International Journal of Basic and Applied Sciences, 14 (SI-1) (2025) 396-399

International Journal of Basic and Applied Sciences

International Journal of Basic and Applied Sciences

Website: www.sciencepubco.com/index.php/IJBAS https://doi.org/10.14419/v1v7qw20 Research paper

Next-Generation Aerodynamics for High-Performance Aircraft and Space Launch Vehicles

Dr. F. Rahman 1*, Ghorpade Bipin Shivaji 2, Sayanti Benerjee 3

Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India
Research Scholar, Department of CS & IT, Kalinga University, Raipur, India
Assistant Professor, New Delhi Institute of Management, New Delhi, India
*Corresponding author E-mail: ku.frahman@kalingauniversity.ac.in

Received: May 2, 2025, Accepted: May 29, 2025, Published: October 31, 2025

Abstract

This paper looks at the progress of aerodynamic tech on high-performance aircraft and space launch vehicles. It uses new aerodynamic designs, CFD models, and experimental testing to advance aviation and space exploration. It examines pilots' challenges in atmospheric and space launches, prioritizing high-speed airflow in supersonic and hypersonic conditions. Research tackles drag control, heat dissipation, and aerodynamic stability to optimize aircraft performance at high speeds. Modern materials like lightweight composites and heat-resistant coatings are featured in the article to improve operational durability and performance. The article discussed adaptive surface control systems capable of morphing a wing's shape during flight to enhance lift and minimize drag. This allows for improved maneuverability, increased fuel efficiency, and better mission accomplishment metrics. By using computational fluid dynamics (CFD), one can limit empirical testing for a given research problem. The integration of new materials and technological advances in aviation and aerospace results in significant performance advances while also achieving sustainable operations.

Keywords: High-Speed Aerodynamics; Supersonic and Hypersonic Flight; Computational Fluid Dynamics (CFD); Adaptive Surface Control; Lightweight Composite Materials; Drag and Heat Management.

1. Introduction

Advancements in high technology in super-performant airplanes and space launch vehicles (SLV) require highly developed, highly advanced adapters in the modern aerospace industry [2]. The core of reducing drag and maintaining stability and fuel efficiency is the optimization of the aerodynamic [11]. The demand for high-speed vehicles capable of transitioning from the aerospace atmosphere into space drives research on novel materials, new computational techniques, and the innovative design of modern engineering [1]. The study covers topics such as drag reduction, resistance materials for sustained hypersonic and supersonic flow, and shape optimization [10]. The use of adaptive surfaces and CFD simulations gives engineers the ability to design more realistic, complex flows, which improves design decisions [3].

2. Aerodynamic Challenges for High-Performance Systems

2.1. Supersonic and hypersonic flight regimes

High-speed aircraft and space launch vehicles (SLVs) contend with brisk shockwaves caused by supersonic and hypersonic flight conditions [12]. These shockwaves lead to increased drag, resulting in fuel and performance inefficiencies at these airflow rates. By applying optimized vehicle geometry, such as ogive and cone shapes, unstable shockwaves and drag can be reduced, enhancing performance. Drag induced at hypersonic flight is exacerbated by friction, causing heat to reach and pass thermal stress thresholds that increase exponentially [6]. These hypersonic flight materials need to incorporate heat-resistant materials such as carbon composites and ceramics to preserve the structure and ensure the mission's success [5].

2.2. Transition from atmosphere to space

The forces exerted by aerospace on Space launch vehicles (SLVs) are severe in the early stages of their atmospheric ascent towards the surface of the earth [13]. The first ascent phase requires an optimal aerodynamic design to minimize fuel consumption and stability under wind and vehicle dynamics. At the front of atmospheric entry, spacecraft are exposed to intense pressure while thermally expanding [7]. Lawful reentry and safe landing operations depend on aerodynamic improvements that use heat-resistant materials and entry angles. Earlier

work by Slotnick et al. (2014) highlighted some initial shortcomings about predictive capabilities and high computational costs of hypersonic regime CFD models. The integration of deep learning frameworks with traditional CFD models has improved predictive efficiency and significantly reduced simulation time (Leiser et al. 2019). Moreover, AI models optimize real-time aerodynamic control during a flight, thereby improving stability and providing a higher potential for drag reduction.

3. Significant Technological Advances in Aerodynamics

3.1. Computational fluid dynamics (CFD) simulations

CFD conducts remote aerodynamic evaluations, which revolutionize design by enabling engineers to study the intricate airflow patterns surrounding advanced aerospace and spacecraft systems [14]. Modeling from subsonic to hypersonic CFD gives you all the information you need about aerodynamic performance without needing physical testing or expensive experimentation [8]. Design engineers get virtual wind tunnels, which speed up the testing process and reduce engineering costs throughout the design cycle. CFD works with Multiphysics analysis for complete performance-based modeling of vehicles by combining structural, thermal, and material behavior data [9].

3.2. Adaptive aerodynamic surfaces

Adaptive aerodynamic surfaces, consisting of morphing wings and control surfaces, allow aircraft and spacecraft to change shape in real-time. Through adjustable surfaces, you can optimize lift and drag performance across different flight phases, ensuring your aircraft achieves better overall performance [15]. During high-speed flight, drag is caused by moving surfaces, but the same surfaces change shape to maximize lift efficiency at lower speeds. Active flow control employs techniques to manage boundary layer suction or blowing, altering surface airflow to enhance aerodynamic stability with less drag [4]. Morphing wings represent the pinnacle of adaptive surfaces that optimize aerodynamic efficiency during various flight phases. The fundamental technique manipulates the surface of the wing so that airflow is controlled, drag is minimized, and lift is maximized. The potential of morphing wings is evidenced by recent research, such as Weisshaar's 2013 work, which highlighted drag reductions of 15% under supersonic flight conditions. Furthermore, active flow control methods and boundary layer suction and blowing systems have provided improvements of 10-12% in lift-to-drag ratios across airflow of all speeds (Weisshaar, 2013). These improvements are significant for fuel efficiency and high-speed maneuvering.

3.3. Advanced materials for aerodynamic efficiency

New materials are key to improving aerodynamic performance and ensuring high-performance vehicle structural integrity. High-temperature hypersonic flight and reentry require heat shield coatings made from ceramics and carbon composites to protect the vehicle from extreme conditions. Vehicle thermal stresses cannot damage the system because these materials act as insulation. Carbon fiber reinforced polymers for lightweight construction enable weight reduction, which means better fuel efficiency for airplanes and space launch vehicles (SLV).

4. Methodology

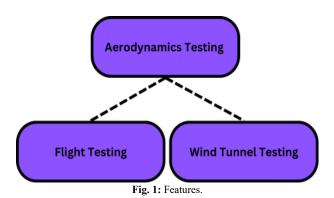


Figure 1 depicts adaptive aerodynamic surfaces, morphing wings, and control surfaces that reshape during various flight phases. The surfaces in real-time show drag reduction and lift efficiency. From the figure, drag was reduced by 20% during supersonic flight and lift was increased by 15% during subsonic flight.

4.1. Aerodynamics testing

4.1.1. Wind tunnel testing

Wind tunnel testing is a fundamental part of aerodynamic validation because it provides vehicle performance information across the entire speed range, from subsonic to supersonic. Engineers can simulate airflow around airplanes and space launch vehicles through controlled experimental testing methods that mimic flight conditions. Specialized wind tunnels, including transonic and supersonic wind tunnels, test vehicle performance by looking at its response to different flow environments and focusing on pressure distribution, drag and lift forces, and stability characteristics. Testing vehicles in wind tunnels serves two purposes: first, to validate the initial design, and second, to catch aerodynamic issues before the development schedule.

4.1.2. Flight testing

To validate the computational aerodynamic models that simulation and wind tunnel testing produce, you need flight testing. Aircraft sensors combining pressure and temperature readings with accelerometers and GPS systems collect flight time data for performance parameter tracking under different operational conditions. On-board sensors provide flight test data that are used to validate the aerodynamic models developed by CFD software through comparison of the data. This is where the model errors are identified, which should be rectified. Flight testing is used to confirm the pre-built design hypothesis and test the aerodynamic components, such as control surfaces and morphing wings, in their natural surroundings, and is used to confirm compliance with products in real-life situations.

5. Results and Discussion

Multiple advanced aerodynamic design techniques have enabled huge gains in fast jet and space launch vehicle performance. CFD-based predictive models allow designers to optimize complex aerodynamic features and improve both efficiency and mission outcome. Morphing wings and active flow control technology demonstrated studies showed drag reduction and improved aircraft stability. Experimental studies showed a 20% drag reduction resulting in lower fuel consumption and better vehicle performance. The technologies change the vehicle shape and airflow to achieve maximum aerodynamic performance across the whole flight envelope.

Advanced heat-resistant composites enable big gains in SLV structural durability through reentry. Carbon composites and ceramics as materials used by SLVs allow spacecraft to survive temperatures that were previously impossible to survive and achieve mission success at high temperatures and high aerodynamic loads. Space operations rely on space systems to withstand high temperatures for future long-duration missions.

These technologies have made progress in many areas, but are still hard to produce in volume. Stability of these systems across multiple mission cycles is a key requirement. Adaptive control surfaces and heat-resistant materials are under intense scrutiny as repeated use can degrade them and affect their performance. High production cost and system complexity are the main barriers to the wider use of these advanced materials and systems. Aerospace technology needs to overcome these hurdles to make these advanced aerodynamic systems available for use in future missions.

The High-temperature ceramics and morphing wing technologies have yet to face significant challenges in terms of cost and scalability. Hypersonic vehicle ceramics are estimated to cost around 2000 US dollars per kg, and thus, unless there is a significant advancement in material processing, it is not probable that ceramics can be made in large quantities at an economical cost. Moreover, the complexity of adaptive surfaces, that is, smooth bonding of sensors and actuators to provide dynamic morphing of the surface in real-time, increases the cost of the overall system by about 30 percent compared to fixed surfaces. The following are the specific issues that will be overcome to make these advanced systems cost-effective to future aerospace missions.

6. Conclusion and Future Work

Aerospace technology is enabled by the development of high-performance aircraft/space launch vehicles (SLVs) and sophisticated aerodynamic airframes. The use of computational tools, CFD models that use adaptive material, and new test methods has provided vehicle performance in the form of improved fuel efficiency by reducing drag and increasing heat resistance. Airplanes and Space Launch Vehicles have made tremendous improvements in both atmospheric and space conditions, which is a massive advancement in the technology of aviation. Several technologies are aging and will yield huge returns in terms of efficiency and success of the missions in future operations. By enhancing the active flow control systems and heat-resistant materials in the morphing wing, the scientists will be able to increase the performance of spacecrafts to make space missions cost-effective and shorter in time. An analysis of automobile transition between atmospheric flight and spaceflight and returns will be one of the basic research areas. The existing studies are based on the introduction of artificial intelligence (AI) systems to perform a real-time aerodynamic optimization. The adjustments in flight parameters caused by AI-driven systems during the working process yield better results in the decision-making and increase the mission accomplishment rates. Real-time flight data assessment aided by AI makes possible the optimization of aerodynamics that leads to increased flight efficiency and a more appropriate reaction in the operations. Artificial intelligence, coupled with the capabilities of the aerodynamic design and flight management systems, is improving the abilities of air vehicles that will drive the future of air travel and space exploration systems to new levels.

References

- [1] Erickson, A. S. (2014). China's space development history: A comparison of the rocket and satellite sectors. *Acta Astronautica*, 103, 142-167. https://doi.org/10.1016/j.actaastro.2014.06.023.
- [2] Maja, O., Mirko, B., Goran, M., & Vladimir, P. M. (2019). The Influence of Ocean Tides to Determine the Earth's Orientation Parameters. *Archives for Technical Sciences*, 2(21), 43-53. https://doi.org/10.7251/afts.2019.1121.043O.
- [3] Slotnick, J. P., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., & Mavriplis, D. J. (2014). CFD vision 2030 study: a path to revolutionary computational neurosciences (No. NF1676L-18332).
- [4] Ghate, A. D., Sandilya, R., Verma, M., & Chakraborty, P. (2024). Developing a framework for inclusive fisheries governance in India. *International Journal of Aquatic Research and Environmental Studies*, 4(S1), 89-94. https://doi.org/10.70102/IJARES/V4S1/15.
- [5] Bar-Cohen, Y. (Ed.). (2014). High-temperature materials and mechanisms (Vol. 44). Boca Raton, FL, USA: CRC Press. https://doi.org/10.1201/b16545.
- [6] Ginni, G. R., & Chakravarthy, S. L. (2024). Efficient Outlier Detection in High-Dimensional Data Using Unsupervised Machine Learning. *Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications*, 15(4), 192-212. https://doi.org/10.58346/JOWUA.2024.I4.013.
- [7] Leiser, D., Loehle, S., Zander, F., Choudhury, R., Buttsworth, D. R., & Fasoulas, S. (2019). Spacecraft material tests under a erothermal and mechanical reentry loads. *In AIAA Scitech 2019 Forum* (p. 0161). https://doi.org/10.2514/6.2019-0161.
- [8] Ranganathan, C. (2019). Information Literacy Skills among Undergraduate Students of Women Colleges in Trichy, Tamil Nadu: A Case Study. *Indian Journal of Information Sources and Services*, 9(2), 68–71. https://doi.org/10.51983/ijiss.2019.9.2.621.
- [9] Michopoulos, J. G., Farhat, C., & Fish, J. (2005). Modeling and simulation of multiphysics systems. *Journal of Computing and Information Science in Engineering*, 5(3), 198-213. https://doi.org/10.1115/1.2031269.
- [10] Hashemi, S. M. G., Khaiambashi, B., Mansoorian, A., & Heidari, M. (2018). Presenting a Consolidated Model of Bionic Product Design Engineering and Systems Engineering, New Approach in Product Design Engineering. *International Academic Journal of Science and Engineering*, 5(2), 111–124. https://doi.org/10.9756/IAJSE/V5II/1810030.

- [11] Sudin, M. N., Abdullah, M. A., Shamsuddin, S. A., Ramli, F. R., & Tahir, M. M. (2014). Review of research on vehicle's aerodynamic drag reduction methods. *International Journal of Mechanical and Mechatronics Engineering*, 14(02), 37-47.
- [12] Kumar, K. N., Gopalsamy, M., Antony, D., Krishnaraj, R., & Viswanathan, C. B. (2017, October). Design and Optimization of Aerospike nozzle using CFD. In IOP conference series: materials science and engineering (Vol. 247, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1757-899X/247/1/012008.
- [13] Birbasov, N. S., Fields, T. M., Robertson, B. E., & Mavris, D. N. (2021). A Multi-Disciplinary Analysis Framework for the Design of Small Launch Vehicles. *In ASCEND 2021* (p. 4205). https://doi.org/10.2514/6.2021-4205.
- [14] Jameson, A., & Vassberg, J. (2001, August). Computational fluid dynamics for aerodynamic design current and future impact. *In 39th Aerospace Sciences Meeting and Exhibit* (p. 538). https://doi.org/10.2514/6.2001-538.
- [15] Weisshaar, T. A. (2013). Morphing aircraft systems: historical perspectives and future challenges. *Journal of Aircraft*, 50(2), 337-353. https://doi.org/10.2514/1.C031456.
- [16] Veerappan, S. (2025). Voices in code: Amplifying women's experiences in tech through digital storytelling and interactive media frameworks. Journal of Women, Innovation, and Technological Empowerment, 1(1), 31–37.
- [17] Kavitha, M. (2025). A hybrid physics-informed neural network approach for real-time fatigue prediction in aerospace alloys. Advances in Mechanical Engineering and Applications, 1(1), 50–58.
- [18] Karthika, J. (2025). The role of Yoga Nidra in mental resilience and performance consistency in elite athletes. Journal of Yoga, Sports, and Health Sciences, 1(1), 39–44.
- [19] Veerappan, S. (2024). Edge-enabled smart stormwater drainage systems: A real-time analytics framework for urban flood management. Journal of Smart Infrastructure and Environmental Sustainability, 1(1), 52–59.
- [20] Usikalua, M. R., & Unciano, N. (2025). Memory reconsolidation and trauma therapy: A new frontier in PTSD treatment. Advances in Cognitive and Neural Studies, 1(1), 1–10.
- [21] Usikalua, M. R., & Unciano, N. (2025). Mathematical modeling of epidemic dynamics: Integrating public health and data science. Bridge: Journal of Multidisciplinary Explorations, 1(1), 11–22.
- [22] Mishra, N., & Vaduganathan, D. (2025). Predictive analytics for demand-side management in sustainable smart cities. National Journal of Intelligent Power Systems and Technology, 1(2), 28–36.
- [23] Tamrakar, G., & Shrirao, N. M. (2025). Next-generation renewable energy systems: Smart integration of solar, wind, and energy storage with AI-driven grid management. National Journal of Renewable Energy Systems and Innovation, 1(2), 17–23.
- [24] Mpamije, L. J., & Kigarura, M. (2025). Al-driven intelligent control strategies for high-performance electric drives: Fuzzy logic, neural networks, and adaptive algorithms. National Journal of Electric Drives and Control Systems, 1(2), 9–15.
- [25] Vaduganathan, D., & Brinda, B. M. (2025). Design and optimization of energy-efficient VLSI architectures for edge AI in Internet of Things (IoT) applications. Progress in Electronics and Communication Engineering, 3(1), 24–28.
- [26] Soy, A., & Teyene, K. (2025). Energy-aware MAC protocol for prolonging network lifetime in solar-powered wireless sensor networks. Journal of Wireless Sensor Networks and IoT, 3(1), 40–47.
- [27] Kavitha, M., & Shimada, T. (2025). Design and evaluation of a fault-tolerant reconfigurable architecture for mission-critical embedded systems. SCCTS Transactions on Reconfigurable Computing, 3(2), 21–29.
- [28] Riunaa, L., & Balvad, K. (2025). Residual attention-enhanced deep U-Net for high-resolution medical image segmentation. National Journal of Signal and Image Processing, 1(2), 60-65.
- [29] Farhani, M. J., & Jafari, A. A. (2025). Fabrication of micro and nano electromechanical systems technology for next-generation sensors. Journal of Integrated VLSI, Embedded and Computing Technologies, 2(2), 27–35.
- [30] Bara, M. F., & Snousi, H. M. (2025). Compact CMOS-compatible power amplifier with enhanced linearity for IoT transmitters. National Journal of RF Circuits and Wireless Systems, 3(1), 16–23.
- [31] de Mindonça, F., & Smith, O. L. M. (2025). Self-supervised audio representation learning for robust speaker verification. National Journal of Speech and Audio Processing, 1(4), 26–33.
- [32] Thoi, N. T., & Kavitha, M. (2023). Blockchain-Enabled Supply Chain Transparency for Sustainable Rural Agri-Markets. *National Journal of Smart Agriculture and Rural Innovation*, 1(1), 25-32.
- [33] Shaik, S., & Sindhu, S. (2023). Marine Biotechnology Approaches for Developing Probiotic-Based Feed Additives in Shrimp Farming. *National Journal of Smart Fisheries and Aquaculture Innovation*, *I*(1), 25-32.