐸[𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘)] = 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘), it follows that 

 

 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) = 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘−1) + 88𝑝1 + 384.  
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On solving the recurrence relation by using the initial condition 𝐸(ℂ𝔻ℂ2) = 544, we get  

 

 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) − 𝐸𝐻𝐵2(ℂ𝔻ℂ2) = (𝑘 − 2)(88𝑝1 + 384)  

 

 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) = (𝑘 − 2)(88𝑝1 + 384) + 𝐸𝐻𝐵2(ℂ𝔻ℂ2)  

 

 𝐸𝐻𝐵2(ℂ𝔻ℂ𝑘) = 𝑘(88𝑝1 + 384) − 176𝑝1 − 224.  
 

Theorem 3.3: Let 𝑘 ≥ 2, then the expected value of the Modified first K-Banhatti index of ℂ𝔻ℂ𝑘 is  

 

 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) = 𝑘 (
342

140
−

1

140
𝑝1) −

1

70
𝑝1 +

4

70
.  

 

Proof: For 𝑘 = 2, we get 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ2) =
173

35
 which is correct. Let 𝑘 ≥ 3, then there are five possibilities.  

 

a) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
1 , then 𝑥22(ℂ𝔻ℂ𝑘

1 ) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 7, 𝑥23(ℂ𝔻ℂ𝑘
1 ) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 2 and 𝑥33(ℂ𝔻ℂ𝑘

1 ) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
2. Using these values in Eq. (7), we get  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

1 ) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 7) +

1

5
(𝑥23(ℂ𝔻ℂ𝑘−1) + 2) +

1

7
(𝑥33(ℂ𝔻ℂ𝑘−1) + 2)  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

1 ) = 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘−1) +

341

140
.  

 

b) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
2 , then 𝑥22(ℂ𝔻ℂ𝑘

2) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
2) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

2) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (7), we get  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

2) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

5
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

7
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

2) = 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘−1) +

342

140
.  

 

c) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
3 , then 𝑥22(ℂ𝔻ℂ𝑘

3) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
3) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

3) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (7), we get  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

3) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

5
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

7
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

3) = 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘−1) +

342

140
.  

 

d) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
4 , then 𝑥22(ℂ𝔻ℂ𝑘

4) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
4) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

4) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
1. Using these values in Eq. (7), we get  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

4) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

5
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

7
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

4) = 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘−1) +

342

140
.  

 

e) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
5 , then 𝑥22(ℂ𝔻ℂ𝑘

5) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
5) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

5) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (7), we get  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

5) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

5
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

7
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

5) = 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘−1) +

342

140
.  

 

Thus, we have  

 

 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) = 𝑝1 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

1 ) + 𝑝2 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

2) + 𝑝3 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

3) + 𝑝4 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

4) + (1 − 𝑝1 − 𝑝2 − 𝑝3 − 𝑝4) 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘

5)  

 

 = 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘−1) +

342

140
−

1

140
𝑝1.  

 

Since 𝐸[𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘)] = 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘), it follows that 

 

 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) = 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘−1) +
342

140
−

1

140
𝑝1.  

 

On solving the recurrence relation by using the initial condition 𝐸(ℂ𝔻ℂ2) =
173

35
, we get  

 

 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) − 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ2) = (𝑘 − 2) (
342

140
−

1

140
𝑝1)  
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 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) = (𝑘 − 2) (
342

140
−

1

140
𝑝1) + 𝐸 𝐵1 

𝑚
(ℂ𝔻ℂ2)  

 

 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ𝑘) = 𝑘 (
342

140
−

1

140
𝑝1) −

1

70
𝑝1 +

4

70
.  

 

Theorem 3.4: Let 𝑘 ≥ 2, then the expected value of the Modified second K-Banhatti index of ℂ𝔻ℂ𝑘 is  

 

 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘) =
9𝑘+1

4
.  

 

Proof: For 𝑘 = 2, we get 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ2) =
57

12
 which is correct. Let 𝑘 ≥ 3, then there are five possibilities. 

 

a) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
1 , then 𝑥22(ℂ𝔻ℂ𝑘

1 ) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 7, 𝑥23(ℂ𝔻ℂ𝑘
1 ) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 2 and 𝑥33(ℂ𝔻ℂ𝑘

1 ) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
2. Using these values in Eq. (8), we get  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

1 ) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 7) +

1

6
(𝑥23(ℂ𝔻ℂ𝑘−1) + 2) +

1

12
(𝑥33(ℂ𝔻ℂ𝑘−1) + 2)  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

1 ) = 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘−1) +

9

4
. 

 

b) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
2 , then 𝑥22(ℂ𝔻ℂ𝑘

2) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
2) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

2) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (8), we get  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

2) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

6
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

12
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

2) = 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘−1) +

9

4
.  

 

c) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
3 , then 𝑥22(ℂ𝔻ℂ𝑘

3) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
3) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

3) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (8), we get  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

3) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

6
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

12
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

3) = 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘−1) +

9

4
.  

 

d) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
4 , then 𝑥22(ℂ𝔻ℂ𝑘

4) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
4) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

4) = 𝑥33(ℂ𝔻ℂ𝑘−1) +
1. Using these values in Eq. (8), we get  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

4) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

6
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

12
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

4) = 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘−1) +

9

4
.  

 

e) If ℂ𝔻ℂ𝑘−1 →  ℂ𝔻ℂ𝑘
5 , then 𝑥22(ℂ𝔻ℂ𝑘

5) = 𝑥22(ℂ𝔻ℂ𝑘−1) + 6, 𝑥23(ℂ𝔻ℂ𝑘
5) = 𝑥23(ℂ𝔻ℂ𝑘−1) + 4 and 𝑥33(ℂ𝔻ℂ𝑘

5) = 𝑥33(ℂ𝔻ℂ𝑘−1) +

1. Using these values in Eq. (8), we get  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

5) =
1

4
(𝑥22(ℂ𝔻ℂ𝑘−1) + 6) +

1

6
(𝑥23(ℂ𝔻ℂ𝑘−1) + 4) +

1

12
(𝑥33(ℂ𝔻ℂ𝑘−1) + 1)  

 

𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

5) = 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘−1) +

9

4
.  

 

Thus, we have  

 

 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘) = 𝑝1 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

1 ) + 𝑝2 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

2) + 𝑝3 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

3) + 𝑝4 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

4) + (1 − 𝑝1 − 𝑝2 − 𝑝3 − 𝑝4) 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘

5)  

 

 = 𝐵2 
𝑚 (ℂ𝔻ℂ𝑘−1) +

9

4
.  

 

Since 𝐸[𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘)] = 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘), it follows that 

 

 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘) = 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘−1) +
9

4
.  

 

On solving the recurrence relation by using the initial condition 𝐸(ℂ𝔻ℂ2) =
57

12
, we get  

 

 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘) − 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ2) = (𝑘 − 2) (
9

4
)  

 

 𝐸 𝐵2 
𝑚

(ℂ𝔻ℂ𝑘) = (𝑘 − 2) (
9

4
) + 𝐸 𝐵2 

𝑚
(ℂ𝔻ℂ2)  
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 𝐸 𝐵2 

𝑚
(ℂ𝔻ℂ𝑘) =

9𝑘+1

4
.  

 

We now focus on the unique cyclodecane chains ℂ𝔽𝑘, ℂ𝔾𝑘, ℂℍ𝑘, ℂ𝕀𝑘 and ℂ𝕁𝑘 as shown in Figure 4 [26], as a special cases by setting 
(𝑝1, 𝑝2, 𝑝3, 𝑝4) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (0, 0, 0, 0) respectively. 

 

 
Fig. 4: Cyclodecane chains for 𝑘 = 1 and 𝑘 = 2. 

 

Corollary 3.1. For 𝑘 ≥ 2, we have the following: 

 

• 𝐸𝐻𝐵1(ℂ𝔽𝑘) = 260𝑘 − 115. 
 

• 𝐸𝐻𝐵2(ℂ𝔽𝑘) = 472𝑘 − 400. 
 

• 𝐸 𝐵1 
𝑚

(ℂ𝔽𝑘) =
341𝑘+10

140
. 

 

• 𝐸 𝐵2 
𝑚

(ℂ𝔽𝑘) =
9𝑘+1

4
. 

 

• 𝐸𝐻𝐵1(ℂ𝔾𝑘) = 𝐸𝐻𝐵1(ℂℍ𝑘) = 𝐸𝐻𝐵1(ℂ𝕀𝑘) = 𝐸𝐻𝐵1(ℂ𝕁𝑘) = 245𝑘 − 85. 
 

• 𝐸𝐻𝐵2(ℂ𝔾𝑘) = 𝐸𝐻𝐵2(ℂℍ𝑘) = 𝐸𝐻𝐵2(ℂ𝕀𝑘) = 𝐸𝐻𝐵2(ℂ𝕁𝑘) = 384𝑘 − 224. 
 

• 𝐸 𝐵1 
𝑚

(ℂ𝔾𝑘) = 𝐸 𝐵1 
𝑚

(ℂℍ𝑘) = 𝐸 𝐵1 
𝑚

(ℂ𝕀𝑘) = 𝐸 𝐵1 
𝑚

(ℂ𝕁𝑘) =
171𝑘+4

70
. 

 

• 𝐸 𝐵2 
𝑚

(ℂ𝔾𝑘) = 𝐸 𝐵2 
𝑚

(ℂℍ𝑘) = 𝐸 𝐵2 
𝑚

(ℂ𝕀𝑘) = 𝐸 𝐵2 
𝑚

(ℂ𝕁𝑘) =
9𝑘+1

4
. 

4. Comparisons and graphical representation 

In this section, we will lay out an elucidative comparison between the expected values for the describe topological descriptors for a random 

cyclodecane chains with identical probabilities. The comparison of the expected values of topological indices is crucial as it enable the 

chemists and researchers to evaluate the diversity and common characteristics of the molecular structures of entire classes. This analysis 

aids in comprehending the influence of structural differences and can create predictive models for QSAR/QSPR studies. By comparing the 

topological indices of potential new drug-like compounds, researchers can identify hidden gems in drug discovery. Table 1, 2, 3, and 4 

showcases the expected values of indices for various probability 𝑝1 = 0,
1

4
,

1

2
, and 1, respectively. It is evident that 𝐻𝐵2 is more conspicuous 

than other three indices, namely the First K hyper-Banhatti index, Modified first K-Banhatti index, and Modified second K-Banhatti index.  

 The graphical comparisons Figure 5, 6, 7, and 8 also illustrate the expected values of four distinct topological indices 

𝐸[𝐻𝐵1], 𝐸[𝐻𝐵2], 𝐸[ 𝐵1] 
𝑚  and 𝐸[ 𝐵2] 

𝑚 , as a function of the parameter 𝑘, corresponding to various probability values 𝑝1. In this context, 

probability 𝑝1 denotes the presence of an edge in the aforesaid random graph structure. The orange line (𝐸[𝐻𝐵2]) in all four figures exhibits 

an upward trend with increasing values of 𝑘 for each probability 𝑝1. Notably, the slope becomes more sharp as 𝑝1 transitions from 0 and 

1, suggesting high sensitivity of the index corresponding to both the parameters 𝑘 and 𝑝1. This sensitivity reveals that 𝐻𝐵2 profoundly 

captures the essence of structural growth of the graph and attains greater density. In contrast, while 𝐻𝐵1 also demonstrates sensitivity, it 

does so to a lesser degree, rendering it moderately effective for structural monitoring purposes. The indices 𝐵1 
𝑚  and 𝐵2 

𝑚 , however, exhibit 

relative stability across the analyzed parameters. 

 
Table 1: The expected values of topological indices for 𝑝1 = 0 

k  𝐸𝐻𝐵1  𝐸𝐻𝐵2 𝐸 𝐵1 
𝑚

 𝐸 𝐵2 
𝑚

 

4 895  1312 9.8285  9.25 

5 

6 
7 

8 

9 
10 

11 

12 
13 

1140 

1385 
1630 

1875 

2120 
2365 

2610 

2855 
3100 

1696 

2080 
2464 

2848 

3232 
3616 

4000 

4384 
4768 

12.2714 

14.7142 
 17.1571 

 19.6 

 22.0428 
 24.4857 

26.9285 

29.3714 
31.8142 

 11.5 

 13.75 
 16 

 18.25 

 20.5 
 22.75 

25 

 27.25 
 29.5 
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Table 2: The expected values of topological indices for 𝑝1 =

1

4
 

k  𝐸𝐻𝐵1  𝐸𝐻𝐵2 𝐸 𝐵1 
𝑚

 𝐸 𝐵2 
𝑚

 

4  902.5  1356  9.825  9.25 

5 

6 
7 

8 

9 
10 

11 

12 
13 

 1151.25 

1400 
 1648.75 

 1897.5 

 2146.25 
2395 

 2643.75 

2892.5 
3141.25 

1762 

2168 
2574 

2980 

3386 
3792 

4198 

4604 
5010 

12.2660 

14.7071 
 17.1482 

 19.5892 

 22.0303 
 24.4714 

26.9125 

29.3535 
31.7946 

 11.5 

 13.75 
 16 

 18.25 

 20.5 
 22.75 

25 

 27.25 
 29.5 

 

Table 3: The expected values of topological indices for 𝑝1 =
1

2
 

k  𝐸𝐻𝐵1  𝐸𝐻𝐵2 𝐸 𝐵1 
𝑚

 𝐸 𝐵2 
𝑚

 

4 910  1400 9.8214  9.25 

5 
6 

7 

8 
9 

10 

11 
12 

13 

 1162.5 
1415 

 1667.5 

1920 
 2172.5 

2425 

 2677.5 
2930 

3182.5 

1828 
2256 

2684 

 3112 
3540 

3968 

4396 
4824 

5252 

12.2607 
14.7000 

 17.1392 

 19.5785 
 22.0178 

 24.4571 

26.8964 
29.3357 

31.7750 

 11.5 
 13.75 

 16 

 18.25 
 20.5 

 22.75 

25 
 27.25 

 29.5 

 
Table 4: The expected values of topological indices for 𝑝1 = 1 

k  𝐸𝐻𝐵1  𝐸𝐻𝐵2 𝐸 𝐵1 
𝑚

 𝐸 𝐵2 
𝑚

 

4 925  1488 9.8142  9.25 
5 

6 

7 
8 

9 

10 
11 

12 
13 

1185 

1445 

1705 
1965 

2225 

2485 
2745 

3005 
3265 

1960 

2432 

2904 
3376 

3848 

4320 
4792 

5264 
5736 

12.2499 

14.6857 

 17.1214 
 19.5571 

 21.9928 

 24.4285 
26.8642 

29.3 
31.7357 

 11.5 

 13.75 

 16 
 18.25 

 20.5 

 22.75 
25 

 27.25 
 29.5 

 

 
Fig. 5: Plot of expected values of topological indices for 𝑝1 = 0. 

 

 
Fig. 6: Plot of expected values of topological indices for 𝑝1 =

1

4
. 
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Fig. 7: Plot of expected values of topological indices for 𝑝1 =

1

2
. 

 

 
Fig. 8: Plot of expected values of topological indices for 𝑝1 = 1. 

 

Theorem 4.1: If 𝑘 ≥ 2, then  

 

𝐸[𝐻𝐵2(ℂ𝔻ℂ𝑘)] > 𝐸[𝐻𝐵1(ℂ𝔻ℂ𝑘)].  
 

Proof: Since 𝐸𝐻𝐵2(ℂ𝔻ℂ2) = 544 and 𝐸𝐻𝐵1(ℂ𝔻ℂ2) = 405, it is true for 𝑘 = 2.  

Now, let us solve it for 𝑘 > 2; by using Theorems 3.1 and 3.2, we have  

 

 𝐸[𝐻𝐵2(ℂ𝔻ℂ𝑘)] > 𝐸[𝐻𝐵1(ℂ𝔻ℂ𝑘)]  
 

 = (𝑘(88𝑝1 + 384) − 176𝑝1 − 224) − (𝑘(15𝑝1 + 245) − 30𝑝1 − 85)  

 

 = 𝑘(88𝑝1 + 384 − 15𝑝1 − 245) − 176𝑝1 − 224 + 30𝑝1 + 85  

 

 = 𝑘(73𝑝1 + 139) − 146𝑝1 − 139  

 

 = (𝑘 − 2)(73𝑝1 + 139) + 139  

 

 > 0                                                    as 𝑘 > 2 and 0 ≤ 𝑝1 ≤ 1. 

 

Theorem 4.2: If 𝑘 ≥ 2, then  

 

𝐸[𝐻𝐵1(ℂ𝔻ℂ𝑘)] > 𝐸[ 𝐵 
𝑚

1(ℂ𝔻ℂ𝑘)].  
 

Proof: Since 𝐸𝐻𝐵1(ℂ𝔻ℂ2) = 405 and 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ2) =
173

35
 , it is true for 𝑘 = 2.  

Now, let us solve it for 𝑘 > 2; by using Theorems 3.1 and 3.3, we have  

 

 𝐸[𝐻𝐵1(ℂ𝔻ℂ𝑘)] > 𝐸[ 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘)]  

 

 = (𝑘(15𝑝1 + 245) − 30𝑝1 − 85) − (𝑘
(342−𝑝1)

140
+

1

70
𝑝1 +

4

70
)  

 

 = 𝑘 (15𝑝1 + 245 −
(342−𝑝1)

140
) − 30𝑝1 − 85 −

1

70
𝑝1 −

4

70
  

 

 = 𝑘 (
2101

140
𝑝1 +

33958

140
) −

2101

70
𝑝1 −

5954

70
  

 

 = (𝑘 − 2) (
2101𝑝1+33958

140
) +

56008

140
  

 

 > 0                                                        as 𝑘 > 2 and 0 ≤ 𝑝1 ≤ 1. 
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Theorem 4.3: If 𝑘 ≥ 2, then 

 

𝐸[ 𝐵 
𝑚

1(ℂ𝔻ℂ𝑘)] > 𝐸[ 𝐵 
𝑚

2(ℂ𝔻ℂ𝑘)].  
 

Proof: Since 𝐸 𝐵1 
𝑚

(ℂ𝔻ℂ2) =
173

35
 and 𝐸 𝐵2 

𝑚
(ℂ𝔻ℂ2) =

57

12
, it is true for 𝑘 = 2.  

Now, let us solve it for 𝑘 > 2; by using Theorems 3.3 and 3.4, we have  

 

 𝐸[ 𝐵1 
𝑚 (ℂ𝔻ℂ𝑘)] > 𝐸[ 𝐵2 

𝑚 (ℂ𝔻ℂ𝑘)]  
 

 = (𝑘
(342−𝑝1)

140
+

1

70
𝑝1 +

4

70
) −

(9𝑘+1)

4
  

 

 = 𝑘 (
(342−𝑝1)

140
−

9

4
) +

1

70
𝑝1 +

4

70
−

1

4
  

 

 = 𝑘 (
27−𝑝1

140
) +

1

70
𝑝1 −

27

140
  

 

 = (𝑘 − 2) (
27−𝑝1

140
) +

27

140
  

 

 > 0                                        as 𝑘 > 2 and 0 ≤ 𝑝1 ≤ 1. 

5. Conclusion 

The K-Banhatti index family provides enhanced versatility in simulating various molecular properties. The expected value functions as a 

powerful statistical tool for delineating the intricate behaviors of a random cyclodecane chain, empowering chemists and researchers to 

compare the probabilistic characteristics of these molecular structures. In this paper, we focus on deriving explicit formulas for the expected 

values of the First K hyper-Banhatti index, Second K hyper-Banhatti index, Modified first K-Banhatti index, and Modified second K-

Banhatti index in random cyclodecane chain. Furthermore, we present compelling analytic proofs of these indices for comparison, both 

numerically and graphically, with respect to these random chain. The numerical tables and graphical lineaments solidify that the 𝐻𝐵2 is 

continuously more prominent than the other three indices, especially the First K hyper-Banhatti index, Modified first K-Banhatti index, 

and Modified second K-Banhatti index , i.e., 𝐸𝐻𝐵2 > 𝐸𝐻𝐵1 > 𝐸 𝐵1 
𝑚

> 𝐸 𝐵2 
𝑚

. Additionally, the 𝐵2 
𝑚  index is shown to be independent of 

probability for random cyclodecane chain. The 𝐻𝐵2 index stands out as a highly promising, accurate, and dependable tool, offering con-

sistent and enhanced insights for predicting the chemical and physical properties of molecular structures. Its significance extends far beyond 

mere analysis; the 𝐻𝐵2 index is essential for fields like materials science, drug design, and pharmaceutical sciences, empowering research-

ers to thoroughly understand the behavior of entire classes of molecules. This makes it an invaluable asset in the quest for innovative 

solutions and breakthroughs. For our future endeavors, we can leverage the same technique to determine the anticipated values of diverse 

topological indices for other random chemical graphs.  
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