International Journal of Basic and Applied Sciences, 14 (SI-1) (2025) 68-71

International Journal of Basic and Applied Sciences

Intentional Parasal of Basic and Applied Sciences

Website: www.sciencepubco.com/index.php/IJBAS https://doi.org/10.14419/7q0ymw40 Research paper

Metamaterials and Their Role in Enhancing Wireless Communication Technologies

Deepak Minhas ¹*, Shubhi Goyal ², Dr. Shashikant Patil ³, Dr. Biswaranjan Swain ⁴, Dr. V. Balamurugan ⁵, Ranganathaswamy Madihalli Kenchappa ⁶, Preetjot Singh ⁷

Received: May 2, 2025, Accepted: May 31, 2025, Published: July 7 2025

Abstract

In contemporary Wireless Communication (WC) methods, a Slot Antenna (SA) is extensively utilized for multifunctional purposes. SAs often function in a wideband capacity. This antenna type exhibited constraints in lower gain due to its broad operation. This research introduces an SA engineered at operational frequencies ranging from 1.9 GHz to 6.7 GHz, along with an analysis of improvements in performance in SA utilizing Metamaterials (MM) to augment SA quality. MMs can enhance the efficacy of SA by augmenting gain values, diminishing side-lobbing stages, and improving reflection factors (S11). The configuration and architecture positioned at the SAs for comparison with the result are ascertained. They all function as reflectors for reflecting radiation, enhancing the mean gain across all working frequencies from 3.52 to 7.44 dBi for the construction and 7.53 dBi for the wire medium. Both the modeling and the experiment yielded excellent outcomes. The suggested meta materials exhibited improved gain and diminished sidelobe levels.

Keywords: Metamaterials; Wireless Communication; Antenna; Transmission; Frequency; Slot Antenna.

1. Introduction

Current Wireless Communication (WC) breakthroughs have resulted in its extensive utilization and swift expansion, requiring optimization to support future developments [2]. The Internet of Things (IoT) [1], Wireless Local Area Networks (WLAN) [11], Sub-6GHz, and Long-Term Evaluation (LTE) [3] depend on higher frequencies and variable frequency bandwidth to improve data transfer. It is imperative to persist in enhancing and advancing to meet customer needs, mainly by augmenting WC effectiveness. The Slot Antennae (SA) [12] is the principal SA type for applications owing to its slim profile, affordability, lightweight design, and ease of manufacture: the omnidirectional radiating structure and resonant characteristics of the SA lead to superfluous power dissipation and diminished effectiveness. The SA layout must achieve outstanding effectiveness inside the Coplanar Waveguides (CPW)-based configuration with slots. The results identified an operational capacity determined by the total size of the stubs, the CPW-based SA configuration, and the ease of impedance matching and bandwidth conduction.

Metamaterials (MM) [5], referred to as synthetic materials due to their absence of natural qualities, consist of assemblages of many elements derived from composites and repetitive pattern substances, which can be optimized by directly altering the dimensions of the substance. As a result, this structure rendered electrical permeability and magnetism negative. The structure of the MM can manipulate the radiation pattern, diminish sidelobe levels, and enhance gain. Antenna design considers MMs as reflecting surfaces, members, and absorbents. This research proposes using MMs in metal holes and wire media constructions to enhance the effectiveness of SAs.

The metal hole architecture and wire media configuration can create an SA characterized by a low profile, diminished side lobbing stages, and enhanced higher efficiency with reflective properties. These components enhance efficiency and increase the reflection coefficient (S11) [13]. The radiation distribution of the SA has transitioned from omnidirectional to unilateral, enabling the framework to operate as a reflection and improving the impedance matching of the SAs. An electromagnetic (EM) modeling program determined that the mean gain of one SA is approximately 3.52 dBi across all operational frequency bands, with the maximum gain reaching about 7.44 dBi for SAs

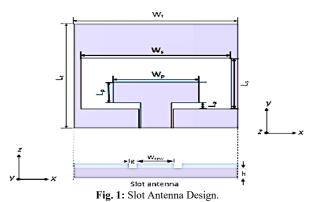
featuring a framework and 7.52 dBi for SAs utilizing a wired media framework. Accordingly, these two configurations enhance the efficiency of SAs to accommodate all applications above [4]. The research has mimicked, constructed, and measured models of SAs and MMs and will present the findings in the forthcoming session. The findings demonstrate a constant alignment between the computer model and measurements of the suggested concept. Those attributes can be augmented, enhanced, and tailored for antenna effectiveness [6].

2. Background

Numerous experts have researched extensively to enhance MM Photonic Antenna (MPA) [7] efficiency metrics, such as return loss and gain [10]. MMs are identified as superior candidates for improving antenna properties. MMs are synthetically engineered structures with harmful index properties at specific resonance frequencies. The timeline of MM-inspired antennae is as follows.

The research illustrated the dual-layer model above the high-impedance EM bandgap (BG) substrates. The EM BG layer replaces the conductive ground plane. Initially, the two-layered Electronic BG (EBG) [14] configuration was suggested, followed by determining the EBG. The efficiency of the antennae was affected by the two-layer EBG substrates with an intervening air gap, resulting in a broad range of 25.71% and an increased gain of 11.43 dBi. The built antenna demonstrates excellent concordance with the simulated findings [8]. The research revealed the circular MPA and its efficacy with an innovative spherical EBG platform. The proposed antenna, integrated into a cylindrical EM crystal base, is energized by a coaxial probe to enhance antenna yield. The cylinder EBG architecture consists of two

The research revealed the circular MPA and its efficacy with an innovative spherical EBG platform. The proposed antenna, integrated into a cylindrical EM crystal base, is energized by a coaxial probe to enhance antenna yield. The cylinder EBG architecture consists of two cycles with varying periods, built onto a mushroom-like substrate. The constructed design demonstrates a measured gain enhancement of 2.8 dBi.


The study clarified an unusual layout of an inspired antenna to attain multiband functionalities [9]. The conventional platform is substituted with an MM platform consisting of copper grids arranged in square lattice structures. The antenna has been constructed and evaluated. At 2.72 GHz, the recorded measurements indicate an 8.2 dB gain. The observed results align well with the predicted results. The study demonstrated an innovative flat MM patterned platform design influenced by a rectangular MPA. Incorporating an MM base into a conventional antenna expands the operational spectrum from 255 MHz to 3.1 GHz while enhancing performance and reducing loss. The antenna has been constructed and evaluated. The calculated results closely resemble the simulated results.

The research delineated a technique for in-circle polarizing SA made of microstrip and examined the impact of a resonator on slot-loaded MPA. The proposed antenna comprises four distinct components. High-Frequency Structure Simulator (HFSS) and Computer Simulation Technology (CST) programs are used to model antenna layouts [15]. The finalized antenna exhibits a gain of 2.0-3.7 dBi and an effectiveness of over 93%, as stated in this correspondence. The empirical results from constructing the antenna closely approximate the simulated figures. The research project investigated the design of an MM unit cell within an MPA. CST and HFSS professional simulation programs are utilized to model the suggested SA. The suggested SA has a maximum yield of 3.12 dB and operates over three frequency bands, as indicated in this correspondence. The antenna is appropriate for Bluetooth, WiMAX, and WLAN services over the bottom and higher frequencies.

The study presented a design for an MPA constructed of permeability-negative MM cells to enhance gain and orientation. The dual-layer symmetric single-ring resonator pairing on both ends of the dielectric layer enhanced the gain by 2.1 dB. It reduced the Half-Power Beamwidth (HPBW) by approximately 23°. The engineered antenna functions at 5.4 and 6.4 GHz frequencies, suitable for WLAN usage. The study offered a concept for a compact dual-band plasmonic prototype utilizing single Complementary Split-Ring Resonator (CSRR) components. The engineered antennas achieve dual frequency bands by incorporating the framework and chamfered hexagonal patched antennas. The engineered antenna exhibits a downsizing of up to 74.1% and applies to WiFi functionalities.

3. Design of microstrip slot antenna

SA comprises a Coplanar Waveguide (CPW) equipped with tunable stubs and rectangular slots, facilitating optimizers, operational efficiency, and impedance balancing through dimensional adjustments of the antenna. The layout of the stubs mitigates SA cross-polarization caused by inadequate efficiency, while the square slot facilitates unidirectional power radiation. This research investigates methods to augment the operational frequency of SA within the range of 1.7 GHz to 6.7 GHz to facilitate contemporary WC uses. Sub-6 GHz enables LTE connectivity, examining the correlation between antenna layout and effectiveness. The research delineates the arrangement of the SA depicted in Fig. 1. The antenna prototype has identified antennae on FR4 substrates with a related permittivity of 4.5 and a loss tangential of 0.03. The specified SA sizes are: the layer size = 1.5mm, CPW space = 8.6mm, stub size (Lp) = 9.2mm, stub space (Wp) = 20mm, slot width (Ws) = 40mm, slot size (Ls) = 20mm, separation among slots and stubs (La) = 2.5mm, and separation among CPW and grounding disparity = 0.5mm. A 52-9.5 CPW transmission wire is connected to the antenna. The suggested SA achieves a broader bandwidth functioning by aligning its resistance with alterations in the substrate's position and the dimensions of its stubs. The model employed waveguide port modes to configure CPW feeds to compute S-parameters, SA gain, and radiation patterns.

The SA modeling results indicate that silicon (Si) functions within a frequency range of 1.4 GHz to 6.4 GHz, accommodating all previously indicated applications, as illustrated in Fig. 2. Upon completion, the SA had a mean gain of 3.52 dBi across every frequency. Fig 3 illustrates

the standardized radiated structure of the SA for frequencies of 1.9GHz, 2.5GHz, 3.6 GHz, and 5.7GHz in the yz and xz sectors. The SA has unidirectional radiation capabilities. Upon examining the data, the research found that the mean gain of the SA is 3.45 dBi, with a maximal gain of roughly 5.37 dBi at 5.3 GHz, which poses a challenge in the context of wideband operations.

Fig. 3: Gain Analysis of the Antenna.

4. Discussion

The comprehensive literature analysis indicates that return loss, resistance bandwidth, directivity, and gain are critical performance factors of antennas. These variables must correspond to the range of Resonant Frequency (RF). Scientists primarily concentrated on downsizing SAs while preserving additional performance features.

Scientists use MMs in conventional patch antennas to enhance performance metrics without augmenting the total dimension or structural complexity associated with the patch antennas. MMs can be employed for various antenna operations, depending on the technical specifications of the antenna structure.

The diminished gain of conventional patch antennas constitutes a significant disadvantage. Incorporating MM layers equates the resonance frequency to the ionized frequency, resulting in zero conductivity or permeability, rendering the refractive index equal to zero. According to Snell's law, all radiation that escapes from the material being used will be horizontal to the plane, and all reflected radiation will be oriented similarly, resulting in significant gain and orientation. The elevated gain can be achieved by employing MMs as Photonic Bandgap (PBG) unit cells surrounding the radiation patch. MM substrates integrated into traditional patch antennas enhance antenna gain. The performance of standard MPA can be improved using EBG devices.

MM-inspired Split Ring Resonators (SRR) and Complementary SRR (CSRR) are proficient in enhancing antenna gain. The miniaturization of traditional MPA can be accomplished by incorporating MM components. The MM-loaded patch antenna generates subwavelength effects at the RF of the conventional patch antennas. SRRs and CSRRs are predominantly employed to miniaturize SA without compromising performance metrics. The dual-segmented Capacitive Loading Strip (CLS) MM represents an innovative approach to antenna miniaturization. Utilizing metamaterial as a superstrate can diminish antenna size while enhancing other antenna properties. MMs can enhance an anteimprovspectrum and confer multiband characteristics.

Diverse methodologies can be utilized to attain many frequency bands, including Triangular Electromagnetic Resonators (TER), different single Circular Ring Resonator (CRR) configurations (oval, triangular, rectangular, hexagonal in shape, and octagonal), and MM unit cells within the SA. CSRRs and SRRs provide the acquisition of augmented capacity without enlarging the overall dimensions of antennas. Ultrawideband antennae require the filtration of narrow groups. MM-inspired buildings, such as SRRs, CSRRs, and defective ground buildings, can be integrated into the radiator or adjacent to the feeding line for appropriate frequency cutting.

This discovery is highly beneficial for researchers focused on 6G communication, which is anticipated to achieve data transfer rates of many terabits per second. Constructing specific receivers, transmitters, or antennas to facilitate data transfer at such speeds is essential. MMs have the possibility, and ongoing research facilitates further developments and enhancements. They possess the capacity to meet the requirements of 6G networking in this domain. Applications of MMs encompass public safety, sensor identification, high-frequency battlefield interaction, enhancement of ultrasonic detectors, solar power administration, high-gain antennae, and remote aeronautical operations

4.1. Prospective endeavors

Numerous investigations employed substantially diminished SA size and exceedingly small designs relative to the frequency. Electronically small antennas are challenging to design because of their constraints, requiring compromises between design and effective metrics such as bandwidth, effectiveness, gain, and radiation patterns. Although MMs have demonstrated efficacy in reducing the dimensions of

radiators through the facilitation of innovative resonant phases, the underlying challenges persist unchanged. The narrowband characteristics of MMs directly influence the range of small meta-resonator antennae. Most designs focused solely on minimizing the antenna's dimensions by employing the subwavelength resonant of MM tissues without improving the antenna's efficiency in general. The interaction with the MM cell and the rest of the antenna (e.g., monopole and patches) was overlooked, even though this interaction is essential for the current transportation, significantly affecting the antenna's efficiency. Building a Meta-Surface Antenna (MSA) with metal resonator stacks is straightforward; attaining superior overall performance necessitates more factors, including the feeding technique, kind of MM, placement of unit cells, and configuration of the primary SA structure. The research asserts that MMs can facilitate and enhance the creation of MSAs; further research is required.

There is a significant necessity for mathematical models that would provide design advice to enhance antenna characteristics. The field remains immature, with only a few exemplary MM antennae, as scientific comprehension of the fundamental principles is constrained, and designs predominantly rely on electromagnetic models. A robust theory for MM-inspired SA is essential to accelerate the design procedure and enhance performance. Techniques utilizing MMs to improve the small bandwidth and low effectiveness of MSAs are crucial for future telecommunications. Compact, energy-efficient, wideband antennae will gain significance as bandwidths expand, devices shrink, and signal-to-noise ratio becomes the primary criterion for future 5G, 6G, and subsequent systems.

5. Conclusion

This study developed and showed the efficacy of an SA using metallic apertures and a wire-medium configuration to facilitate various contemporary WC methods. The findings indicate that the two components possess reflecting properties. These methodologies for improving efficiency, such as S11, acquire and analyze the characteristics of radiation waveforms. The simulation indicates that all proposed SAs continue to function across a broad frequency spectrum, and the gain of these antennas has increased significantly. These methodologies are advocated to minimize the antenna's dimensions and mitigate losses in the antenna array's feeding line, enhancing the antenna's efficiency when necessary. The experimental results indicated that the suggested SAs with MM functioned to achieve the objectives.

References

- [1] Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A review and state of the art of the Internet of Things (IoT). Archives of Computational Methods in Engineering, 1-19
- [2] Mukti, I. Z., Khan, E. R., & Biswas, K. K. (2024). 1.8-V Low Power, High-Resolution, High-Speed Comparator with Low Offset Voltage Implemented in 45nm CMOS Technology. Journal of VLSI Circuits and Systems, 6(1), 19–24. https://doi.org/10.31838/jvcs/06.01.03.
- [3] Madugalla, A. K., & Perera, M. (2024). Innovative uses of medical embedded systems in healthcare. Progress in Electronics and Communication Engineering, 2(1), 48–59.
- [4] Dhanalakshmi, N., Atchaya, S., & Veeramani, R. (2014). A design of multiband antenna using main radiator and additional sub-patches for different wireless communication systems. *International Journal of Communication and Computer Technologies*, 2(1), 1-5.
- [5] Gijon, C., Toril, M., Luna-Ramírez, S., Marí-Altozano, M. L., & Ruiz-Avilés, J. M. (2021). Long-term data traffic forecasting for network dimensioning in LTE with short time series. *Electronics*, 10(10), 1151. https://doi.org/10.3390/electronics10101151.
- [6] Fathima Sapna, P. (2021). Load Frequency Control of Thermal Power System by using Extended PI & FLC. *International Academic Journal of Innovative Research*, 8(2), 01–05. https://doi.org/10.9756/IAJIR/V8I2/IAJIR0803.
- [7] Pyo, S., & Park, K. (2024). Mechanical metamaterials for sensor and actuator applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 11(1), 291-320. https://doi.org/10.1007/s40684-023-00549-w.
- [8] Shokri, A. H., Jazari, B. M., & Rezaei, M. (2014). The effect of GPS1 antenna's phase center offset and satellite DOP2's on the exact positioning. *International Academic Journal of Science and Engineering*, 1(1), 145–157.
- [9] Esmail, B. A., Koziel, S., & Szczepanski, S. (2022). Overview of planar antenna loading metamaterials for gain performance enhancement: The two decades of progress. *IEEE Access*, 10, 27381-27403. https://doi.org/10.1109/ACCESS.2022.3157634.
- [10] Yamuna, B., & Girija, T. (2015). Enhanced Fully Distributed Load Rebalancing in Cloud Computing. *International Journal of Advances in Engineering and Emerging Technology*, 6(4), 121–132.
- [11] Azam, F., Shah, S. I. H., Bashir, S., & Koziel, S. (2024). Review of recent advancements in nature/bio-inspired antenna designs. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3372864.
- [12] Ramahrishnan, S., Elakkiya, B., Geetha, R., & Vasuki, P. (2014). Isolation enhancement in microstrip antenna arrays. *International Journal of Communication and Computer Technologies*, 2(2), 74-78. https://doi.org/10.31838/ijccts/02.02.01.
- [13] Parashar, V., Kashyap, R., Rizwan, A., Karras, D. A., Altamirano, G. C., Dixit, E., & Ahmadi, F. (2022). Aggregation-based dynamic channel bonding maximizes the performance of wireless local area networks (WLAN). Wireless Communications and Mobile Computing, 2022(1), 4464447. https://doi.org/10.1155/2022/4464447.
- [14] Meena, M. C., Yadav, H., Yaduvanshi, R., Kumar, N., & Jewariya, M. (2024). Graphene-based hybrid material microstrip slotted antenna for THz application. *Journal of Optics*, 53(4), 3770-3779. https://doi.org/10.1007/s12596-023-01610-2.
- [15] Siti, A., & Putri, B. (2025). Enhancing performance of IoT sensor network on machine learning algorithms. Journal of Wireless Sensor Networks and IoT, 2(1), 13-19.
- [16] Karthika, J. (2025). Wireless Control of Industrial Servo Drives Using Industrial IOT And 5g Technologies. National Journal of Electric Drives and Control Systems, 49-58.
- [17] Nissanov, U., Singh, G., Gelbart, E., & Kumar, N. (2021). Highly directive microstrip array antenna with FSS for future generation cellular communication at THz band. Wireless Personal Communications, 118(1), 599-617. https://doi.org/10.1007/s11277-020-08034-2.
- [18] Sio, A. (2025). Integration of embedded systems in healthcare monitoring: Challenges and opportunities. SCCTS Journal of Embedded Systems Design and Applications, 2(2), 9–20.