Estimation of marginal parameters of SUP-OU processes with long range dependence

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Superpositions of Ornstein Uhlenbeck processes provide convenient ways to build stationary processes with given marginal distributions and long range dependence. After reviewing some of the basic features, we present several examples of processes with non Gaussian marginal distributions. Estimation of the parameters of the marginal distribution is undertaken by means of a characteristic function technique. We provide the relevant asymptotic theory as well as results of simulations and real data applications.


  • Keywords


    Characteristic Function Estimation; Long Range Dependence; Marginal Distribution; Ornstein Uhlenbeck Process; Superposition.

  • References


      [1] Anh, V. V., Leonenko, N. N., Shieh, N. R., Taufer, E. (2010). Simulation of multifractal products of Ornstein–Uhlenbeck type processes. Nonlinearity, 23(4), 823-843.

      [2] Baran, S., Pap, G., van Zuijlen, M. C. A. (2003). Estimation of the mean of stationary and non-stationary Ornstein-Uhlenbeck processes and sheets. Comput. Math. Appl. 45, 563-579.

      [3] Barndorff-Nielsen, O.E. (1997). Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Statist. 24, no. 1, 1-13.

      [4] Barndorff-Nielsen, O.E. (1998). Processes of Normal Inverse Gaussian type. Finance and Stochastics 2, 41-68.

      [5] Barndorff-Nielsen, O. E. (2001). Superposition of Ornstein-Uhlenbeck type processes. Theory Probab. Appl. 45, no. 2, 175-194. Translated from Teor. Veroyatnost. i Primenen. 45 (2000), no. 2, 289-311.

      [6] Barndorff-Nielsen, O.E, Jensen, J.L, Sørensen, M. (1998). Some stationary processes in discrete and continuous time. Adv. Appl. Prob. 30 (4), 989-1007.

      [7] Barndorff-Nielsen, O.E., Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 , no. 2, 167-241.

      [8] Cox, D.R., (1991). Long-range dependence, nonlinearity and time irreversibility. J. Time Ser. Anal. 12, no. 4, 329-335.

      [9] De Bona, G. (2005). Long memory e mercati azionari: uno studio empirico del MIB30. Laurea thesis, University of Trento.

      [10] Ding, Z., Granger, C.W.J. (1996). Modeling volatility persistence of speculative returns: a new approach. J. Econometrics 73, no. 1, 185-215.

      [11] Dufresne, D. (1997). Algebraic properties of Beta and Gamma distributions, and applications. Adv. Appl. Math. 20, 285-299.

      [12] Feuerverger, A. and McDunnough, P. (1981). On some fourier methods for inference. J. Amer. Stat. Assoc. 76, 379-387.

      [13] Florens-Landais, D., Pham, H. (1999). Large deviations in estimation of an Ornstein-Uhlenbeck model. J. Appl. Probab. 36, 60-77.

      [14] Gloter, A. (2001). Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process. Statistics 35, 225–243.

      [15] Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. J. Econometrics 14, no. 2, 227-238.

      [16] Grigelionis, B. (1999). Processes of Meixner type. Liet. Mat. Rink. 39, no. 1, 40-51; translation in Lithuanian Math. J. 39 (1999), no. 1, 33-41.

      [17] Knight, J.L. and Satchell, S.E. (1997). The cumulant generating function estimation method. Econometric Theory 13, 170-184.

      [18] Knight, J.L. and Yu, J. (2002). Empirical characteristic function in time series estimation. Econometric Theory 18, 691-721.

      [19] Kotz, S., Kozubowski, T. J., Podg´orski, K. (2001). The Laplace Distributions and Generalizations. Birkhäuser, Boston.

      [20] Leonenko, N., Petherick, S., Taufer, E. (2013). Multifractal models via products of geometric OU-processes: Review and applications. Physica A: Statistical Mechanics and its Applications, 392(1), 7-16.

      [21] Leonenko, N.N., Taufer, E. (2005). Convergence of integrated superpositions of Ornstein Uhlenbeck processes to fractional Brownian motion. Stochastics 77 (6), 477-499.

      [22] Leonenko, N., Taufer, E. (2013). Disaggregation of spatial autoregressive processes. Spatial Statistics, 3, 1-20.

      [23] Madan, D.B. and Seneta, E. (1987). Simulation of estimates using the empirical characteristic function International Statistical Review 55, 153-161.

      [24] Madan, D.B., Seneta, E. (1990). The VG model for share market returns. J. Bus. 63, 511-524.

      [25] Pap, G., van Zuijlen, M. C. A. (1996). Parameter estimation with exact distribution for multidimensional Ornstein-Uhlenbeck processes. J. Multiv. Anal. 59, 153-165.

      [26] Schoutens,W., Teugels, J.L. (1998). Lévy processes, polynomials and martingales. Special issue in honor of Marcel F. Neuts. Comm. Statist. Stochastic Models 14, no. 1-2, 335-349.

      [27] Schoutens, W. (2003). Lévy Processes in Finance. Wiley, Chicester.

      [28] Seneta, E. (2004) Fitting of Variance-Gamma model to financial data. J. Appl. Probab. 41 A, 177–187.

      [29] Steutel, F. W., van Harn, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York.

      [30] Taufer, E., Leonenko, N., Bee, M. (2011). Characteristic function estimation of Stochastic volatility models. Computational Statistics and Data Analysis 55, 2525–2539.

      [31] Taufer, E., Leonenko, N. (2009). Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes. Journal of Statistical Planning and Inference 139, 3050-–3063.

      [32] Taufer, E., Leonenko, N. (2009b). Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution. Computational Statistics and Data Analysis, 53, 2427-2437.

      [33] Woerner, J.H.C. (2004) Estimating the skewness in discretely observed Lévy processes. Econometric Theory 20, 927-942.

      [34] Wolfe, J. (1982). On a continuous analogue of the stochastic difference equation Xn = rXn-1 +Bn. Stochastic Process. Appl. 12, no. 3,301-312.


 

View

Download

Article ID: 6722
 
DOI: 10.14419/ijasp.v4i2.6722




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.